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2 Objectives

■To use molecular simulation to investigate ion diffusion and adsorption from
aqueous solutions to minerals in increasing complex systems more representative of
how mineral surfaces present themselves in a rock-like subsurface system.

■The model mineral used is gibbsite because it has properties similar to a clay
mineral but does not include the additional complexity of an interlayer.

■Molecular simulations are performed for:

■ Water and ion adsorption to the basal (001) and edge (100) gibbsite surfaces

■ Water and ion adsorption to a gibbsite nanoparticle

■ Water adsorption to gibbsite nanoparticle aggregates that are created through de-watering
and compaction

■



3 Adsorption on Gibbsite basal (001) and edge (100) surfaces
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4 Cation Adsorption to Gibbsite Surfaces
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5 Gibbsite nanoparticle construction
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Exploit the hexagonal symmetry of bulk gibbsite

Molecular dynamics 
• LAMMPS code with CIayFF parameters.
• New Al-O-H angle bending term for stability of edge sites.
• Extra Al-O-Al term added for nanoparticle stability.

1.34nm

Lateral dimension 2.1 — 3.5 nm
Particle thickness 3 layers (1.3 nm)
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6 Comparison of Adsorption on Gibbsite Nanoparticle vs. Surfaces
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• Cl- adsorption is not
enhanced on NP

• NW, Ca2+, and Ba2+
adsorption are enhanced on
NP

• NPs exhibit higher
concentrations of IS
complexes
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7 Cation Adsorption at Nanoparticle Corners
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8  Gibbsite aggregation

NVT
0.3 ns
300 K

54 NPs, 55k H20
30 x 30 x 30 nm3

Effect of dewatering rate: 

• Delete all water: "Fast"

• Delete 100 H20/100 steps: "Intermediate"

• Delete 10 H20/100 steps: "Slow"

Hydrated aggregate

15 x 15 x 15 nm3

NPT
0.3 ns
300 K

100 MPa

Effect of water content: 

• 1 water layer around each particle: 1W (22.5 wt%)

• 2 water layers around each particle: 2W (37.2 wt%)

• Additional withdraw water from 2W: 2W_dewatering (6 wt%)

• Dry: 2W_dry

`Virtual' pump removes
waters from a pre-defined
region.



9 Stacking of nanoparticles
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1 0 Pore properties

Effect of dewatering on PSD
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11 Water structure: I D atomic density profiles
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Water structure at nanoparticle surfaces qualitatively the same regardless
of water content.

• < 5 A from surface: similar water coordination environments.
• > 5 A from surface: pore water seen up to 10 A from surface.
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12 Conclusions

The percent cation adsorption as inner-sphere complexes depends on the gibbsite
surface.

For all cations, surface coverages are higher on the basal surface than the edge
surface.

°For all cations, surface coverages are highest for the nanoparticle, due to the
significant number of inner-sphere cations found at nanoparticle corners.

Slow dewatering creates more compact aggregates that fast dewatering.

The amount of water present in the aggregates strongly affects the particle-particle
interactions and the aggregate structure
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