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A General Photodector

Incoming light Converts an incident light
pulse to an observed signal

’ This is a very complex device!

Resulting Signal

We will treat the simplest representative cases to
understand the core tradeoffs




A General Photodector

Decoupled detector
\ = nggn ’ Absorption Ampliﬁcation

Conventional treatments assume timescale separation of detection stages

We want to treat as much as possible quantum
mechanically, including the impact of amplification; ie,
backaction from the measurement process

We will use an open quantum systems formalism that includes a quantized EM field




Isolated System
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« Single photon, 1ns width Gaussian
wavepacket
« Two optically coupled states

How does measuring this
excitation affect performance?
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Directly Measured System

Quantum Classical

We will assume a
quantum-limited
amplifier with Markov

characteristics.
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» Excited state coupled to bath whose o8 y = 0.1 — A

. . . Photon
classical state is monitored 0.6

« Excitation changes output reading -
* Introduces decoherence o
* Average excitation probability is AN
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Directly Amplified System

Quantum Classical

What about modeling actual measurements, not just averages?

 Simulate individual events
« Dynamics are conditioned on
the measured current

 Obtain measured current as tttom |
T / szl (t!)dti -+ )—('th

well as excitation population ! 2
- Amplification introduce/
Intrinsic noise
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Amplified System
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Hit Threshold

Weaker
amplification gives
better average
signal, but with a lot
of noise

Stronger
amplification yields
a few recognizable
hits




Directly Amplified System

Metrics o 00
* Perform many runs g 081 — x=0.10
« Vary threshold for counting a hit € X0
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Direct amplification dramatically reduces performance




3-State System

Quantum r
1 —

pr
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1 Photon

» Excited state relaxes to dark state
coupled to bath whose classical state
is monitored

* Average excitation is insensitive to
amplification!

» Relaxation “protects” excitation but
introduces decoherence

» Average excitation probability is
reduced according to relaxation rate

Relaxation rate must be
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3-State System

Quantum Classical
1 "_L \11
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Modeling actual measurements

 Individual event dynamics do depend
on amplification
« Must also still contend with noise
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3-State System

ROC
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Metrics
e True Positive Rate (Fffirianm/)

« Perform many runs |
« Vary threshold for counting a hit | — x=o00s
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Intermediate state sidesteps negative impact of
amplification on performance




Ideal Detection

Simple two state system shows pulse shape and duration dependent performance

What about the monitored case?
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Conclusions

« Can simulate fully quantum detection
» Generate detector metrics and quantify tradeoffs
and limits
* We learn that:
» Details of amplification matter
» Detector can be tuned to minimize negative
impact of amplification

* Ongoing work: Extend to more complicated
systems, e.g.:
* Multiple photons in pulse
 Excitations into band
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