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— Abstract  

We study the problem of decomposing a volume bounded by a smooth surface into a collection

of Voronoi cells. Unlike the dual problem of conforming Delaunay meshing, a principled solution

to this problem for generic smooth surfaces remained elusive. VoroCrust leverages ideas from

a-shapes and the power crust algorithm to produce unweighted Voronoi cells conforming to the

surface, yielding the first provably-correct algorithm for this problem. Given an E-sample on the

bounding surface, with a weak a-sparsity condition, we work with the balls of radius 6 times the

local feature size centered at each sample. The corners of this union of balls are the Voronoi sites,

on both sides of the surface. The facets common to cells on opposite sides reconstruct the surface.
For appropriate values of e, a and 6., we prove that the surface reconstruction is isotopic to the

bounding surface. With the surface protected, the enclosed volume can be further decomposed

into an isotopic volume mesh of fat Voronoi cells by generating a bounded number of sites in its

interior. Compared to state-of-the-art methods based on clipping, VoroCrust cells are full Voronoi

cells, with convexity and fatness guarantees. Compared to the power crust algorithm, VoroCrust

cells are not filtered, are unweighted, and offer greater flexibility in meshing the enclosed volume

by either structured grids or random samples.
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1:2 Sampling Conditions for Conforming Voronoi Meshing by the VoroCrust Algorithm

1 Introduction

Mesh generation is an important problem in computational geometry, geometric modeling,

scientific computing and computer graphics. There has been a growing interest in polyhedral

meshes as an alternative to tetrahedral or hex-dominant meshes. The main advantages of

polyhedral meshes are higher degrees of freedom per element and fewer elements for the

same number of vertices. This can be very useful in several numerical methods, e.g., finite

volume [37], virtual element [17] and Petrov-Galerkin [39]. Within the class of polyhedral

cells, Voronoi cells share several properties with tetrahedra, e.g., planar facets, convexity

and positive Jacobians. In addition, the accuracy of a number of important solvers, e.g., the

two-point flux approximation for conservation laws [37], greatly benefits from a conforming

mesh which is orthogonal to its dual as naturally satisfied by Voronoi meshes. Such solvers

play a crucial role in hydrology [47] and computational fluid dynamics [20].

VoroCrust is the first provably-correct algorithm for generating a volumetric Voronoi

mesh whose boundary conforms to a smooth bounding surface, and with quality guaran-

tees. A conforming volume mesh exhibits two desirable properties simultaneously: (1) a

decomposition of the enclosed volume, and (2) a reconstruction of the bounding surface.

Conforming Delaunay meshing is well-studied [26], but Voronoi meshing is less mature. A

common practical approach to polyhedral meshing is to dualize a tetrahedral mesh and clip,

i.e., intersect and truncate, each cell by the bounding surface [33,40,44,48]. Unfortunately,

clipping sacrifices the important properties of convexity and connectedness of cells, and

requires costly constructive solid geometry operations. Restricting a Voronoi mesh to the

surface before filtering its dual Delaunay facets is another approach [7, 31, 49], but filtering

requires extra checks complicating its implementation and analysis; see also Figure 4. An

intuitive approach is to locally mirror the Voronoi sites on either side of the surface [18, 32],

but we are not aware of any robust algorithms with approximation guarantees in this cat-

egory. In contrast to these approaches, VoroCrust is distinguished by its simplicity and

robustness at producing true unweighted Voronoi cells, leveraging established libraries, e.g.,

Voro++ [46], without modification or special cases.

VoroCrust can be viewed as a principled mirroring technique, which shares a number of

key features with the power crust algorithm [13]. The power crust literature [7,8,10,12,13]

developed a rich theory for surface approximation, namely the &sampling paradigm. Recall

that the power crust algorithm uses an &sample of unweighted points to place weighted

sites, so-called poles, near the medial axis of the underlying surface. The surface reconstruc-

tion is the collection of facets separating power cells of poles on the inside and outside of

the enclosed volume. Regarding samples and poles as primal-dual constructs, power crust

performs a primal-dual-dual-primal dance. VoroCrust makes a similar dance where weights

are introduced differently; the samples are weighted to define unweighted sites tightly hug-

ging the surface, with the reconstruction arising from their unweighted Voronoi diagram.

The key advantage is the freedom to place more sites within the enclosed volume without

disrupting the surface reconstruction. This added freedom is essential to the generation of

graded meshes; a primary virtue of the proposed algorithm. Another virtue of the algorithm

is that all samples appear as vertices in the resulting mesh. While the power crust algo-

rithm does not guarantee that, some variations do so by means of filtering, at the price of

the reconstruction no longer being the boundary of power cells [7,11, 30].

The main construction underlying VoroCrust is a suitable union of balls centered on the

bounding surface, as studied in the context of non-uniform approximations [24]. Unions of

balls enjoy a wealth of results [15, 22, 35], which enable a variety of algorithms [13, 21, 28].
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Similar constructions have been proposed for meshing problems in the applied sciences

with heuristic extensions to 3D settings; see [38] and the references therein for a recent

example. Aichholzer et al. [6] adopt closely related ideas to construct a union of surface

balls using power crust poles for sizing estimation. However, their goal was to produce

a coarse homeomorphic surface reconstruction, and the connection to Voronoi meshing is

absent. In contrast, VoroCrust aims at a decomposition of the enclosed volume into fat

Voronoi cells conforming to an isotopic surface reconstruction with quality guarantees.

In a previous paper [4], we explored the related problem of generating a Voronoi mesh

that conforms to restricted classes of piecewise-linear complexes, with more challenging

inputs left for future work. The approach adopted in [4] does not use a union of balls and

relies instead on similar ideas to those proposed for conforming Delaunay meshing [27,42,45].

Ultimately, we seek a conforming Voronoi mesher that can handle realistic inputs including a
mix of smooth and sharp features, can estimate a sizing function and generate samples, and

can guarantee the quality of the output mesh. This is the subject of a forthcoming paper [3]

which describes the design and implementation of the complete VoroCrust algorithm.

In this paper, we present a theoretical analysis of an abstract version of the VoroCrust
algorithm. This establishes the quality and approximation guarantees of its output for vol-

umes bounded by smooth surfaces. A description of the algorithm we analyze is given next;

see Figure 1 for an illustration in 2D, and also our accompanying multimedia contribution [2].

The abstract VoroCrust algorithm

1. Take as input a sample P on the surface M bounding the volume O.
2. Define a ball Bi centered at each sample pi, with a suitable radius ri, and let 14 = UiBi.
3. Initialize the set of sites S with the corner points of au, ST and S4-, on both sides of M.

4. Optionally, generate additional sites S4-4- in the interior of 0, and include S4-4- into S.

5. Compute the Voronoi diagram Vor(S) and retain the cells with sites in (54- U S-4-4 as the

volume mesh 6, where the facets between (.51' and yield a surface approximation ./11.

(a) Surface balls. (b) Labeled corners. (c) Voronoi cells.

• Figure 1 VoroCrust reconstruction, demonstrated on a planar curve.

(d) Reconstruction.

In this paper, we assume P is an &sample, with a weak a-sparsity condition, and ri is

set to S times the local feature size at pi. For appropriate values of the parameters 6, a and

8, we prove that O and Ait are isotopic to O and M, respectively. We also show that simple

techniques for sampling within 0, e.g., octree refinement, guarantee an upper bound on the

fatness of all cells in 6, as well as the number of samples.
The rest of the paper is organized as follows. Section 2 introduces the key definitions and

notation used throughout the paper. Section 3 describes the placement of Voronoi seeds and

basic properties of our construction assuming the union of surface balls satisfies a structural

property. Section 4 proves this property holds and establishes the desired approximation

guarantees under certain conditions on the input sample. Section 5 considers the generation

of interior samples and bounds the fatness of all cells in the output mesh. Section 6 concludes

the paper. A number of proofs is deferred to the full version, available online [1]; see also

the accompanying multimedia contribution in these proceedings [2].

SoCG 2018
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2 Definitions and preliminaries

We assume the volume 0 is a bounded open subset of R3. The boundary of 0 is a closed,

bounded and smooth two-dimensional surface denoted by M. The Euclidean distance be-

tween two points p, q E R3 is denoted d(p, q). Throughout the paper, standard general

position assumptions [36] are made to simplify the presentation. We proceed to recall the

key definitions and notation used throughout the paper, following those in [13,19,24,34,35].

2.1 Sampling and approximation

We take as input a set of sample points P c M. A local scale or sizing is used to vary the

sample density. Recall that the medial axis [13] of M, denoted by A, is the closure of the

set of points in R3 with more than one closest point on M. Hence, A has one component

inside 0 and another outside. Each point of A is the center of a medial ball tangent to M

at multiple points. Likewise, each point on M has two tangent medial balls, not necessarily

of the same size. With that, the local feature size at x E M is defined as lfs(x) = d(x, A).

The set P is an e- sample [9] if for all x E M there exists p E P such that d(x , p) < e • lfs(x).

We desire an approximation of O by a Voronoi mesh 6, where the boundary A-/1 of 6
approximates M. To define the type of approximations we desire, we recall a few defini-

tions [24]. Two topological spaces are homotopy-equivalent if they have the same topology

type. In other words, there is a one-to-one correspondence between their connected compo-

nents, cycles, cavities, etc., as well as how these topological features are related. A stronger

notion of topological equivalence is homeomorphism, which holds when there exists a con-

tinuous bijection with a continuous inverse from M to A4. Intuitively, two homeomorphic

surfaces can be smoothly deformed into one another without tearing or self-intersection. The

notion of isotopy better captures the topological equivalence for surfaces embedded in Eu-

clidean space. Two surfaces M, c R3 are isotopic [16, 23] if there is a continuous mapping
F : M x [0,1] N3 such that for each t E [0, 1], F(•,t) is a homeomorphism from M to A-4,
where F(•, 0) is the identity of M and F(M,1)= M. To capture the requirement that M

and M should be close in terms of Euclidean distance, the notion of Hausdorff distance is
defined as dH(X, Y) = max{ supxEm infyem d(x, y), supyem infxem d(x, y)

2.2 Diagrams and triangulations

The set of points defining a Voronoi diagram are traditionally referred to as sites or seeds.
When approximating a manifold by a set of sample points of varying density, it is helpful to

assign weights to the points reflective of their density. In particular, a point pi with weight

wi, can be regarded as a ball Bi with center pi and radius ri = 'vi, i.e., 11,(p2, ri).

Recall that the power distance [35] between two points pi, pi with weights wi, wi is

7(pi,p3) = d(p,,p3)2 — wi — w3. Unless otherwise noted, points are unweighted, having

weight equal to zero. There is a natural geometric interpretation of the weight: all points q

on the boundary of B, have 7r(pi, q) = 0, inside 7r(p2, q) < 0 and outside ir(pi, q) > O. Given

a set of weighted points P, this metric gives rise to a natural decomposition of 110 into the

power cells V, = fq E 3 7r(pt q) 7(p3, q) vi33 E P}. The power diagram wVor(P) is the
cell complex defined by collection of cells V, for all pi E P.

The nerve [35] of a collection C of sets is defined as N(C) = {X C C n T 0}. Observe

that N(C) is an abstract simplicial complex because X E N(C) and Y C X imply Y E
.N(C). With that, we obtain the weighted Delaunay triangulation, or regular triangulation,

as wDel(P) = Ai(wVor(P)).
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Alternatively, wDel(P) can be defined directly as follows. A subset T c Rd, with d < 3

and 1T1 < d+1 defines a d-simplex aT. Recall that the orthocenter [25] of o-T, denoted by zT,
is the unique point q E Rd such that 7r(p„, zT) = 7r(p3 , zT) for all pi, 133 E T; the orthoradius

of o-T is equal to 7r(p, zT) for any p E T. The Delaunay condition defines wDel(P) as the set

of tetrahedra o-T with an empty orthosphere, meaning 7r(p,, zT) < 7r(p3, zT) for all pi E T

and p3 E P \ T, where wDel(P) includes all faces of aT•
There is a natural duality between wDel(P) and wVor(P). For a tetrahedron o-T, the

definition of zy, immediately implies zy, is a power vertex in wVor(P). Similarly, for each

k-face fs of cry, E wDel(P) with S C T and k +1 = 151, there exists a dual (3 — k)-face A
in wVor(P) realized as npESVP.

When P is unweighted, the same definitions yield the standard (unweighted) Voronoi

diagram Vor(P) and its dual Delaunay triangulation Del(P).

2.3 Unions of balls

Let B denote the set of balls corresponding to a set of weighted points P and define the

union of balls U as UB. It is quite useful to capture the structure of U using a combinatorial

representation like a simplicial complex [34, 35]. Let f, denote V, fl DB, and .F the collection

of all such L. Observing that V, fl B3 C V n B,VB„, B3 E B, L is equivalently defined as the
spherical part of O(V, fl Bi ) . Consider also the decomposition of Lf by the cells of wVor(P)
into C(B) ={U fl B, B, E B}. The weighted a-complex 1/1) is defined as the geometric
realization of N(C(B)) [35], i.e., cry, E W if {V, fl B, pi E T} E N(C(B)). It is not hard to

see that W is a subcomplex of wDel(P). To see why W is relevant, consider its underlying

space; we create a collection containing the convex hull of each simplex in W and define the

weighted a-shape J as the union of this collection. It turns out that the simplices o-T E

contained in (93 are dual to the faces of OU defined as niET ft. In particular, the corner

vertices of au correspond to the 2-simplices or facets of 83. In fact, every point q E au
defined by ni,Tgfi, for Tq E B and k +1 = ITg 1, witnesses the existence of o-Tq in W; the

k-simplex a-7,g is said to be exposed and 83 can be defined directly as the collection of all
exposed simplices [34]. Moreover, it is well-known that J is homotopy-equivalent to U [35].

Picking up on that last remark, using unions of balls to approximate an underlying

manifold given a set of sample points has been an active subject of study. A union of balls

defined using an e-sampling guarantees the approximation of the manifold under suitable

conditions on the sampling. Following earlier results on uniform sampling [43], an extension

to non-uniform sampling establishes sampling conditions for the isotopic approximation of

hypersurfaces and the reconstruction of the medial axis of the manifold [24].

• Seed placement and surface reconstruction

We determine the location of Voronoi seeds using the union of balls U. The correctness of

our reconstruction depends crucially on how sample balls B overlap. Assuming a certain

structural property on U, the surface reconstruction is embedded in the dual shape J.

3.1 Seeds and guides

Central to the method and analysis are triplets of sample spheres, i.e., boundaries of sample

balls, corresponding to a guide triangle in wDel(P). The sample spheres associated with the

vertices of a guide triangle intersect contributing a pair of guide points. The reconstruction

consists of Voronoi facets, most of which are guide triangles.

SoCG 2018
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(a) Overlapping balls and guide circles.

T,
'234

(b) Pattern resulting in four half-covered seed pairs.

• Figure 2 (a) Guide triangle and its dual seed pair. (b) Cutaway view in the plane of circle C34.

When a triplet of spheres 0B2,aB3,OBk intersect at exactly two points, the intersection

points are denoted by giIik = {gtk, and called a pair of guide points or guides; see

Figure 2a. The associated guide triangle tijk is dual to We use arrows to distinguish

guides on different sides of the manifold with gt lying outside O and lying inside. We

refer to the edges of guide triangles as guide edges e23 = a. A guide edge eij is associated

with a dual guide circle Cu = aB, n 0B3, as highlighted in Figure 2a.
The Voronoi seeds in St U SI- are chosen as the subset of guide points that lie on au. A

guide point g which is not interior to any sample ball is uncovered and included as a seed

s into S; covered guides are not. We denote uncovered guides by s and covered guides by

g, whenever coverage is known and important. If only one guide point in a pair is covered,

then we say the guide pair is half-covered. If both guides in a pair are covered, they are

ignored. Let Si = S n aB, denote the seeds on sample sphere 0Bi.

As each guide triangle tuk is associated with at least one dual seed sijk, the seed witnesses

its inclusion in W and tuk is exposed. Hence, tuk belongs to aj as well. When such tijk is

dual to a single seeds suk it bounds the interior of J , i.e., it is a face of a regular component

of J; in the simplest and most common case, tijk is a facet of a tetrahedron as shown in

Figure 3b. When tijk is dual to a pair of seeds stk, it does not bound the interior of J and

is called a singular face of aj. All singular faces of 0,7 appear in the reconstructed surface.

3.2 Disk caps

We describe the structural property required on U along with the consequences exploited by

VoroCrust for surface reconstruction. This is partially motivated by the requirement that

all sample points on the surface appear as vertices in the output Voronoi mesh.

We define the subset of aB, inside other balls as the medial band and say it is covered.

Let the caps Ki and 1(;1- be the complement of the medial band in the interior and exterior

of O, respectively. Letting nl„ be the normal line through pi perpendicular to M, the two

intersection points ni„ n 0B, are called the poles of Bi. See Figure 3a.

We require that U satisfies the following structural property: each aB, has disk caps,

meaning the medial band is a topological annulus and the two caps contain the poles and

are topological disks. As shown in Figure 3a, all seeds in S'ir and ‘9; lie on ax: and aK, - ,

respectively, along the arcs where other sample balls intersect aBi.
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(a) Caps and medial band.

d 1
S234c

S
t
124 7-)

t' 2 p4
Acd

a
S123

p1

b
s134

(b) Sliver and half-covered seeds, exaggerated vertical scale.

• Figure 3 (a) Decomposing the sample sphere 8B1. (b) Uncovered seeds and reconstruction
facets. Let xi, E wDel(P) and Ts E Del(S) denote the tetrahedra connecting the four samples and
the four seeds shown, respectively. sf22 and sk.„ are the uncovered lower guide seeds, with giz3 and

covered. The uncovered upper guide seeds are si„ and 5234, with gi„ and g234 covered. Laa
is the Voronoi facet dual to the Delaunay edge between asf22 and cst,„, etc. Voronoi facets dual to
magenta edges are in the reconstructed surface; those dual to green and blue edges are not. n is the
circumcenter of Ts and appears as a Voronoi vertex in Vor(S) and a Steiner vertex in the surface
reconstruction. In general, n is not the circumcenter of the sliver T.

The importance of disk caps is made clear by the following observation. In Section 4, we

establish sufficient sampling conditions to ensure U satisfies this property.

0. Observation 1 (Three upper/lower seeds). If aBi has disk caps, then each of ax-ir and
aK has at least three seeds and the seeds on 0B, are not all coplanar.
Proof. Every sphere S30, covers strictly less than one hemisphere of aB, because the poles
are uncovered. Hence, each cap is composed of at least three arcs connecting at least three

upper seeds S: c alcit and three lower seeds S: C ar-c!-. Further, any hemisphere through
the poles contains at least one upper and one lower seed. It follows that the set of seeds

S, = SZ U S: is not coplanar.

The requirement that all sample points appear as Voronoi vertices follows as a corollary.

ro. Corollary 2 (Sample reconstruction). If aBi has disk caps, then pi is a vertex in Vor(S).
Proof. By Observation 1, the sample is equidistant to at least four seeds which are not all

coplanar. It follows that the sample appears as a vertex in the Voronoi diagram and not in

the relative interior of a facet or an edge. Being a common vertex to at least one interior and

one exterior Voronoi seed, VoroCrust retains this vertex in its output reconstruction.

3.3 Sandwiching the reconstruction in the dual shape of U

Triangulations of smooth surfaces embedded in R3 can have half-covered guides pairs, with

one guide covered by the sphere of a fourth sample not in the guide triangle. The tetrahedron

formed by the three samples of the guide triangle plus the fourth covering sample is a sliver.

In this case we do not reconstruct the guide triangle, and also do not reconstruct some guide

edges. We show that the reconstructed surface .At lies entirely within the region of space

bounded by guide triangles, i.e., the ce-shape of P, as stated in the following theorem.

1:7
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• Figure 4 Cutaway view of a sliver tetrahedron T„ E W C wDel(P), drawn to scale. Half-covered
guides give rise to the Steiner vertex (pink), which results in a surface reconstruction using four
facets (only two are shown) sandwiched within T. In contrast, filtering wDel(P) chooses two of the
four facets of 7,, either the bottom two, or the top two (only one is shown).

► Theorem 3 (Sandwiching). If all sample balls have disk caps, then .IC4 C .

The simple case of a single isolated sliver tetrahedron is illustrated in Figures 3b, 4 and 2b.

A sliver has a pair of lower guide triangles and a pair of upper guide triangles. For instance,

t124 and t234 are the pair of upper triangles in Figure 3b. In such a tetrahedron, there is

an edge between each pair of samples corresponding to a non-empty circle of intersection

between sample balls, like the circles in Figure 2a. For this circle, the arcs covered by
the two other sample balls of the sliver overlap, so each of these balls contributes exactly
one uncovered seed, rather than two. In this way the upper guides for the upper triangles

are uncovered, but their lower guides are covered; also only the lower guides of the lower

triangles are uncovered. The proof of Theorem 3 follows by analyzing the Voronoi cells of

the seed points located on the overlapping sample balls and is deferred to Appendix A [1].

Alternatively, Theorem 3 can be seen as a consequence of Theorem 2 in [15].

• Sampling conditions and approximation guarantees

We take as input a set of points P sampled from the bounding surface M such that P is an

E-sample, with E < 1/500. We require that P satisfies the following sparsity condition: for

any two points pi, p3 E P, lfs(pi) > lfs(p3) d(p.,,, pa) > crElfs(p3), with a > 3/4.

Such a sampling P can be obtained by known algorithms Given a suitable representation

of M, the algorithm in [19] computes a loose e-sample E which is a e(1+8.5e)-sample. More

specifically, whenever the algorithm inserts a new sample p into the set E, d(p, E) > elfs(p).

To obtain E as an E-sample, we set Ei(E) = (V34E + 1 — 1)/17. Observing that 3E/4 < E'(€)
for E < 1/500, the returned &sample satisfies our required sparsity condition with a > 3/4.

We start by adapting Theorem 6.2 and Lemma 6.4 from [24] to the setting just described.
For x E 11[13 M , let F(x) = d(x, X.)/lfs(x), where x is the closest point to x on M.

0. Corollary 4. For an c-sample P , with c < 1/20, the union of balls U with S= 2e satisfies:

1. ,A4 is a deformation retract of U,

2. au contains two connected components, each isotopic to .A 4,

3. F-1([0, c U c F 1([0, VD, where a' = — 2E2 and b' < 2.5E.

Proof. Theorem 6.2 from [24] is stated for balls with radii within [a, b] times the lfs. We
set a = b = 6 and use E < 1/20 to simplify fractions. This yields the above expressions for

a' = (1 — — c and b' = 5/(1 — 25). The general condition requires (1 — a')2 + (b' — a' +

5(1 + 2V — a')/(1 — .5)) 2 < 1, as we assume no noise. Plugging in the values of a' and V, we

verify that the inequality holds for the chosen range of c.
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Furthermore, we require that each ball Bi E B contributes one facet to each side of at

Our sampling conditions ensure that both poles are outside any ball .133 E B.

0. Lemma 5 (Disk caps). All balls in B have disk caps for E < 0.066, (5 = 2E and a > 3/2.

Proof. Fix a sample pi and let x be one of the poles of B, and Bx = M(c, lfs(p,)) the tangent

ball at pi with x E Bx. Letting p3 be the closest sample to x in P \Ipil, we assume the

worst case where Ifs(p3) > Ifs(A) and p3 lies on aBx. To simplify the calculations, take

lfs(p,,) = 1 and let denote d(pi,p3). As lfs is 1-Lipschitz, we get Ifs(p3) < 1+ t. By the law

of cosines, d(p3 , x)2 = d(p„ p3 )2 + d(p„ x)2 — 2d(p„ p3 )d(pi, x) cos(0), where 0 = Lp3pic.

Letting 0 = Lpicp3, observe that cos(0) = sin(6/2) = t/2. To enforce x B3, we require

d(p3, x) > (51fs(p3), which is equivalent to £2 + 82 — 8t2 62(1+ i)2. Simplifying, we get

> 262/(1 — — 62) where sparsity guarantees t > ac. Setting ae > 262/(1 — — (52) we

obtain 4c-E2 + (8 + 2u)E — a < 0, which requires E < 0.066 when a > 3/4.

Corollary 4 together with Lemma 5 imply that each aB, is decomposed into a covered
region aB, n U30063, the medial band, and two uncovered caps aBi\u30,B3, each containing
one pole. Recalling that seeds arise as pairs of intersection points between the boundaries

of such balls, we show that seeds can be classified correctly as either inside or outside M.

P. Corollary 6. If a seed pair lies on the same side of M, then at least one seed is covered.

Proof. Fix such a seed pair aB, n aB3 n 8Bk and recall that M n aB, is contained in the
medial band on aBi. Now, assume for contradiction that both seeds are uncovered and lie
on the same side of M. It follows that B.7 n Bk intersects B, away from its medial band, a

contradiction to Corollary 4.

Corollary 4 guarantees that the medial band of Bi is a superset of r-l([o, a']) n 0B,,
which means that all seeds si3k are at least (ilfs(š,3k) away from M. It will be useful to

bound the elevation of such seeds above Tp„ the tangent plane to M at pi.

► Lemma 7. For a seed s E 0B„ e, = Lspis' > 29.34° and 0, > — 5e, where s' is the
projection of s on Tp,, implying d(s, s')> hs-L6Ifs(pi), with h± > 0.46 and h± > — 5E.

Proof. Let lfs(pi) = 1 and B, = (c, 1) be the tangent ball at pi with s B8; see Figure 5a.

Observe that d(s, M) < d(s, x), where x = sc n OBs. By the law of cosines, d(s, c)2 =

d(pi, c)2 + d(p,„ s)2 — 2d(pi, c)d(pi, s) cos(7/2 + s) = 1 + 52 + 28 sin(08). We may write'

d(s, c) < 1 + 5212 + sin(05). It follows that d(s,x) < 62/2 + 8sin(05). As lfs is 1-
Lipschitz and d(pi, x) < (5, we get 1 — < lfs(x) < 1 + S. There must exist a sample

p3 such that d(x,p3) < Elfs(x) < E(1 + (5). Similarly, lfs(p3) > (1 — c(1 + (5))(1 — 8). By

the triangle inequality, d(s,p3) < d(s, x) + d(x , p3) < 8212 + S sin(05) + e(1 + (5). Setting

d (s , pa) < 8(1— 8)(1— E(1+8)) implies d(s, p3 ) < 81fs(p3), which shows that for small values of

Os, s cannot be a seed and p3 = pi. Substituting (5 = 2E, we get 0, > sin-1 (2E3 — 5E + 1/2) >

29.34° and 08 > 1/2 — 5E.

We make frequent use of the following bound on the distance between samples.

► Claim 8. Bi n B.;   d(pi,pi) < k8 • lfs(pi), with K = 2/(1 — 8) and d(pi,pi) >

lc, • lfs(pi) with K, = CIE/ (1 + CTE).

1 Define f (u, v) = N/1 u2 2uv — (1 + u2/2 uv) and observe that f (u, —u/2) = 0 is the only critical
value of f (u, .). As 82f/av2 < 0 for (u, v) E x [-1, 1], we get that f (u, v) < 0 in this range.
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Proof. The upper bound comes from d(pi,p3) < r, r3 and lfs(p3) lfs(A) + d(p,,d3) by

1-Lipschitz, and the lower bound from lfs(A) — d(pi,d3) < lfs(p3) and the sparsity.

Bounding the circumradii is the culprit behind why we need such small values of c.

io• Lemma 9. The circumradius of a guide triangle tia k is at most gf • (5lfs(pi), where of < 1.38,
and at most T)fd(pi,p3) where T)f < 3.68.

Proof. Let pi and p3 be the triangle vertices with the smallest and largest lfs values, respec-

tively. From Claim 8, we get d(p2,p3) < K6lfs(p.„). It follows that lfs(p3) < (1 + K6)1fs(pi).

As ti3k is a guide triangle, we know that it has a pair of intersection points OB,n0B3110Bk.

Clearly, the seed is no farther than (51fs(p3) from any vertex of ti3k and the orthoradius of

ti3k cannot be bigger than this distance.

Recall that the weight wi associated with pi is (52Ifs(pi)2. We shift the weights of all

the vertices of ti3k by the lowest weight wi, which does not change the orthocenter. With

that w3 — wi = (52(lfs(p3)2 — Ifs(pi)2) < (521fs(pa)2((1 + K(5)2 — 1) = K(531fs(pi)2(K(5 + 2).

On the other hand, sparsity ensures that the closest vertex in ti3k to p3 is at distance at

least N(p3) > aelfs(p3) > ae(1 — K(5)lfs(pi). Ensuring a2 < (w3 — wi)IN(p,)2 < k(53 (2 + 
kj)/(0.2E2 (1 ko ) , \ 2 \) < 1/4 suffices to bound the circumradius of ti3k by crad = 1/V1 — 4a2

times its orthoradius, as required by Claim 4 in [25]. Substituting S= 2E and a > 3/4 we

get a2 < 78.97E, which corresponds to crad < 1.37. It follows that the circumradius is at
most crad8lfs(p3) < crad(1 + k8)81fs(p,) < 1.38(5lfs(pi)•

For the second statement, observe that lfs(pz) > (1— k8)1fs(p3) and the sparsity condition

ensures that the shortest edge length is at least uclfs(pi) > ae(1 — K8)1fs(p3). It follows that

the circumradius is at most c 41— K c"d b) < 3 68 times the length of any edge of tuk•

Given the bound on the circumradii, we are able to bound the deviation of normals.

0- Lemma 10. If t23k is a guide triangle, then (1) La (np,, , np,) < < 0.47°, with ris < 2.03,

and (2) Za(nt, np) < ptS < 1.52°, with Tit < 6.6, where np., is the line normal to .A4 at Pi
and nt is the normal to tiak. In particular, ti3k makes an angle at most 10 with Tpi.

Proof. Claim 8 implies d(p2,p3) < K(51fs(pi) and (1) follows from the Normal Variation

Lemma [14] with p = ic(5 < 1/3 yielding Za(ni„,np,) < ic( 51(1 — kJ). Letting Rt denote

the circumradius of t, Lemma 9 implies that the Rt < of • (5lfs(pi) < lfs(pi)/ and the
Triangle Normal Lemma [29] implies Za(np.,nt) < 4.578 < 1.05°, where p* is the vertex of

t subtending a maximal angle in t. Hence, Za , nt) < Za(np,,np*) Za (np- nt)•

Towards establishing homeomorphism, the next lemma on the monotonicity of distance

to the nearest seed is critical. First, we show that the nearest seeds to any surface point

x E M are generated by nearby samples.

► Lemma 11. The nearest seed to x e M lies on some OB, where d(x,p,) < 5.03clfs(x).
Consequently, d(x,p,) < 5.086Ifs(pi).

Proof. In an 6-sampling, there exists a pa such that d(x,pa) < dfs(x), where lfs(pa) <
(1 + Olfs(x). The sampling conditions also guarantee that there exists at least one seed sa

on OBa. By the triangle inequality, we get that d(x, sa) < d(x, pa) + d(pa, sa) < dfs(x) +

(5lfs(pa) < c(1 + 2(1 + c))lfs(x) = c(2c + 3)lfs(x).

We aim to bound to ensure 'VA s.t. d(x, pi) = • dfs(x), the nearest seed to x cannot lie

on B. Note that in this case, (1 — .ec)lfs(x) < lfs(pi) < (1 + fc)lfs(x). Let si be any seed on
B. It follows that d(x, si) > d(x,p,)—d(pi,si) > i•Elfs(x)-261fs(pi) > ((1-2€)P-2)1fs(x).
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(a) Seed elevation Os. (b) Bounding seed height above Tx• (c) Bounding d(q, M).

• Figure 5 Constructions used for (a) Lemma 7, (b) Lemma 12 and (c) Theorem 13.

Setting €((1 — 2e)t — 2)lfs(x) > €(2E + 3)lfs(x) suffices to ensure d(x, si) > d(x , s a), and

we get > (2E + 5)/(1 — 2c). Conversely, if the nearest seed to x lies on Bi, it must be the

case that d(x, pi) < telfs(x). We verify that fc = €(2E + 5)/(1 — 2E) < 1 for any c < 0.13. It

follows that d(x, p3 ) < fc/(1 — fc)lfs (pi ) .

► Lemma 12. For any normal segment Ns issued from x E A4, the distance to St is either
strictly increasing or strictly decreasing along F-1([0, 0.96E]) n Ns. The same holds for S.• .

Proof. Let nx be the outward normal and Tx be the tangent plane to .A4 at x. By Lemma 11,

the nearest seeds to x are generated by nearby samples. Fix one such nearby sample pi. For

all possible locations of a seed s E ST n aBi, we will show a sufficiently large lower bound
on (s — s" , nx), where s" the projection of s onto Tx.

Take lfs(pi) = 1 and let B, = 1) be the tangent ball to A4 at pi with s E B,.

Let A be the plane containing {pi, s, x}. Assume in the worst case that ALTp and x is

as far as possible from pi on aBs n Tp„ By Lemma 11, d(pi, < 5.08E and it follows

that Os = Z(nx, np < 5.08E/(1 — 5.08E) < 5.14E. This means that Tx is confined within a

(7r/2 — Ox)-cocone centered at x. Assume in the worst case that ns is parallel to A and Tx
is tilted to minimize d(s, s"); see Figure 5b.

Let T; be a translation of Tx such that pi E T; and denote by x' and s' the projections

of x and s, respectively, onto T;. Observe that To', makes an angle Os with Tp,,. From the

isosceles triangle Aptcx, we get that O'x < 1I2Zpicx = sin-1 5.08E/2 < 2.54€. Now, consider

Apixx' and let q5 = Zxpix'. We have that q5 = Ox + O'x < 2.54E + 6/(1 — 6) < 4.55E.
Hence, sin(0) < 4.55E and d(x, < 5.08E sin(0) < 0.05E. On the other hand, we have that
Zspis' = > 0,—Ox and d(s, s') > 6 sin 0, where Os > 1/2-5E by Lemma 7. Simplifying we
get sin(W) > 1/2 — 10.08E. The proof follows by evaluating d(s , s") = d(s, s') — d(x, x').

o. Theorem 13. For every x E A4 with closest point q E and for every q E .,A4 with closest

point x E M, we have Ilxq < htc2lfs(x), where ht < 30.52. For c < 1/500, htE2 < 0.0002.

Moreover, the restriction of the mapping 7F to .A4 is a homeomorphism and .A-4 and M are

ambient isotopic. Consequently, 6 is ambient isotopic to 0 as well.

Proof. Fix a sample pi E P and a surface point x E A4 n Bi. We consider two cocones

centered at x: a p-cocone contains all nearby surface points and a q-cocone contains all
guide triangles incident at pi. By Theorem 3, all reconstruction facets generated by seeds

on Bi are sandwiched in the q-cocone.

1:11
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Lemma 10 readily provides a bound on the q-cocone angle as -y < Th8. In addition, since

d(pi, x) < 6Ifs(A), we can bound the p-cocone angle as 61 < 2 sin-1 (8/2) by Lemma 2 in [7].

We utilize a mixed pq-cocone with angle co = 7/2 + 8/2, obtained by gluing the lower half

of the p-cocone with the upper half of the q-cocone.

Let q E .A-4 and consider its closest point x E M. Again, fix pi E P such that x E Bi; see
Figure 5c. By sandwiching, we know that any ray through q intersects at least one guide
triangle, in some point y, after passing through x. Let us assume the worst case that y

lies on the upper boundary of the pq-cocone. Then, d(q, x) < d(y, y') = h = Ssin(w)Ifs(pi),

where y' is the closest point on the lower boundary of the pq-cocone point to q. We also have
that, d (pi, x) < cos(w)6Ifs (pi) < 6Ifs (pi) , and since lfs is 1-Lipschitz, Ifs(pi) < lfs (x) (1 — 8) .

Simplifying, we write d(q, x) < 84 (1 — 8) • lfs(x) < ht€21fs(x).

With d(q, x) < 0.55E1fs(x), Lemma 12 shows that the normal line from any p E M
intersects .11'%1 exactly once close to the surface. It follows that for every point x E M with

closest point q E M, we have d(x , q) < d(x, q') where q' .A-4 with x its closest point in M.

Hence, d(x , q) < hte2lfs(x) as well.

Building upon Lemma 12, as a point moves along the normal line at x, it is either the

case that the distance to St is decreasing while the distance to S-1- is increasing or the other

way around. It follows that these two distances become equal at exactly one point on the

Voronoi facet above or below x separating some seed st E St from another seed E

Hence, the restriction of the mapping 7r to .A-4 is a homeomorphism.

This shows that M and M homeomorphic. Recall that Corollary 4(3) implies U is a

topological thickening [23] of M. In addition, Theorem 3 guarantees that M is embedded
in the interior of U, such that it separates the two surfaces comprising OU. These three

properties imply .A.4 is isotopic to M in U by virtue of Theorem 2.1 in [23]. Finally, as ./(4

is the boundary of 6 by definition, it follows that 6 is isotopic to as well.

• Quality guarantees and output size

Building upon the analysis in Section 4, we establish a number of quality guarantees on the

output mesh. The main result is an upper bound on the fatness of all Voronoi cell, i.e., the

outradius to inradius ratio. The outradius is the radius of the smallest enclosing ball, and

the inradius is the radius of the largest enclosed ball. See Appendix B for the proofs [1].

0. Corollary 14 (Seed height). If tijk is a guide triangle with associated seed s, then rspis" >

—11te, where s" is the projection of s on the plane of tijk and < 5+ 27it < 18.18, implying

d(s, s") > iOlfs(pi) with 1-1.9 > -

t. Lemma 15. For a guide triangle kali: (1) edge length ratios are bounded: tej < nt =

16 1-Fry25 c€ €' (2) angles are bounded: sin(9,) > 1/(2pf ) implying 8, E (7.8°, 165'). (3) altitudes

are bounded: the altitude above e is at least at lel, where at = 1/4pf > 0.067.

Observe that a guide triangle is contained in the Voronoi cell of its seed, even when one

of the guides is covered. Hence, the tetrahedron formed by the triangle together with its

seed lies inside the cell, and the cell inradius is at least the tetrahedron inradius. Combining

the good triangle quality from Lemma 15 with the minimum seed height from Corollary 14,

we are able to show a lower bound on the tetrahedron inradius.

To get an upper bound on 3D cell outradius, we must first generate seeds interior to

6. We extend lfs beyond M, using the point-wise maximal 1-Lipschitz extension [41]:

lfs(x) = inf1,EA4 (lfs(p) d(x , p)).
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We consider a simple algorithm based on a standard octree over 0. A box is refined

if r > Slfs(c), where r is the box radius (half the diagonal) and c is the box center. After

refinement terminates, we add an interior seed at c of each empty box, and do nothing

with boxes that already contain one or more guide seeds. Box sizes are naturally balanced

and slowly varying, and the lfs at any point in the box is within constant factors of lfs(c).

Applying this scheme, we obtain the following.

P. Lemma 16. The aspect ratio of interior cells is at most 8.V*1+6) < 14.1.1-36

4(1+5) P. Lemma 17. The aspect ratio of boundary cells is at most < 13.65.(1-35)(1-5)2g„

Armed with the aspect ratio bounds, we proceed to bound the output size, the number
of seeds (cells), in terms of lfs. The integral of 1/1fs3 over a single cell is bounded above
by a constant, because the cell inradius and outradius are both bounded by lfs, and lfs is

1-Lipschitz. Thus, the integral of 1/1fs3 over 0 in effect counts the cells.

P. Lemma 18. 1S1< 180/7 • 6-3 fo lfs-3.

• Conclusions

We have analyzed an abstract version of the VoroCrust algorithm for volumes bounded by

smooth surfaces. We established several guarantees on its output, provided the input samples

satisfy certain conditions. In particular, the reconstruction is isotopic to the underlying

surface and all 3D Voronoi cells have bounded fatness, i.e., outradius to inradius ratio. The

triangular faces of the reconstruction have bounded angles and edge-length ratios, except
perhaps in the presence of slivers. In a forthcoming paper [3], we describe the design and
implementation of the complete VoroCrust algorithm, which generates conforming Voronoi

meshes of realistic models, possibly containing sharp features, and produces samples that

follow a natural sizing function and ensure output quality.

For future work, it would be interesting to ensure both guides are uncovered, or both

covered. This might be achievable by additional conditions on the E-sampling, or a different

finite sampling algorithm. The significance would be that no tetrahedral slivers arise and

no Steiner points are introduced. Further, the surface reconstruction would be composed

entirely of guide triangles, so it would be easy to show that triangle normals converge to

surface normals as sample density increases. Alternatively, where Steiner points are intro-

duced on the surface, it would be helpful to have conditions that guaranteed the triangles

containing Steiner points have good quality. In addition, the minimum edge length in a

Voronoi cell can be a limiting factor in certain numerical solvers. Post-processing by mesh

optimization techniques [5] can help eliminate short Voronoi edges away from the surface.

Finally, we expect that the abstract algorithm analyzed in this paper can be extended to

higher dimensions.
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