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= Motivation: Why do multiscale? For uncertainty propagation
= Probability model for crystallographic orientation/texture

= Example 1: Load in a brittle inclusion within small polycrystal
= Excursion —implications of meshing decisions

= Reduced-order model for texture

= Example 2: Exploring RFROM w/ simple cubic-elastic plate
= Example 1 revisited w/ RFROM

= Example 3: Coupled, multiscale analysis
= Summary

Multiscale In Situ Electron Microscopy Investigation of Deformation in Al 6061. Josh
Kacher, Yung Suk Yoo, John Emery, Jay Carroll. Wednesday 3/14 2PM Rm 101C



Why do multiscale simulation? One reason: because structural ) s,
. ape . . ationa
reliability is dependent on random microstructure (among other
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Emery: 6061-T6, 2 Sharp Notch Tensile: Rolling Orientation
S O l I r‘ e S O r a n o I I l l l e S S Stress vs. Displacement: Full Gauge Area, Gauge Length = 19.9 mm centered on 0.31 mm notch
L]

(test 14..15 Mar 2016, chart 30 Sep 2016 jrl)
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% EBSD data
% shows randomly
, oriented grains

' Preclputates

Inclusions

brittle particle

* Fine precipitates of Fe (~1 um) throughout
* Largerinclusions of Mg,Si and of Fe on the scale of 10 um.

Microstructural length scale (um)
randomly distributed brittle particles embedded in randomly oriented, anisotropic matrix




One multiscale calculation is necessary but not sufficient () s
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p s

Multiscale calculation Microstucture scale

(XXLarge) (210s millions of DOFs)

One multiscale calcfu_l\ation gives you this: But you you’d like to compute this:
1 . ‘ ‘ X . 1 , . ‘ — ,

. \Iy . S o ]

One point for conditional Capturing the tail of the
*% probability of failure P,(Lla,), OUR 208 cumulative failure
% g B . ..g _
06 conditioned on choice of |CHALLENGE = 04| P.(L)= EP(LIal.)P(al.)

requires many MC samples.

multiscale subdomain. =>
4 |

The only general way to fill this

0.2/ space is with Monte Carlo (MC) | 2/ this computationally tractable.
simulation. /' ——99.5% confidence|
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Failure Load (N) Failure Load (N)

This work is working to make

Conditional Probability




AA6061-T6 EBSD on three planes shows pancake- ) e,
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shaped grains with mild texture
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Transverse T
From Ghahremaninezhad & Ravi-Chandar, and N

confirmed for our material, mean grain size of the
rolled 6061 microstructure:

y-z mean 15 um 111 T :
X-z mean 14 um R |
X-y mean 39 um

6/20/2016
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= Probability model for crystallographic orientation/texture
= Example 1: Load in a brittle inclusion within small polycrystal

= Excursion —implications of meshing decisions

= Reduced-order model for texture

= Example 2: Exploring RFROM w/ simple cubic-elastic plate
= Example 1 revisited w/ RFROM

= Example 3: Coupled, multiscale analysis

= Summary




Random Field Model for Texture )

= Why? A probability model describing texture will be
convenient, e.g., for model reduction, rapid sampling etc.

= Let O©(x) = (0,(x),0,(x),05(x)), x € D R? be avector-valued
random field model for the 3 Euler angles

= Following Arwade and Grigoriu (JEM 2004), model form

231 op 0 0
O)=p+aY(x) = (,ug) + (O T9 0) Y (x)
M3 0 0 o3

Yk(X) = hk(Gk(X)) = Fk_l o (I)(Gk(x)), k=1,2,3
E|Gk(u) Gi(v)] = pri(u, v)

" 1, and o, are the mean and standard deviations of 9,
" F.is related to the marginal CDF of ©,,

" G = (G, Gy, G3) is avector-valued Gaussian random field with zero

mean, unit variance, and correlation functions { p, } 5
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I’ll look at it, but | can’t today. My first question is this...now do you define the SROM? Let
T(x) = h[G(x)]

be a translation random field, where G is a homogeneous Gaussian random field, and h is a nonlinear
mapping that is independent of x. G(x) is modeled as a Fourier series with random coefficients:

G(x) = \sum_{k=1}*rs_k ( A_k sin(w_k x) + B_k cos(w_k x) )

where A_k, B_k are correlated Gaussian random variables with zero mean and unit variance, and s_k,
w_k are some constants.

Now we have talked and thought about the SROM for random fields in two ways:

(1) Define SROM w.r.t. T, that is, produce samples of a random field T_1(x), T_2(x), ..., T_n(x), where n
is large, then choose m < n of the samples that minimize the discrepancy between T and its SROM,;

(2) Define SROM w.r.t. A and B, that is, produce samples of random vector (A_1,B 1), (A_2,B_2), ..,
(A_n, B_n), where nis large, then choose m < n of the samples that minimize the discrepancy between
(A,B) and its SROM.

Are we using option (1) or (2) here? I'm cc’ing Brian so that he can chime in, too. Thanks.



Random Field Model — Calibration @&=.

1. Estimate mean and standard deviation functions, g and a

2. Define spatial correlation functions
= Can map correlation of G to correlation of ®

= Functional form: exponential or linear decay
= Homogeneous, isotropic
= Parameter estimates using least-squares, or user-specified

3. Select marginal distribution functions

= Choose a functional form

= Carefully to be consistent with physics

= Beta distribution is a good choice

= Parameter estimates using Method of Maximum Likelihood
= Empirically-based

= Requires a medium sized data set



Capturing spatial correlation h

= A measure of the (average) linear
dependence between two points in the field v = (v1,v2)
= Auto correlation function of ©,
E[©1(1)01(v)]
= Cross correlation between ©1and O,
E[©1(u)O2(v)]
= Assumptions:
= Statistically homogeneous
Depends on (u — v)

= Statistically isotropic
Depends on |[u — v||

I “ X1

= Provides one way to model “micro” texture

Cov(Ok(u),©;(v))

gkl(“? V> — gkl(Hu - VH) — ~ 5(77) - ’Ykle_akm7 k7l =1,2,3
Ok0]




“EulerRF” Code 7

= Code to generate samples of Euler angle random field FE Mesh  Exp data
model for FE meshes, implemented in MATLAB (and half- \/
way there with python implementation) TEXT
=  |nput: SPCORR —{ EulerRF ]
= Finite element mesh (grain geometry)
= Texture data (EBSD data — AA6061 below) l

Samples for FE

= User options for texture model analysis

= Qutput: samples of no texture, macro- and micro-texture
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2D example from EulerRF )
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One sample of ¢1(x1,x2) [ded] . .
— _— Marginal histogram of 6,

. ] 4D ® ® se -3
Zero texture, zero spatial g 3 I S ————
correlation 250
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With micro-texture, i.e
S Autocorrelation function of ©,
1

including spatial correlation :jg
= Texture based on data file 12 Z:
= |sotropic (exponential) 80 o4
spatial correlation with Y

20

0
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correlation length = 200 um



Comparing texture — measured vs. model ()&=,

measured EBSD data model data
0.005
0.000 0.0000
0 100 200 300 0 100 200 300
Euler 1 from EBSD data, Plan scan (deg) Euler 1, micro texture (deg)
@ 0.025 0.025
2
0.000 - 0.000 |
0 20 40 60 0 20 40 60
Euler 2 from EBSD data, Plan scan (deg) Euler 2, micro texture (deg)
@ 0.01 0.01
3
0.00 0.00 |
0 20 40 60 80 100 0 20 40 60 80 100
Euler 3 from EBSD data, Plan scan (deg) Euler 3, micro texture (deg)

= Histograms drawn for the individual Euler angles




Inverse pole figure (IPF) comparing EBSD to T

eulerRF samples

111 3.0

max(px/pu) = 1.314

measu rEd min(ox/pu) = 0.81
EBSD data

1.5

1.0

100 101 0.5

111 3.0

max(px/pu) = 1.433
min(px/pu) = 0.825

model

100 101 05

11 3.0

max(pz/pu) = 2.898
min(p;/pu) = 0.763

100 101 05

111 3.0

max(pz/pu) = 2.974
min(pz/pu) = 0.769

100 101 05

Pyl pu
11 3.0

25
max(py/pu) = 1.334

min(py/pu) = 0.794 y

1.5

1.0

100 101 0.5

pylpu
111 3.0

25
max(py/py) = 1.427
min(oy/pu) = 0.759

100 101 05
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Misorientation o,,;, = min

arccos

(t'r(ngle) — 1) | ) Netora
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0.02-
0.00 -
0 20 40 60 80
Misorientation from EBSD measurements (deg)
0.02 1
0.00 -

0 20 40 60 80
Misorientation from model (deg)
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= Example 1: Load in a brittle inclusion within small polycrystal
= Excursion —implications of meshing decisions

= Reduced-order model for texture

= Example 2: Exploring RFROM w/ simple cubic-elastic plate
= Example 1 revisited w/ RFROM

= Example 3: Coupled, multiscale analysis

= Summary




A small polycrystal with brittle inclusion h) i,

= AA6061 T6 rolled plate

= Embed an ellipsoidal particle, 5 x
1.8 um

= Coherent, geometry-obeying mesh
at particle/matrix interface,
overlay geometry otherwise

= 2 morphologies w/ ~27 grains,
s123 & s184

= 200 samples of macro-texture &
55 samples of micro-texture

=  Assumed elastic mechanical
properties for particle (pure iron)

= E=211GPa, v=0.29
= Strength 540 MPa

= Assumed perfect and rigid
particle/matrix interface bond

Cross-sections through major-axis of ellipsoid



Crystal plasticity formulation ) e,
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. L. no texture micro texture macro texture
= Asimple crystal plasticity

formulation (Matous and i —— LoD —
Maniatty 2004) 850 169.4 172.8 174.7
Go 116.6 116.6 116.6
12
L = Z Tl m 0.01 0.01 0.01
a=1 350
PY =m“ ®n" 00T i \
S
o S 250} K _
V=% || sign(t®) 2
8 g 200
oo
s — O s — 8 \ . § 150}
5 0 Zso — L0 7 é’n ool — Average measured data
i — micro texture
12
. o sl | — macro texture
L ; i — no texture

800 002 0.04 006 008 010 012 014 016 0.8
Engineering strain




Watch mean, first-principal stress in the particle

Assuming elastic and brittle,
monitor the mean (or max) first-
principal stress in the particle.

max_principal_stress 1

P,r.(gRVE E S) E1.506e+03
S = {ERVE - R+ g(ERVE S O} E:Z;
-4.269e+02

9(€rvE) = Opcr — Op(€ERVE)

Gp.er = 540 MPa

Cracked particles: macro-texture Cracked particles: micro-texture

Maximum principal stress contour for one sample
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160 140
1200 Macro-texture 9150 Micro-texture
140} ' 120}
1000 1000
> 120} >
g = 800 g 100+ S 80
[«5] % [«5] %
2100} e ‘ = g
g < 600 g < 600 540 MPa
& & 0
E’ 80 €400 100 samp/655123 E) il S 0 29 samp/855123
7;‘ 60t 20 100 samples s184 T'é 20 26 sampless184
£ £ d Particles that
Z 40 [ (ll].ll(i 0.02 0.04 0.06 0.08 0.10 0.12 0.14 Z 40 [ 0.00 0.02 0.04 0.06 0.08 0.10 0.12 0.14 5
did not crack
201 20¢ J within
0 T . 0 o . , B simulated
. .02 04 0. . 1 : .02 0.04 . j 1 .
0.00 0.0 0.0 g 06 0.08 0.10 0.00 0.0 04 0.06 0.08 010 qeformation
RVE €ERVE




Study treatments of grain boundary

h

Conformally mesh geometry of particle then Using Sculpt [ref], conform mesh to

overlay grain orientation on existing mesh particle and grain geometry

max_principal_stress_1
94.000000 200.000000 300.000000 400.000000 540.000000

o
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Inclusion geometry differences 1) .

=  Sculpt [a Cubit tool, Steve Owen] will not precisely adhere to geometry
= Small features (such as inclusion) can be poorly resolved
= Used 5x larger inclusion in following comparison

= For apples-to-apples particle geometry, extract Sculpt inclusion geometry
and mesh with overlay tetrahedral elements for comparison
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Computed stress in the particle ) et

Sculpted

max_principal_stress_1
94.000000 200.000000 300.000000 400.000000 540.000000

' o
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the particle

N

Computed stress

569.798977

400.000000

ainssaud

200.000000

0.000000

-124.808744

|




Mean stress in the particle 1) .

800

700 =

600 =

o, = 540 MPa

500 p=

400 |-

Mean Stress

Some interesting
behavior here -

Mean Stress

Work to be done still, but suggests that
grain boundary smoothness is not first- 400
order important to predicting the
“ultimate” stress in a void-nucleating
particle, in particular with high mismatch

~—Tet run 2, num nodes: 1415992

~=—Tet run 3, num nodes: 58820

~#—Tet run 4, num nodes: 22750

Sculpt run 2, num nodes: 346272

== Sculpt run 3, num nodes: 663950
~Q—Sculpt run 4, num nodes: 1406128

~»— Tetify sculped run 2, num nodes: 557378

350 A A A A A A A
. . 2 3 Bl 5 6 7 8 9 10
N Stlffness- Mean Engineering Strain %1073
1 1 1 1 1
. 0.04 0.05 0.06 0.07 0.08 0.09
*Regretfully, | did not compare the max Mean Engineering Strain

stress in the particle.
————
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= Reduced-order model for texture

= Example 2: Exploring RFROM w/ simple cubic-elastic plate
= Example 1 revisited w/ RFROM

= Example 3: Coupled, multiscale analysis

= Summary




Stochastic reduced-order model (SROM) )t

To develop a model that optimally represents the uncertainty in the input we
choose a discrete random variable @ (Grigoriu, JCP 2012). The SROM is then
defined by the collection ék,ﬁk)k =1, ..., n that minimizes an objective
function of the form

[max max or|fis(r) — fis(r)| + max max, Bs|Fs(x) — Fo(@)| + Con max |&(s, t) — &(s, ¢)]
— P A _/
moments cumulative distribution correlation
Estimates of SROM statistics given Estimates of sample statistics
SROM sample size n given g samples of ®
n q
fis(r) = E[(:)Z] = Zpk (Ok,s)" fis(r) = Z(l/Q)(ei,S)r
k=1 i=1
_ _ n ~ R q
Fy(z) =Pr(6, <2) = pp1(frs < @) Fy(z) =) (1/9)1(8:s < 7)
k=1 =1
5(8,15) = E[(:)s (:)t] — Zpk: ék,s ék,t Z 1/(1 stezt
k=1 i=1

withn<<gand a, B, (>0 are weights and subject to probabilities p, > 0and >, pr = 1.




Cubic elasticity in a polycrystal ) i
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= Plane strain plate dimensions: 240 um x 120 um x 0.5 pum.
= Cubic-elastic pure aluminum; average grain size is approximately 40 um.
= Voronoi tessellation, so that there are 26 grains in this specimen -- locked morphology.

= Suppose that the plate has stringent design requirements for extension displacement
when loaded longitudinally, so developing the probability law for apparent modulus of
elasticity £,,, can be used to quantify failure.

=  We generate “truth” data by FE simulation, varying crystallographic orientation using
our models and calibrated to our AA6061 T6 EBSD data, with 10,000 instantiations of
non-textured, macro-textured and micro-textured crystals.

= We developed a random-field reduced-order model (RFROM) for the textures and here
we use them to quantify the apparent modulus of the plate.

u, = 0 everywhere T = Ty=0

7= 1 MPa

Ty = Ty =0
T—*x Boundary conditions First principal stress contour




Predicted performance )

The following plots show the cumulative distribution function for

apparent modulus. There are 3 lines plotted:

—— = RFROM - Plot the CDF estimated from the reduced order
model.

— = truth — Plot the CDF estimated from the 10,000 truth
simulations.

— ® MLE for RFROM - Estimate the CDF using maximum
likelihood estimates with likelihood function constructed

dasS:

m = RFROM samples

E,,, = Apparent modulus

m
L= H F(Eapp|0)"P 0 = CDF parameters
; n = arbitrary integer > 1
p; = probability of RFROM sample i

~
I
—_




Micro texture, RFROM m = 20 ) .

1.01 —— RFROM
—— micro truth
m— MLE for RFROM
0.8

=
o

Cumulative probability
-
D

et
O

0.0 1

66000 68000 70000 792000
Apparent modulus, E,,

"

*jt’s not very good, but it’s “cheap”




Micro texture, RFROM m = 50 h .

1.01 —— RFROM
— micro truth

E 0.81 = MLE for RFROM
B
=
S 0.0
O
&}
5
= 0.4
=
:
3 0.2

0.0

66000 63000 70000 72000

Apparent modulus, E,,

*it’s better, and reasonably SS




Allow plasticity in our particle w/SROM m =20 (g%
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(&) = 0, + Ae" 0, =300 MPa A =333 MPa n = 0.15

6004 800 1
g E
= = 600
:: 400 1 \‘ij
s123 £ . £ 400 : .
& oo mean particle stress = maximum particle stress
200
macro —— ImacCro
— 1micro — micro
01 01
0.00 0.05 0.10 0.15 0.20 0.00 0.05 0.10 0.15 0.20
€ERVE €RVE
1.0 P A 1.0 VISR 18
— TR T K Ty ]

=
oo
)
=
1)

=
>
)
&
>

+-+ Mmean particle stress maximum particle stress

Cumulative Probability
Cumulative Probability

0.47 adl —e— 5123 macro 0.4 —e— 5123 macro
-=x-- 3184 macro -—%-- 5184 macro
0.2 —— 5123 micro 0.2 —— 5123 micro
-—-- 5184 micro -—-- 5184 micro
0.0 0.0+
00 02 04 06 08 10 0.00 002 004 006 008 0.0
€ERVE €ERVE

~26 hours on 128, 2.1GHz procs w/4GBRAM
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= Example 3: Coupled, multiscale analysis

= Summary




Couple multiscale w/ second-phase particle () =
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=  The polycrystal with brittle inclusion is embedded in a “component” at the point
of highest triaxiality and concurrently coupled using multi-point constraints.
= The component model uses Hill plasticity, calibrated to tension/notched tension
data.
= Simulations conducted for 20-sample RFROM
parameter | value 350 ' CaIiPratiQn forlplastilcity .
R11 1.00e-00 300}
R22 8.07e-01 o :
R33 8.00e-01 i
R12=R23=R31| 950e-01 > N
yield (MPa) 2.80e+02 <150 — 2
hardening (MPa) 1.16e+02 556 — 5;‘:::;(; n::o"nr:r ]::ngerse | =
recovery 1.11950e+01 %5 —— gradual notched rolling ;'-‘:
damage exponent 9875 gradual notched transverse <
(()).00 0.62 0.64 0.(‘)6 0.68 o.io 0;12 0.|l4 0.|16 0.18 E

displacement

2501

]

o

o
|

Normalized load (MPa)
&

experiments 6 NR

0.00 001 002 003 004 005
Engineering strain (mm/mm)




Statistics of particle load ) .

12001 20001
1000 1 —~
- B~ 1500 -
£ 800 =,
3 &7 MPC Coupled 31000‘
2400 %
3 S 5001
200 S
0- e R e s 0
0.00 0.02 0.04 0.00 0.02 0.04
E6nol‘ch €6n0tch
£10] N £1.0] A
2 8
< o]
Q0 L
20.8 2 0.8
o &
= =
=06 = 0.6
= =
g g
5 0.4 1 5 0.4
= =
= =
g 0.21 £ 0.2
= =
E —— 35123 micro ”8 —&— 3123 micro
5 0.0 S 0.0
0.0020  0.0025 0.0030 0.0035  0.0040 0.0016 0.0018 0.0020 0.0022 0.0024
€6notch

EGnotch




On Validation — room for improvement ~ iz.

= Predicted load in our brittle particle suggests fracture in the applied strain range
0.001 - 0.004. Very early in the load history.

= Of 6 specimens tested, initiation/fracture occurs in a range of 0.034 — 0.042.

= No dissipation mechanism for the particle in the multiscale model. We saw a
broadening of the predicted particle load in the meso-scale simulations when we
introduced some vyielding in the particle.

= Practically, validating this model is a challenge. How to observe when one particle
breaks in situ? Future work will adopt a field of particles (using our random field
model) and damage, motivated by the observation of bi-modal particle/inclusion
size.

= Physically, this work is over-simplified

DO
[}
o

)

M
o
S
S

— one particle ~30 grains is not statistically & \
representative.

—_
Ut
o

= Crystal plasticity models requires further

Normalized load (
3

investigation.

(o
o

experiments 6 NR

(=1

0.00 001 002 003 004 005
Engineering strain (mm/mm)
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Summary

= Developed and demonstrated our random field model for crystal texture
that maintains spatial correlation and reproduces various properties of
texture

= Using the random field model, we built a reduced-order model to
expedite uncertainty propagation

= The RFROM is efficient for simple elastic problems and beneficial for
multiscale calculations

= Quite a lot of work required for validation of multiscale calculations

—_
=]

=
oo

MPC
Coupled

<
o

o
N

=
[\

Von Mises

%

2269 4666 7064 9461 1
oLl LLLLLLLLLLLL L

Y —a— 123 micro 7 —— 99.5% confidence

260028 3200 3400 3600 3800 4000
Failure Load (N)

Condintional Cumulative Probability

=
o

0.0020  0.0025 0.0030 0.0035  0.0040

€6notch
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Inverse pole figure (IPF) comparing EBSD to

eulerRF samples
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Comparing texture models for cubic elasiticity @ &
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No texture, RFROM m = 20 ) .
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No texture, RFROM m =50 ) .
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Macro texture, RFROM m = 20 h .
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Macro texture, RFROM m =50 h .
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Computed stress nearby the particle @z
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Meshing consideration results ) .
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Random-field, reduced-order model ®&=.

Let O(x) = {0(x)Y, ..., 0(x)™} be the SROM of O(x)

probabilities (p(V, ..., Py PO >0V i=1,..., m, and ST 50 =1

0D D), i=1,....m




