
Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin

Corporation, for the U.S. Department of Energy’s National Nuclear Security Administration under contract DE-AC04-94AL85000. SAND NO. 2015-7830 C

Toward Rapid Understanding of
Production HPC Applications and Systems

Anthony Agelastos, Benjamin Allan, James Brandt, Ann Gentile, Sophia Lefantzi,
Stephen Monk, Jeffry Ogden, Mahesh Rajan, Joel Stevenson

Continuous

Monitoring of HPC

platforms and the

applications run

upon them

Chaotic, random

applications,

workflows, and

dependencies

SAND2015-7830C

Executive Summary

 Objective: Gain rapid understanding of production high-performance
computing (HPC) applications and platforms to enable timely
troubleshooting and up-to-system-level studies to assist developers,
analysts, system administrators, and procurement activities

 Methodologies Used
 LDMS (Lightweight, Distributed Metric Service)

 5 production-relevant test cases

 Scoring of LDMS results with test cases

 Results
 LDMS has fidelity & capability to address production, high-level metrics of

concern

 Scoring provides a comfortable interface to the large quantities of data for all
personas

2

3

Post-processing

(Parallel & Serial)

Simulation

(Parallel & Serial)

Pre-processing

(Parallel & Serial)

Production Simulation Overview

CTH

Production workflows are complicated

Verification & Validation, Uncertainty Quantification

Parametric Analyses, Optimization Automated Post-processing

Production Application Profiling
 Typical procedure for profiling single application

1. Obtain executable with necessary characteristics, e.g., symbol table,
minimal compiler optimizations, specific DWARF adherence, built with
supported compiler

2. Attach sample-based profiler to application and collect data

3. Analyze data for problematic area(s) of interest

4. Bracket area(s) of interest to a single iteration with minimum functions
instrumented

5. Instrument application with tracing and collect causal data

 Considerations
 Each step above requires a level of effort from multiple people/orgs. that

is typically overcome only by catastrophe or performance milestones

 Oftentimes data provided by steps 2 & 5 contain more information than
is needed to answer many high-level performance queries

4

Hard

Harder

Simple high-level overviews are welcome

Lightweight Monitoring: LDMS

5

 LDMS – Lightweight, Distributed Metric Service
 Data collection, transport, and storage

 Features:
 Data is “freely” available

 Profiles are immediately available without any extra effort from analyst

 Low CPU utilization, memory, network requirements
 Does not impact the measured values

 High-frequency collection (up to subsecond intervals)
 Can resolve short duration and highly varying data features

 Synchronized collection
 Can compare values on different nodes since metrics are collected at the

same time on each node

 Whole-system views
 Enables environmental insight

Lightweight Distributed Metric Service: A Scalable Infrastructure for Continuous Monitoring of Large

Scale Computing Systems and Applications, Agelastos et al., SC14

Data Collection, Transport, and Storage

6

ldmsd

RDMA
Socket

Plugins determine data

to be collected

Multiple transports (RDMA over IB, Socket, RDMA over Gemini, etc)

Arbitrary aggregation topologies

Plugins for storage:

CSV, database,

filtering options

Data Collection

7

 Data sampler plugins are pre-defined sets of data (e.g.,
“meminfo” plugin samples all values from /proc/meminfo
at each sample time) that can be loaded by name and
configured with respect to set name and sampling period;
currently available plugins provide information about:
 Lustre and NFS

 Memory

 IP Network

 CPU

 Infiniband and Cray (Gemini and Aries) performance

 Machine Specific Registers (MSRs)

 Interrupts

 Disk I/O

High-frequency Sampling

8
High-frequency sampling intervals are necessary

1 sec. intervals

60 sec. intervals

Nodes spend

significant time

in IO Wait

Whole-system Views

9
Whole-system view enables environmental insight

C

D

E C

D

E

SUM

SUM

(y slice)

Provides insight about: • system-wide utilization;
• events correlated in time and space; • identify
contention for shared resources; • understand
varying production conditions that can explain
performance variations

System heat map shows time and
placement of jobs with high I/O and
which jobs are in contention for same
resource

Relevant Production Cases
Nalu

… is an adaptive

mesh, variable-

density,

acoustically

incompressible,

unstructured fluid

dynamics code

CTH

… is a multi-

material, large

deformation,

strong shock

wave, solid

mechanics code

Sierra/SM

… is a Lagrangian,

three-dimensional

code for

finite element

analysis of solids

and structures

(aka Adagio)

LAMMPS

… is a classical

molecular

dynamics code

Gaussian

… predicts the

molecular

properties, etc. of

molecules and

reactions in a

variety of chemical

environments
10

Nalu CPU & Memory Profiles

11

Observations

 The memory spread
exhibited accounts for
about 10% of the node’s
memory
 The spread can likely be

influenced by changing
solver settings and
decomposition methods

 The CPU utilization value
greater than 100 is an
artifact due to a missing
data point

Nalu Lustre Read/Write Profiles

12

Observations

 This simulation was set
up such that its only
substantial I/O was the
initial mesh read; the
profiles echo this

CTH CPU & Memory Profiles

13

Observations

 This CTH simulation has
well-balanced memory
demands

CTH Lustre Read/Write Profiles

14

Observations

 CTH uses N-N I/O

 For this example 7,200
Spymaster data files are
created only at beginning
and then appended to
throughout

 There are 12 writes
during 19 minute
simulation; each write
requires a read to append
 Reads exhibit increasing

trend and then flatten

Sierra/SM CPU & Memory Profiles

15

Observations

 This Sierra/SM simulation
has well-balanced
memory demands
 The jump in memory is

from attached mpiP

 The CPU dip halfway
corresponds to I/O wait

Sierra/SM Lustre Read/Write Profiles

16

Observations

 Sierra/SM uses N-N I/O

 The Lustre writes of
results data are impacting
CPU utilization
 The jump in bytes written

at the end is due to this
simulation also being
profiled by mpiP

LAMMPS CPU & Memory Profiles

17

Observations

 The CPUs are fully utilized
despite a low memory
footprint which suggests
it is CPU bound

 This simulation is a
candidate to run on
fewer nodes to increase
ensemble throughput

LAMMPS Lustre Read/Write Profiles

18

Observations

 This behavior is expected
due to simulation
parameters

Gaussian CPU & Memory Profiles

19

Observations

 This particular Gaussian
simulation is highly
imbalanced in memory
and CPU utilization

 There are 2 distinct
phases exhibited
 The first phase requires

the most time whilst the
second requires the most
memory

 Phase 2’s increase in
memory is a common
cause for OOM errors

Gaussian Lustre Read/Write Profiles

20

Observations

 This particular Gaussian
simulation is highly
imbalanced in I/O
 Practically all I/O goes

through the single head
node

Scoring

21

Objective: Direct attention to imbalance, under-utilization,
misconfiguration, and/or abnormal run-to-run variation

 High-imbalance scores point out single-node I/O and algorithmic-
inefficient cases

 The contrast of low memory usage but high I/O and memory
balance activity suggest possible memory bandwidth limitations

 Scores are not sorted or initially interpreted to provide
consistent insight
 For example, a high score is not always “good”

 Work in progress

Background Calculations & Functions

22

 Usage score = decile_lookup(µ%)

 Balance score = deviation_lookup(σ%)

 %Peak score = decile_lookup(%Peak)

 %Peak = max(Mi,k); maximum of any node and any interval

 µ% = 100 * average((Mi,k * Δti,k) Mi,k0) / LIMIT

 Activity% is count(Mi,k0) / count(Mi,k) * 100

 σ% = 100 * (σ / µ)
 Mik is the metric value of the i-th sample on the k-th node.

 Δti,k is the time between samples i-1 and i on node k.

 σ = std. deviation(average((Mi * Δti) Mi0)k) over nodes in the time-
weighted, per-node average

 LIMIT is physical RAM (e.g., 64 GB) or fair share Lustre bandwidth:
BW/MPI_Comm_size (e.g., 80 GB/s / Np)

RAM Usage

23

Category Score 1 2 3 4 5 6 7 8 9 10

Usage µ < 10 20 30 40 50 60 70 80 90 100

Balance σ < ∞ 35 30 25 20 15 10 7 4 1

 Decile

 Deviation

Single-node

Peak (P.U.)
Average Usage Balance

App % Peak Score µ (%) Score σ (%) Score

Nalu 36 4 22 3 7.3 7

CTH 26 3 25 3 0.1 10

Adagio 18 2 2.4 1 3.6 9

Lammps256 17 2 15 2 0.1 8

Gaussian 61 7 12 2 108.4 1

Scoring Scale Legend

Scoring Correlates With Memory Observations

Lustre Client Bandwidth R/W

24

Category Score 1 2 3 4 5 6 7 8 9 10

Usage µ < 10 20 30 40 50 60 70 80 90 100

Balance σ < ∞ 35 30 25 20 15 10 7 4 1

 Decile

 Deviation

Scoring Scale Legend

Scoring Correlates With I/O Observations

Single-node

Peak (P.U.)
Average Usage Balance

App % Peak Score µ (%) Score σ (%)Score % Activity

Nalu 135 10 11 2 7.3 7 1.44

CTH 65 7 42 5 9.7 7 1

Adagio 39 4 3 1 10 6 22.14

Lammps256 0.1 1 0.05 1 94 1 0.01

Gaussian 30 3 0.5 1 200 1 11.92

Nalu 0.01 1 0 1 2263 1 0.02

CTH 122 10 15.1 2 14 6 2.2

Adagio 9 1 2.6 1 5 8 37.7

Lammps256 7 1 0.05 1 140 1 0.52

Gaussian 8 1 0.22 1 200 1 10.1

READ

WRITE

Conclusions

 LDMS provides necessary capabilities for system-level profiling
 Subsecond sampling enables accurate insight into behavior

 Efficient aggregation enables minimal-to-no impact on application runtime

 System-wide-synchronized data collection enables: • correlation of events in
time and space; • identification of contention for shared resources; •
understanding of varying production conditions that can explain performance
variations ; • identification of hot spots ; • understanding of application
resource demands vs. system provisioning ; • identification of application
grouping (e.g. dense blocks of similar behavior implies tight spatial grouping
which may imply less network contention and lower latency communication)

 Leveraging LDMS-derived data is an ideal initial profiling step

 Data compression via scoring facilitates broad understanding

25

Questions?

 Answers other than 42.

26

