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Why do multiscale simulation? One reason: because structural
reliability is dependent on random microstructure (among other
sources of randomness).

Engineering length scale
(millimeters)

brittle particle

Precipitates
(High mag)

Inclusions

Precipitates

25

150

Emery: 6061-T6, 2 Sharp Notch Tensile: Rolling Orientation

Stress vs. Displacement: Full Gauge Area, Gauge I ength = 19.9 rnrn centered on 0.31 corn notch

(test 14..15 Mar 2016, chart 30 Sep 2016 jrl)

Displacement (mm)
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—6N-R11: Gauge Stress

—6N-R12: Gauge Stress

SN-R1

—SN-R2

—SN-R3

—SN-R4

—SN-R5

—SN-R6

• Fine precipitates of Fe (-1 µm) throughout

• Larger inclusions of Mg2Si and of Fe on the scale of 10 µrn.

Microstructural length scale (lam)

randomly distributed brittle particles embedded in randomly oriented, anisotropic matrix

EBSD data

shows randomly

oriented grains
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S naOne multiscale calculation is necessary but not sufficient rJaaidolial
Laboratories

Engineering scale
(millions of DOFs)

Multiscale calculation
(XXLarge)

One multiscale calculation gives you this:
1.o

0.8

ct
-2 0.6

u 0.2

0.0

One point for conditional
probability of failure 13,1(L I ai),
conditioned on choice of

multiscale subdomain.

The only general way to fill this
space is with Monte Carlo (MC)

simulation.

Microstucture scale
(>_1Os millions of DOFs)

But you you'd like to compute this:
1.o

0.8

OUR 2'
CHALLENGE -F) 0.6

2800 3000 3200 3400 3600 3800 4000
Failure Load (N)

Capturing the tail of the
cumulative failure

PF (L) = P(L I cti)P(ai)

requires many MC samples.

This work is working to make
this computationally tractable.

— 99.5% confidence

2600; 3200 3400 3600 3800 4000
Failure Load (N)



AA6061-T6 EBSD on three planes shows pancake-

shaped grains with mild texture

Transverse

From Ghahremaninezhad & Ravi-Chandar, and

confirmed for our material, mean grain size of the

rolled 6061 microstructure:

y-z mean 15 um
111

x-z mean 14 um

x-y mean 39 um /401.

001/
011

Transverse
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Random Field Model for Texture
• Why? A probability model describing texture will be

convenient, e.g., for model reduction, rapid sampling etc.

• Let e(x) = (ei (X), 62(X), 83(X))11 XeDc -V, be a vector-valued
random field model for the 3 Euler angles

• Following Arwade and Grigoriu (JEM 2004), model form

pi) (o-i 0 0

e(x) = p, + aY(x) = ( ,u2 + 0 0-2 0 ) Y(x)
itt3 0 0 0-3

Yk (X) — hk(G k (x)) — Fk 1 o (I)(Gk(x)), k — 1, 2, 3

E[Ck (u) Gi(v)] = Pkl (u, v)

• pk and uk are the mean and standard deviations of ek

• Fk is related to the marginal CDF of ek

• G = (G1, G2, G3)/ is a vector-valued Gaussian random field with zero

mean, unit variance, and correlation functions {pH}

Sandia
National
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I'll look at it, but I can't today. My first question is this...how do you define the SROM? Let

T(x) = h[G(x)]

be a translation random field, where G is a homogeneous Gaussian random field, and h is a nonlinear
mapping that is independent of x. G(x) is modeled as a Fourier series with random coefficients:

G(x) = \sum_{k=1}Ar s_k ( A_k sin(w_k x) + B_k cos(w_k x) )

where A_k, B_k are correlated Gaussian random variables with zero mean and unit variance, and s_k,
w k are some constants.

Now we have talked and thought about the SROM for random fields in two ways:

(1) Define SROM w.r.t. T, that is, produce samples of a random field T_1(x), T_2(x), ..., T_n(x), where n
is large, then choose m < n of the samples that minimize the discrepancy between T and its SROM;

(2) Define SROM w.r.t. A and B, that is, produce samples of random vector (A_1, B_1), (A_2, B_2), ...,

(A_n, B_n), where n is large, then choose m < n of the samples that minimize the discrepancy between
(A,B) and its SROM.

Are we using option (1) or (2) here? I'm cc'ing Brian so that he can chime in, too. Thanks.
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Random Field Model Calibration

1. Estimate mean and standard deviation functions, u and a

2. Define spatial correlation functions

■ Can map correlation of G to correlation of 0

■ Functional form: exponential or linear decay

Homogeneous, isotropic

Parameter estimates using least-squares, or user-specified

3. Select marginal distribution functions

■ Choose a functional form

Carefully to be consistent with physics

Beta distribution is a good choice

Parameter estimates using Method of Maximum Likelihood

■ Empirically-based

Requires a medium sized data set

Sandia
National
Laboratories

9



Capturing spatial correlation
• A measure of the (average) linear

dependence between two points in the field

• Auto correlation function of 01

E[01(u)01(v)]

• Cross correlation between Oland 02

E[ei (11) 62 (V)]

• Assumptions:

• Statistically homogeneous

Depends on (u — v)

• Statistically isotropic

Depends on u — v11

400

300
X2

200

100

200

• Provides one way to model "micro" texture

Sandia
National
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V = (v1 , v2 ) I

u = (11, u2)/

i

30C

x1

1

Cov(Ok (u), 01(v)) ,„
ekl(ulv) = ekau — v11) = rr̀ d WI) = PYkle ak171, k,l 1,2,3

akai

i 10



"EulerRF" Code
• Code to generate samples of Euler angle random field FE Mesh Exp data

model for FE meshes, implemented in MATLAB (and half-

way there with python implementation)
TEXT

• Input SPCORR

• Finite element mesh (grain geometry)

• Texture data (EBSD data — AA6061 below)

• User options for texture model

• Output: samples of no texture, macro- and micro-texture

Ghahremaninezhad et al.,

mean grain size:

y-z mean 15 jam

x-z mean 14 ILm

x-y mean 39 jam AA6061 T6 rolled plate

Samples for FE

analysis

08

06

04

0.2

0

o
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Spatial auto-

correlations

5

—0

—6



2D example from EulerRF

Zero texture, zero spatial
correlation

250

200

E 150

• 100

50

250

With macro-texture based on 200

data file, zero spatial E 150

correlation x ▪ 100

With micro-texture,
including spatial correlation

• Texture based on data file

• Isotropic (exponential)

50

250

200

E 150

x
cv
100

spatial correlation with
50

correlation length = 200 !Am

One sample of 01(x1,x2) [deg]
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350

300

250

Marginal
3

histogram of 01
xio-3

2
200

150

100

50
0
0 1 80 360

, )2 [deg]

160 Marginal histogram of 01
140

120 50

100 40

80 c2,,, 30

60 20

40

20
CO zo 40 60 80 100 120 140 160 180

1 [deg]

160
Autocorrelation function of 01

140
0.8

120

100 0.6

80
0.4

60
0.2

40

20 0
-200 0 200

distance
400-400

micro-texture is present

** EBSD data for Ta wire 12



Comparing texture measured vs. model

0.005

1

0.000

LA 0.025
v-7 2

0.000

LA 0.01
3

o.00

measured EBSD data model data
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-
1. Lk 11111641 0.0025 41111.1

100 200 300
0.0000

0 100 200 300

Euler 1 from EBSD data, Plan scan (deg) Euler 1, micro texture (deg)

0.025

0.000
0 20 40 60 0 20 40 60

Euler 2 from EBSD data, Plan scan (deg) Euler 2, micro texture (deg)

0.01

0.00
20 40 60 80 100 O 20 40 60 80 100

Euler 3 from EBSD data, Plan scan (deg) Euler 3, micro texture (deg)

• Histograms drawn for the individual Euler angles

13



Inverse pole figure (IPF) comparing EBSD to

eulerRF samples

measured
EBSD data

model

100

Max(pd p ,;) - 1. 433

min(px ipu) = O. 825

100

111

101

d pu

- 3.0

2.5

- 3.0

2.5

2.0

1.5

1.0

101 L0.5

max(pdpo) = 2.898

min(pdp“) = 0. 763

100

111

max(pz/pu) = 2. 974

min(py/pu) = O. 769

3.0

1
2.5

2.0

1.5

1 0

101 i_ 0 5

100

pz 1 pu

- 3.0

- 2.5

2.0

1.5

- 1.0

101 0,5

max(py/pu) = 1. 334

min(py/pu) = O. 794

100

max(pyl pu) = 1. 427

min(pyl pu) = O. 759

100

111

101

101
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PrlPu

3.0

2.5

2.0

1.5

1.0

0.5

Pr/ P.

i 3.0

2.5

2.0

1.5

1.0

0.5



Misorientation ()nits =min (tr(gBgA10)-arccos
2

0.02 - 46
0.00

0 20 40 60 80
Misorientation from 1-MSD measurements (deg)

0.02 -

0.00
0 20 40 60 80

Misorientation from model (deg)
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A small polycrystal with brittle inclusion

• AA6061 T6 rolled plate

• Embed an ellipsoidal particle, 5 x
1.8 !Am

• Coherent, geometry-obeying mesh

at particle/matrix interface,

overlay geometry otherwise

• 2 morphologies w/ —27 grains,

s123 & s184

• 200 samples of macro-texture &
55 samples of micro-texture

• Assumed elastic mechanical
properties for particle (pure iron)

• E = 211 GPa, v= 0.29

• Strength 540 MPa

• Assumed perfect and rigid
particle/matrix interface bond

s123

s184
.Y

Sandia
National
Laboratories

[3.499e+ 02

262.45

=174.97

187.484

0.000e+ 00

3.499e+ 02I

262.45

=174.97

87.484

0.000e+ 00

Cross-sections through major-axis of ellipsoid



Crystal plasticity formulation

• A simple crystal plasticity
formulation (Matous and
Maniatty 2004):

LP

12
jia pa

Sandia
National
Laboratories

go 110.6 114.0 115.2

gso 169.4 172.8 174.7

Go 116.6 116.6 116.6

m 0.01 0.01 0.01

a-1 350

Pa = ma na 
300

7 't
PLA

250

jia = j/CI

Go

T
a

ga

1 1 in

sign(Ta)

gso g 
gso — go

12 

= bia

a=1

(2 200
rn

'54 100

50

Average measured data

micro texture

macro texture

no texture

000 0.02 0.04 0.06 0.08 0.10 0.12 0.14 0.16 0.18
Engineering strain
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Watch mean, first-principal stress in the particle

Assuming elastic and brittle,
monitor the mean (or max) first-
principal stress in the particle.

Pr(ERVE E S)

S = feRvE e : g(eRVE < 0}

g(EK V E) - ap,cr - p(ER17 E)

5-13,cr = 540 MPa Maximum principal stress contour for one sample

Cracked particles: macro-texture
160 

140

c..)-> 120

a.100
1.)

72) 80
N

60

40

20

-

8.00 0.02

1200

1000

800

Goo
s.

'6 400

200

Macro-texture

8.00 0.02 0.04 0.06 0.08 0.10 0.12 0.14
ERVE

I I h 
0.04 0.06

ERVE

0.08 0.10

max_principal stress_1
17506e+03

11022.8

9.6

56.363

-4.269e+02

Cracked particles: micro-texture
140 

120

20

0
()  
.00

Micro-texture

29 samples s123

26 samples s184

.00 0.02 0.04 0.06 0.08 0.10 0.12 0.14
ERVE

0.02 0.04 0.06
ERVE

0.08

Sandia
National
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_ Particles that
did not crack
within

■ simulated
° 1° deformation
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Study treatments of grain boundary

Conformally mesh geometry of particle then
overlay grain orientation on existing mesh

max_prInclpal_stress_l
94.000000 200.000000 300.000000 400.000000

im i i i

Using Sculpt [ref], conform mesh to
particle and grain geometry

Sandia
National
Laboratories
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Inclusion geometry differences
Sandia
National
Laboratories

■ Sculpt [a Cubit tool, Steve Owen] will not precisely adhere to geometry

■ Small features (such as inclusion) can be poorly resolved

■ Used 5x larger inclusion in following comparison

■ For apples-to-apples particle geometry, extract Sculpt inclusion geometry
and mesh with overlay tetrahedral elements for comparison

21



Computed stress in the particle

•

Tetify Sculpted

max_princlpal_stress_l
94.000000 200.000000 300.000000 400.000000 540.000000

Sandia
National
Laboratories
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Computed stress in the particle
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Mean stress in the particle

I , I

6u = 540 MPa

Sandia
National
Laboratories

Work to be done still, but suggests that
grain boundary smoothness is not first-

order important to predicting the

"ultimate" stress in a void-nucleating
particle, in particular with high mismatch
in stiffness.

*Regretfully, l did not compare the max

stress in the particle.

500

450

.411

ro

400

350
2

Some interesting
behavior here

—Tet run 2, num nodes: 1415992
--Tet run 3, n um nodes: 58820
—o—Tet run 4, num nodes: 22750
—Sculpt run 2, num nodes: 346272

Sculpt run 3, num nodes: 663950
—0—Sculpt run 4, num nodes: 1406128
—m—Tetify sculped run 2, num nodes: 557378 

4 5 6 7
Mean Engineering Strain

8 9 10

10-3

0.04 0.05
Mean Engineering Strain

0.06 0.07 0.08 0.09
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Stochastic reduced-order model (SROM)
To develop a model that optimally represents the uncertainty in the input we
choose a discrete random variable 0 (Grigoriu, JCP 2012). The SROM is then

defined by the collection (Ok,j3k)k = 1, ..., n that minimizes an objective
function of the form:

max max cvs,r Ills (r) — its MI + max max 138 Ills (x) — Es WI + (8,t max c(s, t) — e(s , t)
1<r<f 1<s<d x 1<s<cl s,t

Ill 0 ents cumulative
1

Estimates of SROM statistics given
SROM sample size n

n

fts (r) = E[ers] = >_., Pk (0k,$)r
k=1

f 1 s (X) = Pr(Šs < x) =

-6 (s , t) = E[es et] =

'IL

k=1

T1

k=

Pk 1(ek,s < X)

pk Ok,s Ok,t

distribution corre

Sandia
National
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ation

Estimates of sample sttistics
given q samples of 0

fis(r) —
i=1

(1/q)(0,,,,,,r

Es(x) = (1/01(0i,, < x)
i=
q 

e(s , t) = >:(1/q)0,,,,, 0i,t
i=i

with n << q and a, 0, (> 0 are weights and subject to probabilities 15k > 0 and Ek 15k = 1.

2 6



Cubic elasticity in a polycrystal Sandia
National
Laboratories

• Plane strain plate dimensions: 240 p.m x 120 p.m x 0.5

• Cubic-elastic pure aluminum; average grain size is approximately 40 p.m.

• Voronoi tessellation, so that there are 26 grains in this specimen -- locked morphology.

• Suppose that the plate has stringent design requirements for extension displacement
when loaded longitudinally, so developing the probability law for apparent modulus of

elasticity Eapp can be used to quantify failure.

• We generate "truth" data by FE simulation, varying crystallographic orientation using
our models and calibrated to our AA6061 T6 EBSD data, with 10,000 instantiations of

non-textured, macro-textured and micro-textured crystals.

• We developed a random-field reduced-order model (RFROM) for the textures and here
we use them to quantify the apparent modulus of the plate.

= 0
= 0

= 0

uz = 0 everywhere = = 0

Boundary conditions

T„,,= 1 MPa

First principal stress contour



Predicted performance Sandia
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The following plots show the cumulative distribution function for

apparent modulus. There are 3 lines plotted:

• RFROM — Plot the CDF estimated from the reduced order
model.

• truth — Plot the CDF estimated from the 10,000 truth

simulations.

• MLE for RFROM — Estimate the CDF using maximum
likelihood estimates with likelihood function constructed

as:

m = RFROM samples
= Apparent modulus

= H f (EapplerPz = CDF parameters
2-1 n = arbitrary integer > 1

pi = probability of RFROM sample i

28



Micro texture, RFROM m= 20

0.0 -

66000 68000 70000
Apparent modulus, E app

*it's not very good, but irs "cheap"

Sandia
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Micro texture, RFROM m= 50

0.0 -

66000 68000 70000 72000
Apparent modulus, E app

*it's better, and reasonably $$

Sandia
National
Laboratories
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Allow plasticity in our particle w/ SROM m = 20

a-(ep) = ay Aq, a y = 300 MPa A = 333 MPa n = 0.15

s123

600 -

'6 200-

0 -

1.0-

111 111 
-c

s184 0.6

a)
0.4-

0.8

ca

o 0 2-

0.0-

-

mean particle stress

- macro

micro

o.bo 0.05

0.0 0.2

0.10 0.15
eRVE

0.4 0.6
ERVE

o.2o

s123 macro

s184 macro

s123 micro

s184 micro
 1

0.8 1.0

'Te

800-

600

200-

0

o:oo

1.0-

0.8

2 0.6 -
a,

.53> 0.4-

cj 0.2-

0.0 -

0.00 0.02

0.05

-26 hours on 128, 2.1GHz procs w/4GBRAM

0.10 0.15
ERVE

0.04 0.06
ERVE
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0.20

s123 macro

s184 macro

s123 micro

s184 micro

0.08 0.10
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Couple multiscale w/ second-phase particle Sandia
National
Laboratories

• The polycrystal with brittle inclusion is embedded in a "component" at the point
of highest triaxiality and concurrently coupled using multi-point constraints.

• The component model uses Hill plasticity, calibrated to tension/notched tension
data.

• Simulations conducted for 20-sample RFROM
parameter value

R11 1.00e-00
R22 8.07e-01
R33 8.00e-01
R12 = R23 = R31 9.50e-01
yield (MPa) 2.80e+02
hardening (MPa) 1.16e+02
recovery 1.11950e+01
damage exponent 9.875

250
ca

• 200
-o

LD, 150
-o
QJN
• 100

z 50

0

350

300

250

200

150

100

50

0
0.00 0.02 0.04 0.06 0.08 0.10 0.12 0.14 0.16 0.18

displacement

Calibration for plasticity

- smooth tension rolling

- smooth tension transverse

- gradual notched rolling
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Statistics of particle load
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On Validation room for improvement
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• Predicted load in our brittle particle suggests fracture in the applied strain range
0.001 - 0.004. Very early in the load history.

• Of 6 specimens tested, initiation/fracture occurs in a range of 0.034 — 0.042.

• No dissipation mechanism for the particle in the multiscale model. We saw a

broadening of the predicted particle load in the meso-scale simulations when we
introduced some yielding in the particle.

• Practically, validating this model is a challenge. How to observe when one particle
breaks in situ? Future work will adopt a field of particles (using our random field

model) and damage, motivated by the observation of bi-modal particle/inclusion
size.

• Physically, this work is over-simplified
250

— one particle —30 grains is not statistically r21„
• 200

representative. • 150

• Crystal plasticity models requires further 
(1)

100

investigation. z 50 -0

0.00 0.01 0.02 0.03 0.04 0.05
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Summary
• Developed and demonstrated our random field model for crystal texture

that maintains spatial correlation and reproduces various properties of
texture

• Using the random field model, we built a reduced-order model to
expedite uncertainty propagation

• The RFROM is efficient for simple elastic problems and beneficial for
multiscale calculations

• Quite a lot of work required for validation of multiscale calculations
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Inverse pole figure (IPF) comparing EBSD to

eulerRF samples

measured
EBSD data
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Comparing texture models for cubic elasiticity
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No texture, RFROM m - 20
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No texture, RFROM m= 50
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Macro texture, RFROM m= 20
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Macro texture, RFROM m= 50
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Computed stress nearby the particle
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Meshing consideration results
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Random-field, reduced-order model

Let O(x) = {6(x)(1), . . . , -19-(x)(m)} be the SROM of e(x)

probabilities (P), ,j5(rn)) /5(i) > 0 V i, i = 1, , rn, and Em 1 /-5(i) =

(6(2), Pi)), i = 1, . . .
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