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2 I Objectives

*To use molecular simulation to investigate ion diffusion and adsorption from
aqueous solutions to minerals in increasing complex systems more representative of
how mineral surfaces present themselves in a rock-like subsurface system.

“The model mineral used 1s gibbsite because it has properties similar to a clay
mineral but does not include the additional complexity of an interlayer.

"Molecular simulations are performed for:
= Water and 10n adsorption to the basal (001) and edge (100) gibbsite surfaces
= Water and 1on adsorption to a gibbsite nanoparticle

= Water adsorption to gibbsite nanoparticle aggregates that are created through de-watering
and compaction



Adsorption on Gibbsite basal (001) and edge (100) surfaces
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41 Cation Adsorption to Gibbsite Surfaces
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5 1 Gibbsite nanoparticle construction
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Exploit the hexagonal symmetry of bulk gibbsite

\ Lateral dimension 2.1 — 3.5 nm

Particle thickness 3 layers (1.3 nm)

2.1nm

Molecular dynamics
 LAMMPS code with ClayFF parameters.
* New Al-O-H angle bending term for stability of edge sites.
« Extra Al-O-Al term added for nanoparticle stability.
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Comparison of Adsorption on Gibbsite Nanoparticle vs. Surfaces
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Cl- adsorption is not
enhanced on NP

Na*, CaZ*, and Ba%*
adsorption are enhanced on
NP

NPs exhibit higher
concentrations of IS
complexes
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7‘ Cation Adsorption at Nanoparticle Corners
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Hydrated aggregate
s | Gibbsite aggregation 15 x 15 x 15 nm?3

NPT

0.3 ns

300 K
100 MPa

54 NPs, 55k H,0
30 x 30 x 30 nm3

Effect of dewatering rate:
* Delete all water: “Fast”
e Delete 100 H20/100 steps: “Intermediate”
* Delete 10 H20/100 steps: “Slow”

‘Virtual’ pump removes
waters from a pre-defined

Effect of water content: :
region.

1 water layer around each particle: 1W (22.5 wt%)
2 water layers around each particle: 2W (37.2 wt%)
 Additional withdraw water from 2W: 2W_dewatering (6 wt%)

* Dry: 2W_dry




9 I Stacking of nanoparticles
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10 I Pore properties

Effect of dewatering on PSD Effect of water content on PSD
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11 ‘ Water structure: | D atomic density profiles

2W water content (37 wt%) 1W water content (22 wt%)
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Distinct peaks due to water at basal vs edge surfaces.
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Water structure at nanoparticle surfaces qualitatively the same regardless
of water content.

« < 5 A from surface: similar water coordination environments.
- > 5 A from surface: pore water seen up to 10 A from surface.




12 I Conclusions

*The percent cation adsorption as inner-sphere complexes depends on the gibbsite
surface.

“For all cations, surface coverages are higher on the basal surface than the edge
surface.

"Tor all cations, surface coverages are highest for the nanoparticle, due to the
significant number of inner-sphere cations found at nanoparticle corners.

=Slow dewatering creates more compact aggregates that fast dewatering.

*The amount of water present in the aggregates strongly affects the particle-particle
interactions and the aggregate structure
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