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—— Abstract

We study the problem of decomposing a volume bounded by a smooth surface into a collection
of Voronoi cells. Unlike the dual problem of conforming Delaunay meshing, a principled solution
to this problem for generic smooth surfaces remained elusive. VoroCrust leverages ideas from
a-shapes and the power crust algorithm to produce unweighted Voronoi cells conforming to the
surface, yielding the first provably-correct algorithm for this problem. Given an e-sample on the
bounding surface, with a weak o-sparsity condition, we work with the balls of radius ¢ times the
local feature size centered at each sample. The corners of this union of balls are the Voronoi sites,
on both sides of the surface. The facets common to cells on opposite sides reconstruct the surface.
For appropriate values of ¢, 0 and §, we prove that the surface reconstruction is isotopic to the
bounding surface. With the surface protected, the enclosed volume can be further decomposed
into an isotopic volume mesh of fat Voronoi cells by generating a bounded number of sites in its
interior. Compared to state-of-the-art methods based on clipping, VoroCrust cells are full Voronoi
cells, with convexity and fatness guarantees. Compared to the power crust algorithm, VoroCrust
cells are not filtered, are unweighted, and offer greater flexibility in meshing the enclosed volume
by either structured grids or random samples.
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1 Introduction

Mesh generation is an important problem in computational geometry, geometric modeling,
scientific computing and computer graphics. There has been a growing interest in polyhedral
meshes as an alternative to tetrahedral or hex-dominant meshes. The main advantages of
polyhedral meshes are higher degrees of freedom per element and fewer elements for the
same number of vertices. This can be very useful in several numerical methods, e.g., finite
volume [37], virtual element [17] and Petrov-Galerkin [39]. Within the class of polyhedral
cells, Voronoi cells share several properties with tetrahedra, e.g., planar facets, convexity
and positive Jacobians. In addition, the accuracy of a number of important solvers, e.g., the
two-point flux approximation for conservation laws [37], greatly benefits from a conforming
mesh which is orthogonal to its dual as naturally satisfied by Voronoi meshes. Such solvers
play a crucial role in hydrology [47] and computational fluid dynamics [20].

VoroCrust is the first provably-correct algorithm for generating a volumetric Voronoi
mesh whose boundary conforms to a smooth bounding surface, and with quality guaran-
tees. A conforming volume mesh exhibits two desirable properties simultaneously: (1) a
decomposition of the enclosed volume, and (2) a reconstruction of the bounding surface.
Conforming Delaunay meshing is well-studied [26], but Voronoi meshing is less mature. A
common practical approach to polyhedral meshing is to dualize a tetrahedral mesh and clip,
i.e., intersect and truncate, each cell by the bounding surface [33,40,44,48]. Unfortunately,
clipping sacrifices the important properties of convexity and connectedness of cells, and
requires costly constructive solid geometry operations. Restricting a Voronoi mesh to the
surface before filtering its dual Delaunay facets is another approach [7,31,49], but filtering
requires extra checks complicating its implementation and analysis; see also Figure 4. An
intuitive approach is to locally mirror the Voronoi sites on either side of the surface [18,32],
but we are not aware of any robust algorithms with approximation guarantees in this cat-
egory. In contrast to these approaches, VoroCrust is distinguished by its simplicity and
robustness at producing true unweighted Voronoi cells, leveraging established libraries, e.g.,
Voro++ [46], without modification or special cases.

VoroCrust can be viewed as a principled mirroring technique, which shares a number of
key features with the power crust algorithm [13]. The power crust literature [7,8,10,12,13]
developed a rich theory for surface approximation, namely the e-sampling paradigm. Recall
that the power crust algorithm uses an e-sample of unweighted points to place weighted
sites, so-called poles, near the medial axis of the underlying surface. The surface reconstruc-
tion is the collection of facets separating power cells of poles on the inside and outside of
the enclosed volume. Regarding samples and poles as primal-dual constructs, power crust
performs a primal-dual-dual-primal dance. VoroCrust makes a similar dance where weights
are introduced differently; the samples are weighted to define unweighted sites tightly hug-
ging the surface, with the reconstruction arising from their unweighted Voronoi diagram.
The key advantage is the freedom to place more sites within the enclosed volume without
disrupting the surface reconstruction. This added freedom is essential to the generation of
graded meshes; a primary virtue of the proposed algorithm. Another virtue of the algorithm
is that all samples appear as vertices in the resulting mesh. While the power crust algo-
rithm does not guarantee that, some variations do so by means of filtering, at the price of
the reconstruction no longer being the boundary of power cells [7,11,30].

The main construction underlying VoroCrust is a suitable union of balls centered on the
bounding surface, as studied in the context of non-uniform approximations [24]. Unions of
balls enjoy a wealth of results [15,22,35], which enable a variety of algorithms [13,21,28].
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Similar constructions have been proposed for meshing problems in the applied sciences
with heuristic extensions to 3D settings; see [38] and the references therein for a recent
example. Aichholzer et al. [6] adopt closely related ideas to construct a union of surface
balls using power crust poles for sizing estimation. However, their goal was to produce
a coarse homeomorphic surface reconstruction, and the connection to Voronoi meshing is
absent. In contrast, VoroCrust aims at a decomposition of the enclosed volume into fat
Voronoi cells conforming to an isotopic surface reconstruction with quality guarantees.

In a previous paper [4], we explored the related problem of generating a Voronoi mesh
that conforms to restricted classes of piecewise-linear complexes, with more challenging
inputs left for future work. The approach adopted in [4] does not use a union of balls and
relies instead on similar ideas to those proposed for conforming Delaunay meshing [27,42,45].
Ultimately, we seek a conforming Voronoi mesher that can handle realistic inputs including a
mix of smooth and sharp features, can estimate a sizing function and generate samples, and
can guarantee the quality of the output mesh. This is the subject of a forthcoming paper [3]
which describes the design and implementation of the complete VoroCrust algorithm.

In this paper, we present a theoretical analysis of an abstract version of the VoroCrust
algorithm. This establishes the quality and approximation guarantees of its output for vol-
umes bounded by smooth surfaces. A description of the algorithm we analyze is given next;
see Figure 1 for an illustration in 2D, and also our accompanying multimedia contribution [2].

The abstract VoroCrust algorithm

Take as input a sample P on the surface M bounding the volume O.

Define a ball B; centered at each sample p;, with a suitable radius r;, and let U = U, B;.
Initialize the set of sites S with the corner points of 90U, ST and S, on both sides of M.
Optionally, generate additional sites S** in the interior of @, and include S* into S.
Compute the Voronoi diagram Vor(S) and retain the cells with sites in S* U S+ as the
volume mesh @, where the facets between ST and St yield a surface approximation M.

-
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(a) Surface balls. (b) Labeled corners.  (c) Voronoi cells. (d) Reconstruction.

Figure 1 VoroCrust reconstruction, demonstrated on a planar curve.

In this paper, we assume P is an e-sample, with a weak o-sparsity condition, and r; is
set to 0 times the local feature size at p;. For appropriate values of the parameters €, o and
0, we prove that O and M are isotopic to O and M, respectively. We also show that simple
techniques for sampling within O, e.g., octree refinement, guarantee an upper bound on the
fatness of all cells in O, as well as the number of samples.

The rest of the paper is organized as follows. Section 2 introduces the key definitions and
notation used throughout the paper. Section 3 describes the placement of Voronoi seeds and
basic properties of our construction assuming the union of surface balls satisfies a structural
property. Section 4 proves this property holds and establishes the desired approximation
guarantees under certain conditions on the input sample. Section 5 considers the generation
of interior samples and bounds the fatness of all cells in the output mesh. Section 6 concludes
the paper. A number of proofs is deferred to the full version, available online [1]; see also
the accompanying multimedia contribution in these proceedings [2].

1:3

SoCG 2018



1:4

Sampling Conditions for Conforming Voronoi Meshing by the VoroCrust Algorithm

2 Definitions and preliminaries

We assume the volume O is a bounded open subset of R3. The boundary of O is a closed,
bounded and smooth two-dimensional surface denoted by M. The Euclidean distance be-
tween two points p,q € R? is denoted d(p,q). Throughout the paper, standard general
position assumptions [36] are made to simplify the presentation. We proceed to recall the
key definitions and notation used throughout the paper, following those in [13,19,24,34,35].

2.1 Sampling and approximation

We take as input a set of sample points P C M. A local scale or sizing is used to vary the
sample density. Recall that the medial azis [13] of M, denoted by A, is the closure of the
set of points in R? with more than one closest point on M. Hence, A has one component
inside O and another outside. Each point of A is the center of a medial ball tangent to M
at multiple points. Likewise, each point on M has two tangent medial balls, not necessarily
of the same size. With that, the local feature size at x € M is defined as lfs(z) = d(z, A).
The set P is an e-sample [9] if for all © € M there exists p € P such that d(z,p) < e-1fs(z).

We desire an approximation of O by a Voronoi mesh O, where the boundary Mof O
approximates M. To define the type of approximations we desire, we recall a few defini-
tions [24]. Two topological spaces are homotopy-equivalent if they have the same topology
type. In other words, there is a one-to-one correspondence between their connected compo-
nents, cycles, cavities, etc., as well as how these topological features are related. A stronger
notion of topological equivalence is homeomorphism, which holds when there exists a con-
tinuous bijection with a continuous inverse from M to M. Intuitively, two homeomorphic
surfaces can be smoothly deformed into one another without tearing or self-intersection. The
notion of isotopy better captures the topological equivalence for surfaces embedded in Eu-
clidean space. Two surfaces M, M C R3 are isotopic [16,23] if there is a continuous mapping
F : M x[0,1] — R3 such that for each t € [0,1], F(-,t) is a homeomorphism from M to M,
where F(-,0) is the identity of M and F(M,1) = M. To capture the requirement that M
and M should be close in terms of Euclidean distance, the notion of Hausdorff distance is
defined as du(X,Y) = max{sup,c inf v d(z,y), sup, ¢y infzer d(z,y) }-

2.2 Diagrams and triangulations

The set of points defining a Voronoi diagram are traditionally referred to as sites or seeds.
When approximating a manifold by a set of sample points of varying density, it is helpful to
assign weights to the points reflective of their density. In particular, a point p; with weight
w;, can be regarded as a ball B; with center p; and radius r; = \/w;, i.e., B(pi,ri).

Recall that the power distance [35] between two points p;,p; with weights w;,w; is
7(pi,p;) = d(pi,pj)? — w; — w;. Unless otherwise noted, points are unweighted, having
weight equal to zero. There is a natural geometric interpretation of the weight: all points ¢
on the boundary of B; have m(p;,q) = 0, inside 7(p;,q) < 0 and outside m(p;,q) > 0. Given
a set of weighted points P, this metric gives rise to a natural decomposition of R? into the
power cells V; = {q € R® | m(pi,q) < 7(p;,q) Vp; € P}. The power diagram wVor(P) is the
cell complex defined by collection of cells V; for all p; € P.

The nerve [35] of a collection C of sets is defined as N'(C) = {X CC | NT # 0}. Observe
that NM(C) is an abstract simplicial complex because X € N (C) and Y C X imply ¥ €
N(C). With that, we obtain the weighted Delaunay triangulation, or regular triangulation,
as wDel(P) = N (wVor(P)).
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Alternatively, wDel(P) can be defined directly as follows. A subset 7' C R?, with d < 3
and |T'| < d+1 defines a d-simplex op. Recall that the orthocenter [25] of o7, denoted by 27,
is the unique point ¢ € R? such that 7 (p;, z7) = 7(p;, zr) for all p;, p; € T; the orthoradius
of o is equal to m(p, z) for any p € T. The Delaunay condition defines wDel(P) as the set
of tetrahedra o with an empty orthosphere, meaning 7 (p;, zr) < m(pj, 2r) for all p; € T
and p; € P\ T, where wDel(P) includes all faces of or.

There is a natural duality between wDel(P) and wVor(P). For a tetrahedron or, the
definition of zr immediately implies 27 is a power vertez in wVor(P). Similarly, for each
k-face fg of or € wDel(P) with S C T and k + 1 = | S|, there exists a dual (3 — k)-face f§
in wVor(P) realized as NpesVp.

When P is unweighted, the same definitions yield the standard (unweighted) Voronoi
diagram Vor(P) and its dual Delaunay triangulation Del(P).

2.3 Unions of balls

Let B denote the set of balls corresponding to a set of weighted points P and define the
union of balls U as UB. It is quite useful to capture the structure of U using a combinatorial
representation like a simplicial complex [34,35]. Let f; denote V; N0B; and F the collection
of all such f;. Observing that V;NB; C V;NB;VB;, B; € B, [; is equivalently defined as the
spherical part of 9(V; N B;). Consider also the decomposition of ¢ by the cells of wVor(P)
into C(B) = {V; N B; | B; € B}. The weighted a-complex W is defined as the geometric
realization of N'(C(B)) [35], i.e., or € Wit {V,N B; | p; € T} € N(C(B)). It is not hard to
see that W is a subcomplex of wDel(P). To see why W is relevant, consider its underlying
space; we create a collection containing the convex hull of each simplex in W and define the
weighted a-shape J as the union of this collection. It turns out that the simplices op € W
contained in 0J are dual to the faces of OU defined as N;er f;. In particular, the corner
vertices of OU correspond to the 2-simplices or facets of 7. In fact, every point ¢ € oU
defined by Nier, fi, for T, € B and k + 1 = |T,|, witnesses the existence of o7, in W; the
k-simplex o, is said to be erposed and J can be defined directly as the collection of all
exposed simplices [34]. Moreover, it is well-known that J is homotopy-equivalent to I [35].

Picking up on that last remark, using unions of balls to approximate an underlying
manifold given a set of sample points has been an active subject of study. A union of balls
defined using an e-sampling guarantees the approximation of the manifold under suitable
conditions on the sampling. Following earlier results on uniform sampling [43], an extension
to non-uniform sampling establishes sampling conditions for the isotopic approximation of
hypersurfaces and the reconstruction of the medial axis of the manifold [24].

3 Seed placement and surface reconstruction

We determine the location of Voronoi seeds using the union of balls ¢/. The correctness of
our reconstruction depends crucially on how sample balls B overlap. Assuming a certain
structural property on U, the surface reconstruction is embedded in the dual shape 7.

3.1 Seeds and guides

Central to the method and analysis are triplets of sample spheres, i.e., boundaries of sample
balls, corresponding to a guide triangle in wDel(P). The sample spheres associated with the
vertices of a guide triangle intersect contributing a pair of guide points. The reconstruction
consists of Voronoi facets, most of which are guide triangles.

1:5
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(a) Overlapping balls and guide circles. (b) Pattern resulting in four half-covered seed pairs.

Figure 2 (a) Guide triangle and its dual seed pair. (b) Cutaway view in the plane of circle C34.

When a triplet of spheres 0B;, 0B;, 0Bj, intersect at exactly two points, the intersection

points are denoted by g}jk = {ngj,€7 gjjk} and called a pair of guide points or guides; see

Figure 2a. The associated guide triangle t;;;, is dual to gik We use arrows to distinguish
guides on different sides of the manifold with g' lying outside O and g* lying inside. We
refer to the edges of guide triangles as guide edges e;; = p;p;. A guide edge e;; is associated
with a dual guide circle C;; = 0B; N 0B;, as highlighted in Figure 2a.

The Voronoi seeds in ST U St are chosen as the subset of guide points that lie on 9. A
guide point g which is not interior to any sample ball is uncovered and included as a seed
s into S; covered guides are not. We denote uncovered guides by s and covered guides by
g, whenever coverage is known and important. If only one guide point in a pair is covered,
then we say the guide pair is half-covered. If both guides in a pair are covered, they are
ignored. Let S§; = S N OB; denote the seeds on sample sphere 0B;.

As each guide triangle ¢, is associated with at least one dual seed s;;, the seed witnesses
its inclusion in W and t;;;, is exposed. Hence, t;;, belongs to 0J as well. When such ¢, is
dual to a single seeds s;;;, it bounds the interior of 7, i.e., it is a face of a regular component
of J; in the simplest and most common case, ;. is a facet of a tetrahedron as shown in
Figure 3b. When ¢;;;, is dual to a pair of seeds s%k, it does not bound the interior of J and

1,
is called a singular face of 0. All singular faces of 0. appear in the reconstructed surface.

3.2 Disk caps

We describe the structural property required on U along with the consequences exploited by
VoroCrust for surface reconstruction. This is partially motivated by the requirement that
all sample points on the surface appear as vertices in the output Voronoi mesh.

We define the subset of 0B; inside other balls as the medial band and say it is covered.
Let the caps K ZT and K f be the complement of the medial band in the interior and exterior
of O, respectively. Letting n,, be the normal line through p; perpendicular to M, the two
intersection points n,, N 0B5; are called the poles of B;. See Figure 3a.

We require that U satisfies the following structural property: each 0B; has disk caps,
meaning the medial band is a topological annulus and the two caps contain the poles and
are topological disks. As shown in Figure 3a, all seeds in S] and S} lie on 9K, and 9K},
respectively, along the arcs where other sample balls intersect 0B;.
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: b |
D, 134
(a) Caps and medial band. (b) Sliver and half-covered seeds, exaggerated vertical scale.

Figure 3 (a) Decomposing the sample sphere dB;. (b) Uncovered seeds and reconstruction
facets. Let 7, € wDel(P) and 7 € Del(S) denote the tetrahedra connecting the four samples and
the four seeds shown, respectively. st,4 and st,, are the uncovered lower guide seeds, with gl,4 and
gI34 covered. The uncovered upper guide seeds are sl,, and 5234, with git24 and 9334 covered. Age
is the Voronoi facet dual to the Delaunay edge between “5{23 and °sl,,, etc. Voronoi facets dual to
magenta edges are in the reconstructed surface; those dual to green and blue edges are not. n is the
circumcenter of 7, and appears as a Voronoi vertex in Vor(S) and a Steiner vertez in the surface
reconstruction. In general, n is not the circumcenter of the sliver 7.

The importance of disk caps is made clear by the following observation. In Section 4, we
establish sufficient sampling conditions to ensure U satisfies this property.

» Observation 1 (Three upper/lower seeds). If OB; has disk caps, then each of 8K1T and
OK} has at least three seeds and the seeds on OB; are not all coplanar.

Proof. Every sphere S;; covers strictly less than one hemisphere of 0B; because the poles
are uncovered. Hence, each cap is composed of at least three arcs connecting at least three
upper seeds SZ-T C GKIT and three lower seeds SZ-i C 0K j’ . Further, any hemisphere through
the poles contains at least one upper and one lower seed. It follows that the set of seeds
Si=8Tu Sj is not coplanar. <

The requirement that all sample points appear as Voronoi vertices follows as a corollary.
» Corollary 2 (Sample reconstruction). If OB; has disk caps, then p; is a vertex in Vor(S).

Proof. By Observation 1, the sample is equidistant to at least four seeds which are not all
coplanar. It follows that the sample appears as a vertex in the Voronoi diagram and not in
the relative interior of a facet or an edge. Being a common vertex to at least one interior and
one exterior Voronoi seed, VoroCrust retains this vertex in its output reconstruction. |

3.3 Sandwiching the reconstruction in the dual shape of U/

Triangulations of smooth surfaces embedded in R? can have half-covered guides pairs, with
one guide covered by the sphere of a fourth sample not in the guide triangle. The tetrahedron
formed by the three samples of the guide triangle plus the fourth covering sample is a sliver.
In this case we do not reconstruct the guide triangle, and also do not reconstruct some guide
edges. We show that the reconstructed surface M lies entirely within the region of space
bounded by guide triangles, i.e., the a-shape of P, as stated in the following theorem.

1:7
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Figure 4 Cutaway view of a sliver tetrahedron 7, € W C wDel(P), drawn to scale. Half-covered
guides give rise to the Steiner vertex (pink), which results in a surface reconstruction using four
facets (only two are shown) sandwiched within 7. In contrast, filtering wDel(P) chooses two of the
four facets of 7, either the bottom two, or the top two (only one is shown).

» Theorem 3 (Sandwiching). If all sample balls have disk caps, then M C J.

The simple case of a single isolated sliver tetrahedron is illustrated in Figures 3b, 4 and 2b.
A sliver has a pair of lower guide triangles and a pair of upper guide triangles. For instance,
t124 and to34 are the pair of upper triangles in Figure 3b. In such a tetrahedron, there is
an edge between each pair of samples corresponding to a non-empty circle of intersection
between sample balls, like the circles in Figure 2a. For this circle, the arcs covered by
the two other sample balls of the sliver overlap, so each of these balls contributes exactly
one uncovered seed, rather than two. In this way the upper guides for the upper triangles
are uncovered, but their lower guides are covered; also only the lower guides of the lower
triangles are uncovered. The proof of Theorem 3 follows by analyzing the Voronoi cells of
the seed points located on the overlapping sample balls and is deferred to Appendix A [1].
Alternatively, Theorem 3 can be seen as a consequence of Theorem 2 in [15].

4 Sampling conditions and approximation guarantees

We take as input a set of points P sampled from the bounding surface M such that P is an
e-sample, with e < 1/500. We require that P satisfies the following sparsity condition: for
any two points p;,p; € P, lfs(p;) > lfs(p;) = d(pi,p;) > oelfs(p;), with o > 3/4.

Such a sampling P can be obtained by known algorithms. Given a suitable representation
of M, the algorithm in [19] computes a loose ¢’-sample E which is a €' (1+8.5¢')-sample. More
specifically, whenever the algorithm inserts a new sample p into the set E, d(p, E) > €'lfs(p).
To obtain E as an e-sample, we set € (¢) = (v/34e + 1 — 1)/17. Observing that 3¢/4 < €' (e)
for € < 1/500, the returned e-sample satisfies our required sparsity condition with o > 3/4.

We start by adapting Theorem 6.2 and Lemma 6.4 from [24] to the setting just described.
For z € R®\ M, let T'(z) = d(z, #)/Ifs(¥), where  is the closest point to x on M.

» Corollary 4. For an e-sample P, with € < 1/20, the union of balls U with 6 = 2¢ satisfies:
1. M is a deformation retract of U,

2. OU contains two connected components, each isotopic to M,
3. I74[0,a’]) c U c T71([0,b']), where a’ =€ — 2€? and b’ < 2.5e.

Proof. Theorem 6.2 from [24] is stated for balls with radii within [a, b] times the lfs. We
set a = b= ¢ and use € < 1/20 to simplify fractions. This yields the above expressions for
a =(1—€)é—eand b =§/(1 —25). The general condition requires (1 —a’)? + (V' —a’ +
0(1+2 —da')/(1— 5))2 < 1, as we assume no noise. Plugging in the values of a’ and ¥, we
verify that the inequality holds for the chosen range of €. <
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Furthermore, we require that each ball B; € B contributes one facet to each side of 0U.
Our sampling conditions ensure that both poles are outside any ball B; € B.

» Lemma 5 (Disk caps). All balls in B have disk caps for € < 0.066, § = 2¢ and o > 3/2.

Proof. Fix a sample p; and let = be one of the poles of B; and B, = B(c, lfs(p;)) the tangent
ball at p; with € B,. Letting p; be the closest sample to z in P\ {p;}, we assume the
worst case where lfs(p;) > lfs(p;) and p; lies on 9B,. To simplify the calculations, take
Ifs(p;) = 1 and let ¢ denote d(p;, p;). As lfs is 1-Lipschitz, we get lfs(p;) < 14 ¢. By the law
of cosines, d(p;,z)? = d(pi,p;)* + d(pi, 2)* — 2d(ps, pj)d(pi, z) cos(¢), where ¢ = Lp;p;c.
Letting 6 = Zp;cpj, observe that cos(¢) = sin(0/2) = ¢/2. To enforce x ¢ B;, we require
d(p;,x) > dlfs(p;), which is equivalent to ¢2 + 6% — §¢2 > 6%(1 + ¢)?. Simplifying, we get
£ > 26%/(1 — § — 62) where sparsity guarantees £ > oe. Setting oe > 262/(1 — & — §2%) we
obtain 40¢? + (8 + 20)e — o < 0, which requires € < 0.066 when o > 3/4. <

Corollary 4 together with Lemma 5 imply that each 0B; is decomposed into a covered
region 0B; NU;x; Bj, the medial band, and two uncovered caps 0B;\ U;j; B;, each containing
one pole. Recalling that seeds arise as pairs of intersection points between the boundaries
of such balls, we show that seeds can be classified correctly as either inside or outside M.

» Corollary 6. If a seed pair lies on the same side of M, then at least one seed is covered.

Proof. Fix such a seed pair 0B; N 0B; N 0B, and recall that M N dB; is contained in the
medial band on 0B;. Now, assume for contradiction that both seeds are uncovered and lie
on the same side of M. It follows that B; N By, intersects B; away from its medial band, a
contradiction to Corollary 4. |

Corollary 4 guarantees that the medial band of B; is a superset of I'1([0,d’]) N dB;,
which means that all seeds s;;;, are at least a'lfs(8;;,) away from M. It will be useful to
bound the elevation of such seeds above T}, the tangent plane to M at p;.

» Lemma 7. For a seed s € 0B;, 0, = Zsp;s’ > 29.34° and 0, > % — be, where s’ is the

projection of s on T}, implying d(s, s') > htdlfs(p;), with hZ > 0.46 and h} > 1 — Be.

Proof. Let Ifs(p;) = 1 and By = B(c, 1) be the tangent ball at p; with s ¢ By; see Figure 5a.
Observe that d(s, M) < d(s, ), where z = 3¢ N dB,. By the law of cosines, d(s,c)? =
d(pi,c)? + d(pi, s)? — 2d(p;, c)d(pi, s) cos(m/2 + ) = 1 + 6% + 25 sin(fs). We may write!
d(s,c) < 1+ 6%/2 + §sin(f,). It follows that d(s,z) < 62/2 + dsin(fs). As Ifs is 1-
Lipschitz and d(p;,z) < 6§, we get 1 — ¢ < Ilfs(xz) < 1+ . There must exist a sample
p; such that d(z,p;) < elfs(z) < €(1 + §). Similarly, lfs(p;) > (1 —e(1 +0))(1 —J). By
the triangle inequality, d(s,p;) < d(s,z) + d(z,p;) < §2/2 + §sin(bs) + €(1 + §). Setting
d(s,p;) < 6(1—06)(1—e(1+6)) implies d(s, p;) < 0lfs(p;), which shows that for small values of
05, s cannot be a seed and p; # p;. Substituting § = 2¢, we get 05 > sin™! (2¢3 — 5e + 1/2) >
29.34° and 05 > 1/2 — be. |

We make frequent use of the following bound on the distance between samples.

» Claim 8. B,NB; # 0 = d(pi,p;) < &d - lfs(p;), with k = 2/(1 — 6) and d(p;,p;) >
Ke - Ufs(p;) with ke = o€/(1 + o).

! Define f(u,v) = V1 + u2 + 2uv — (1 + u?/2 + uv) and observe that f(u, —u/2) = 0 is the only critical
value of f(u,.). As 8%f/0v* <0 for (u,v) € R x [—1,1], we get that f(u,v) < 0 in this range.
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Proof. The upper bound comes from d(p;,p;) < r; +r; and lfs(p;) < Ufs(p;) + d(p;, d;) by
1-Lipschitz, and the lower bound from Ifs(p;) — d(p;, d;) < lfs(p,) and the sparsity. |

Bounding the circumradii is the culprit behind why we need such small values of e.

» Lemma 9. The circumradius of a guide triangle ¢;; is at most oy-6lfs(p;), where o5 < 1.38,
and at most 9,d(p;,p;) where g; < 3.68.

Proof. Let p; and p; be the triangle vertices with the smallest and largest 1fs values, respec-
tively. From Claim 8, we get d(p;,p;) < xdlfs(p;). It follows that lfs(p;) < (1 + kd)lfs(p;).
As t;;1, is a guide triangle, we know that it has a pair of intersection points 0B; N0B; N0 Bj,.
Clearly, the seed is no farther than 6lfs(p;) from any vertex of t;;, and the orthoradius of
t;j1 cannot be bigger than this distance.

Recall that the weight w; associated with p; is §%1fs(p;)?. We shift the weights of all
the vertices of ¢;; by the lowest weight w;, which does not change the orthocenter. With
that w; — w; = 0%(Us(p;)? — Us(ps)?) < %Us(p:)2((1 + K6)? — 1) = k&31s(p;)?(kd + 2).
On the other hand, sparsity ensures that the closest vertex in ¢;;; to p; is at distance at
least N(p;) > oelfs(p;) > oe(1 — kd)lfs(p;). Ensuring o? < (w; — w;)/N(pi)? < £63(2 +
k8)/(0?€?(1 — K6)?) < 1/4 suffices to bound the circumradius of ¢ by ¢rqq = 1/V1 — 402
times its orthoradius, as required by Claim 4 in [25]. Substituting § = 2¢ and o > 3/4 we
get a? < 78.97¢, which corresponds to c.qq < 1.37. It follows that the circumradius is at
most ¢rqqa0lfs(p;j) < craa(l + £0)dlfs(p;) < 1.3851fs(p;).

For the second statement, observe that Ifs(p;) > (1—r0d)lfs(p;) and the sparsity condition
ensures that the shortest edge length is at least oelfs(p;) > ge(1 — kd)lfs(p;). It follows that

the circumradius is at most Ué‘zi”‘jz 5) < 3.68 times the length of any edge of t;;y. <

Given the bound on the circumradii, we are able to bound the deviation of normals.

» Lemma 10. If #;5; is a guide triangle, then (1) Zq(nyp,,np,) < 056 < 0.47°, with 7, < 2.03,
and (2) Zg(ng,np,) < mid < 1.52°, with 1, < 6.6, where n,, is the line normal to M at p;
and n; is the normal to t;;,. In particular, ¢;;; makes an angle at most 7,0 with T},,.

Proof. Claim 8 implies d(p;,p;) < kélfs(p;) and (1) follows from the Normal Variation
Lemma [14] with p = ké < 1/3 yielding Z4(np,,np;) < kd/(1 — Kkd). Letting R; denote
the circumradius of ¢, Lemma 9 implies that the R, < o - dlfs(p;) < Ifs(p;)/ V2 and the
Triangle Normal Lemma [29] implies Z,(np-,n:) < 4.576 < 1.05°, where p* is the vertex of
t subtending a maximal angle in ¢. Hence, Z,(np,, nt) < Za(np,, pe ) + ZLa(np=, ng). <

Towards establishing homeomorphism, the next lemma on the monotonicity of distance
to the nearest seed is critical. First, we show that the nearest seeds to any surface point
x € M are generated by nearby samples.

» Lemma 11. The nearest seed to z € M lies on some 9B; where d(z,p;) < 5.03elfs(x).
Consequently, d(z,p;) < 5.08¢lfs(p;).

Proof. In an e-sampling, there exists a p, such that d(z,p,) < elfs(z), where Ifs(p,) <
(14 e)lfs(x). The sampling conditions also guarantee that there exists at least one seed s,
on dB,. By the triangle inequality, we get that d(z,s,) < d(z,pa) + d(pa, sq) < elfs(z) +
0fs(py) < €(142(1 + €))lfs(z) = €(2€e + 3)lfs(x).

We aim to bound £ to ensure Vp; s.t. d(x,p;) = £-elfs(x), the nearest seed to x cannot lie
on B;. Note that in this case, (1 — fe)lfs(z) < lfs(p;) < (14 Le)lfs(z). Let s; be any seed on

B;. It follows that d(z,s;) > d(z, p;) —d(pi, si) > €-€lfs(z) —2€lfs(p;) > €((1—2€)0—2)1fs(x).
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(a) Seed elevation 0. (b) Bounding seed height above T. (c) Bounding d(gq, M).

Figure 5 Constructions used for (a) Lemma 7, (b) Lemma 12 and (c) Theorem 13.

Setting €((1 — 2€)¢ — 2)1fs(z) > €(2e + 3)lfs(x) suffices to ensure d(z,s;) > d(z, s,), and
we get £ > (2e +5)/(1 — 2¢). Conversely, if the nearest seed to x lies on B;, it must be the
case that d(x,p;) < lelfs(z). We verify that fe = €(2¢ +5)/(1 — 2¢) < 1 for any € < 0.13. It
follows that d(z, p;) < le/(1 — le)lfs(p;). <

» Lemma 12. For any normal segment N, issued from 2 € M, the distance to ST is either
strictly increasing or strictly decreasing along I'~1([0,0.96¢]) N N,. The same holds for S*.

Proof. Let n, be the outward normal and T}, be the tangent plane to M at z. By Lemma 11,
the nearest seeds to = are generated by nearby samples. Fix one such nearby sample p;. For
all possible locations of a seed s € ST N dB;, we will show a sufficiently large lower bound
on (s — s”,n,), where s” the projection of s onto Ty.

Take Ifs(p;) = 1 and let B; = B(c,1) be the tangent ball to M at p; with s € B,.
Let A be the plane containing {p;,s,z}. Assume in the worst case that ALT),, and x is
as far as possible from p; on 0Bs N T,,. By Lemma 11, d(p;,z) < 5.08¢ and it follows
that 6, = Z(ng,np,) < 5.08¢/(1 — 5.08¢) < 5.14e. This means that T}, is confined within a
(m/2 — 6;)-cocone centered at x. Assume in the worst case that n, is parallel to A and T,
is tilted to minimize d(s, s”); see Figure 5b.

Let T} be a translation of T}, such that p; € T, and denote by 2’ and s’ the projections
of z and s, respectively, onto T7. Observe that T, makes an angle 6, with T,,. From the
isosceles triangle Ap;cx, we get that 0/, < 1/2/p;cx = sin~! 5.08¢/2 < 2.54¢. Now, consider
Ap;zx’ and let ¢ = Zap;x’. We have that ¢ = 0, + 0, < 2.54e + /(1 — §) < 4.55¢.
Hence, sin(¢) < 4.55¢ and d(z,z") < 5.08¢sin(¢) < 0.05e. On the other hand, we have that
Zspis' =1 > 05—0, and d(s,s’) > dsinp, where 5 > 1/2—5e by Lemma 7. Simplifying we
get sin(¢)) > 1/2 —10.08¢. The proof follows by evaluating d(s, s”) = d(s,s’) —d(z,z’). <

» Theorem 13. For every x € M with closest point q € M, and for every q € M with closest
point x € M, we have ||xq| < hie®lfs(z), where hy < 30.52. For e < 1/500, hie? < 0.0002.
Moreover, the restriction of the mapping 7 to M is a homeomorphism and M and M are
ambient isotopic. Consequently, O is ambient isotopic to O as well.

Proof. Fix a sample p; € P and a surface point x € M N B;. We consider two cocones
centered at x: a p-cocone contains all nearby surface points and a g-cocone contains all
guide triangles incident at p;. By Theorem 3, all reconstruction facets generated by seeds
on B; are sandwiched in the g-cocone.
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Lemma 10 readily provides a bound on the g-cocone angle as v < ;4. In addition, since
d(p;, ) < 6lfs(p;), we can bound the p-cocone angle as # < 2sin~! (§/2) by Lemma 2 in [7].
We utilize a mixed pg-cocone with angle w = /2 4 0/2, obtained by gluing the lower half
of the p-cocone with the upper half of the g-cocone.

Let g € M and consider its closest point x € M. Again, fix p; € P such that z € B;; see
Figure 5¢. By sandwiching, we know that any ray through ¢ intersects at least one guide
triangle, in some point y, after passing through z. Let us assume the worst case that y
lies on the upper boundary of the pg-cocone. Then, d(q,z) < d(y,y’) = h = d sin(w)lfs(p;),
where ¢’ is the closest point on the lower boundary of the pg-cocone point to q. We also have
that, d(p;, z) < cos(w)dlfs(p;) < dlfs(p;), and since Ifs is 1-Lipschitz, lfs(p;) < Us(z)/(1 — 9).
Simplifying, we write d(g, ) < dw/(1 — §) - Ifs(x) < hye?lfs(z).

With d(g,z) < 0.55€lfs(z), Lemma 12 shows that the normal line from any p € M
intersects M exactly once close to the surface. It follows that for every point z € M with
closest point ¢ € M, we have d(z,q) < d(z,q') where ¢’ € M with z its closest point in M.
Hence, d(x,q) < hye’lfs(x) as well.

Building upon Lemma 12, as a point moves along the normal line at x, it is either the
case that the distance to ST is decreasing while the distance to S is increasing or the other
way around. It follows that these two distances become equal at exactly one point on the
Voronoi facet above or below x separating some seed sT € ST from another seed st € S*.
Hence, the restriction of the mapping 7 to Mis a homeomorphism.

This shows that M and M homeomorphic. Recall that Corollary 4(3) implies U is a
topological thickening [23] of M. In addition, Theorem 3 guarantees that M is embedded
in the interior of U, such that it separates the two surfaces comprising OU. These three
properties imply M is isotopic to M in U by virtue of Theorem 2.1 in [23]. Finally, as M
is the boundary of @ by definition, it follows that @ is isotopic to O as well. <

5 Quality guarantees and output size

Building upon the analysis in Section 4, we establish a number of quality guarantees on the
output mesh. The main result is an upper bound on the fatness of all Voronoi cell, i.e., the
outradius to inradius ratio. The outradius is the radius of the smallest enclosing ball, and
the inradius is the radius of the largest enclosed ball. See Appendix B for the proofs [1].

» Corollary 14 (Seed height). Ift;;, is a guide triangle with associated seed s, then Zsp;s"” >
1 —nje, where s is the projection of s on the plane of t;jr and n; < 5+2n, < 18.18, implying
d(s,s") > hy0lfs(p;) with hy > 1 —nje.

» Lemma 15. For a guide triangle ¢;;;: (1) edge length ratios are bounded: ¢;/¢; < k; =

lz—fé T7oc- (2) angles are bounded: sin(0;) > 1/(20,) implying 0; € (7.8°,165°). (3) altitudes

are bounded: the altitude above e is at least a|e|, where a; = 1/49, > 0.067.

Observe that a guide triangle is contained in the Voronoi cell of its seed, even when one
of the guides is covered. Hence, the tetrahedron formed by the triangle together with its
seed lies inside the cell, and the cell inradius is at least the tetrahedron inradius. Combining
the good triangle quality from Lemma 15 with the minimum seed height from Corollary 14,
we are able to show a lower bound on the tetrahedron inradius.

To get an upper bound on 3D cell outradius, we must first generate seeds interior to
O. We extend lfs beyond M, using the point-wise maximal 1-Lipschitz extension [41]:

Ifs(z) = inf,e p (Us(p) + d(z, p)).
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We consider a simple algorithm based on a standard octree over 0. A box is refined
if r > ¢lfs(c), where r is the box radius (half the diagonal) and c is the box center. After
refinement terminates, we add an interior seed at ¢ of each empty box, and do nothing
with boxes that already contain one or more guide seeds. Box sizes are naturally balanced
and slowly varying, and the lfs at any point in the box is within constant factors of Ifs(c).
Applying this scheme, we obtain the following.

» Lemma 16. The aspect ratio of interior cells is at most % < 14.1.

» Lemma 17. The aspect ratio of boundary cells is at most % < 13.65.

Armed with the aspect ratio bounds, we proceed to bound the output size, the number
of seeds (cells), in terms of Ifs. The integral of 1/1fs® over a single cell is bounded above
by a constant, because the cell inradius and outradius are both bounded by Ifs, and Ifs is
1-Lipschitz. Thus, the integral of 1/ Ifs® over O in effect counts the cells.

> Lemma 18. |S| < 18V/3/m -3 [, 1fs™°.

6 Conclusions

We have analyzed an abstract version of the VoroCrust algorithm for volumes bounded by
smooth surfaces. We established several guarantees on its output, provided the input samples
satisfy certain conditions. In particular, the reconstruction is isotopic to the underlying
surface and all 3D Voronoi cells have bounded fatness, i.e., outradius to inradius ratio. The
triangular faces of the reconstruction have bounded angles and edge-length ratios, except
perhaps in the presence of slivers. In a forthcoming paper [3], we describe the design and
implementation of the complete VoroCrust algorithm, which generates conforming Voronoi
meshes of realistic models, possibly containing sharp features, and produces samples that
follow a natural sizing function and ensure output quality.

For future work, it would be interesting to ensure both guides are uncovered, or both
covered. This might be achievable by additional conditions on the e-sampling, or a different
finite sampling algorithm. The significance would be that no tetrahedral slivers arise and
no Steiner points are introduced. Further, the surface reconstruction would be composed
entirely of guide triangles, so it would be easy to show that triangle normals converge to
surface normals as sample density increases. Alternatively, where Steiner points are intro-
duced on the surface, it would be helpful to have conditions that guaranteed the triangles
containing Steiner points have good quality. In addition, the minimum edge length in a
Voronoi cell can be a limiting factor in certain numerical solvers. Post-processing by mesh
optimization techniques [5] can help eliminate short Voronoi edges away from the surface.
Finally, we expect that the abstract algorithm analyzed in this paper can be extended to
higher dimensions.
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