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Incoming light

A General Photodector
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Converts an incident light
pulse to an observed signal

This is a very complex device!

Resulting Signal

We will treat the simplest representative cases to
understand the core tradeoffs



A General Photodector

LPhoton
Field

Decoupled detector

Absorption Amplification

Conventional treatments assume timescale separation of detection stages

We want to treat as much as possible quantum
mechanically, including the impact of amplification; ie,

backaction from the measurement process

We will use an open quantum systems formalism that includes a quantized EM field



Isolated System

1 Photon

• Single photon, lns width Gaussian
wavepacket

• Two optically coupled states

How does measuring this
excitation affect performance?
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Directly Measured System
Quantum Classical
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• Excited state coupled to bath whose

classical state is monitored
• Excitation changes output reading
• Introduces decoherence
• Average excitation probability is

reduced according to strength of
coupling and signal amplification

Amplification (measurement)
backaction limits performance
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We will assume a
quantum-limited

amplifier with Markov
characteristics.
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Directly Amplified System
Quantum Classical
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What about modeling actual measurements, not just averages?

• Simulate individual events
• Dynamics are conditioned on

the measured current
• Obtain measured current as

well as excitation population
• Amplification introduces

intrinsic noise
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Directly Amplified System

Metrics ROC

• Perform many runs
• Vary threshold for counting a hit

• True Positive Rate (Efficiency)
• False Positivn P°fn r'niirlfc\

• Hit time (Jittl 100

• For single photo!
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3-State System
Quantum
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1 Photon

• Excited state relaxes to dark state
coupled to bath whose classical state
is monitored

• Average excitation is insensitive to
amplification!

• Relaxation "protects" excitation but
introduces decoherence

• Average excitation probability is
reduced according to relaxation rate

Relaxation rate must be
optimized for performance
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1 Photon

3-State System
Quantum Classical

Modeling actual measurements

• Individual event dynamics do depend
on amplification

• Must also still contend with noise
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3-State System

Metrics ROC

• Perform many runs
• Vary threshold for counting a hit

• True Positiva Pnta (Pffir'ianrs`i\

• False Positi 100  

• Hit time (Jit. 80 -

• For single photo
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Ideal Detection

Simple two state system shows pulse shape and duration dependent performance
What about the monitored case?
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When pulse is long compared to
excitation and relaxation rates,
detection efficiency approaches

unity!

Even much shorter pulses can be
detected efficiently
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Conclusions

• Can simulate fully quantum detection
• Generate detector metrics and quantify tradeoffs
and limits

• We learn that:
• Details of amplification matter
• Detector can be tuned to minimize negative
impact of amplification

• Ongoing work: Extend to more complicated
systems, e.g.:
• Multiple photons in pulse
• Excitations into band
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