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Executive Summary

 Objective: Gain rapid understanding of production high-performance 
computing (HPC) applications and platforms to enable timely 
troubleshooting and up-to-system-level studies to assist developers, 
analysts, system administrators, and procurement activities

 Methodologies Used
 LDMS (Lightweight, Distributed Metric Service)

 5 production-relevant test cases

 Scoring of LDMS results with test cases

 Results
 LDMS has fidelity & capability to address production, high-level metrics of 

concern

 Scoring provides a comfortable interface to the large quantities of data for all 
personas
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Post-processing 

(Parallel & Serial)

Simulation

(Parallel & Serial)

Pre-processing 

(Parallel & Serial)

Production Simulation Overview

CTH

Production workflows are complicated

Verification & Validation, Uncertainty Quantification

Parametric Analyses, Optimization Automated Post-processing



Production Application Profiling
 Typical procedure for profiling single application

1. Obtain executable with necessary characteristics, e.g., symbol table, 
minimal compiler optimizations, specific DWARF adherence, built with 
supported compiler

2. Attach sample-based profiler to application and collect data

3. Analyze data for problematic area(s) of interest

4. Bracket area(s) of interest to a single iteration with minimum functions 
instrumented

5. Instrument application with tracing and collect causal data

 Considerations
 Each step above requires a level of effort from multiple people/orgs. that 

is typically overcome only by catastrophe or performance milestones

 Oftentimes data provided by steps 2 & 5 contain more information than 
is needed to answer many high-level performance queries
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Simple high-level overviews are welcome



Lightweight Monitoring: LDMS
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 LDMS – Lightweight, Distributed Metric Service
 Data collection, transport, and storage

 Features:
 Data is “freely” available

 Profiles are immediately available without any extra effort from analyst

 Low CPU utilization, memory, network requirements
 Does not impact the measured values

 High-frequency collection (up to subsecond intervals)
 Can resolve short duration and highly varying data features

 Synchronized collection
 Can compare values on different nodes since metrics are collected at the 

same time on each node

 Whole-system views
 Enables environmental insight

Lightweight Distributed Metric Service: A Scalable Infrastructure for Continuous Monitoring of Large 

Scale Computing Systems and Applications, Agelastos et al., SC14



Data Collection, Transport, and Storage
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ldmsd

RDMA
Socket

Plugins determine data

to be collected

Multiple transports (RDMA over IB, Socket, RDMA over Gemini, etc)

Arbitrary aggregation topologies

Plugins for storage:

CSV, database, 

filtering options



Data Collection
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 Data sampler plugins are pre-defined sets of data (e.g., 
“meminfo” plugin samples all values from /proc/meminfo
at each sample time) that can be loaded by name and 
configured with respect to set name and sampling period; 
currently available plugins provide information about:
 Lustre and NFS

 Memory 

 IP Network 

 CPU 

 Infiniband and Cray (Gemini and Aries) performance

 Machine Specific Registers (MSRs)

 Interrupts

 Disk I/O



High-frequency Sampling
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High-frequency sampling intervals are necessary

1 sec. intervals

60 sec. intervals

Nodes spend

significant time

in IO Wait



Whole-system Views
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Whole-system view enables environmental insight
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Provides insight about: • system-wide utilization; 
• events correlated in time and space; • identify 
contention for shared resources; • understand 
varying production conditions that can explain 
performance variations

System heat map shows time and 
placement of jobs with high I/O and 
which jobs are in contention for same 
resource



Relevant Production Cases
Nalu

… is an adaptive 

mesh, variable-

density, 

acoustically

incompressible, 

unstructured fluid 

dynamics code

CTH

… is a multi-

material, large 

deformation, 

strong shock 

wave, solid 

mechanics code

Sierra/SM

… is a Lagrangian, 

three-dimensional 

code for

finite element 

analysis of solids 

and structures 

(aka Adagio)

LAMMPS

… is a classical 

molecular 

dynamics code

Gaussian

… predicts the 

molecular 

properties, etc. of 

molecules and 

reactions in a 

variety of chemical 

environments
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Nalu CPU & Memory Profiles

11

Observations

 The memory spread 
exhibited accounts for 
about 10% of the node’s 
memory
 The spread can likely be 

influenced by changing 
solver settings and 
decomposition methods

 The CPU utilization value 
greater than 100 is an 
artifact due to a missing 
data point



Nalu Lustre Read/Write Profiles
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Observations

 This simulation was set 
up such that its only 
substantial I/O was the 
initial mesh read; the 
profiles echo this



CTH CPU & Memory Profiles
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Observations

 This CTH simulation has 
well-balanced memory 
demands



CTH Lustre Read/Write Profiles

14

Observations

 CTH uses N-N I/O

 For this example 7,200 
Spymaster data files are 
created only at beginning
and then appended to 
throughout

 There are 12 writes 
during 19 minute 
simulation; each write 
requires a read to append
 Reads exhibit increasing 

trend and then flatten



Sierra/SM CPU & Memory Profiles
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Observations

 This Sierra/SM simulation 
has well-balanced 
memory demands
 The jump in memory is 

from attached mpiP

 The CPU dip halfway 
corresponds to I/O wait



Sierra/SM Lustre Read/Write Profiles
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Observations

 Sierra/SM uses N-N I/O

 The Lustre writes of 
results data are impacting 
CPU utilization
 The jump in bytes written 

at the end is due to this 
simulation also being 
profiled by mpiP



LAMMPS CPU & Memory Profiles
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Observations

 The CPUs are fully utilized 
despite a low memory 
footprint which suggests 
it is CPU bound

 This simulation is a 
candidate to run on 
fewer nodes to increase 
ensemble throughput



LAMMPS Lustre Read/Write Profiles
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Observations

 This behavior is expected 
due to simulation 
parameters



Gaussian CPU & Memory Profiles
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Observations

 This particular Gaussian 
simulation is highly 
imbalanced in memory 
and CPU utilization

 There are 2 distinct 
phases exhibited
 The first phase requires 

the most time whilst the 
second requires the most 
memory

 Phase 2’s increase in 
memory is a common 
cause for OOM errors



Gaussian Lustre Read/Write Profiles
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Observations

 This particular Gaussian 
simulation is highly 
imbalanced in I/O
 Practically all I/O goes 

through the single head 
node



Scoring
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Objective: Direct attention to imbalance, under-utilization, 
misconfiguration, and/or abnormal run-to-run variation

 High-imbalance scores point out single-node I/O and algorithmic-
inefficient cases

 The contrast of low memory usage but high I/O and memory 
balance activity suggest possible memory bandwidth limitations

 Scores are not sorted or initially interpreted to provide 
consistent insight
 For example, a high score is not always “good”

 Work in progress



Background Calculations & Functions
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 Usage score = decile_lookup( µ% )

 Balance score = deviation_lookup( σ% )

 %Peak score = decile_lookup( %Peak )

 %Peak = max(Mi,k ); maximum of any node and any interval

 µ% = 100 * average((Mi,k * Δti,k ) Mi,k0) / LIMIT 

 Activity% is count(Mi,k0) / count(Mi,k)  * 100

 σ% = 100 * (σ / µ )
 Mik is the metric value of the i-th sample on the k-th node.

 Δti,k is the time between samples i-1 and i on node k.

 σ = std. deviation( average((Mi * Δti ) Mi0)k ) over nodes in the time-
weighted, per-node average

 LIMIT is physical RAM (e.g., 64 GB) or fair share Lustre bandwidth: 
BW/MPI_Comm_size (e.g., 80 GB/s / Np)



RAM Usage
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Category Score 1 2 3 4 5 6 7 8 9 10

Usage µ < 10 20 30 40 50 60 70 80 90 100

Balance σ < ∞ 35 30 25 20 15 10 7 4 1

 Decile

 Deviation

Single-node 

Peak (P.U.)
Average Usage Balance

App % Peak  Score µ (%)  Score σ (%) Score

Nalu 36 4 22 3 7.3 7

CTH 26 3 25 3 0.1 10

Adagio 18 2 2.4 1 3.6 9

Lammps256 17 2 15 2 0.1 8

Gaussian 61 7 12 2 108.4 1

Scoring Scale Legend

Scoring Correlates With Memory Observations



Lustre Client Bandwidth R/W
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Category Score 1 2 3 4 5 6 7 8 9 10

Usage µ < 10 20 30 40 50 60 70 80 90 100

Balance σ < ∞ 35 30 25 20 15 10 7 4 1

 Decile

 Deviation

Scoring Scale Legend

Scoring Correlates With I/O Observations

Single-node 

Peak (P.U.)
Average Usage Balance

App % Peak  Score µ (%)  Score σ (%)Score % Activity

Nalu 135 10 11 2 7.3 7 1.44

CTH 65 7 42 5 9.7 7 1

Adagio 39 4 3 1 10 6 22.14

Lammps256 0.1 1 0.05 1 94 1 0.01

Gaussian 30 3 0.5 1 200 1 11.92

Nalu 0.01 1 0 1 2263 1 0.02

CTH 122 10 15.1 2 14 6 2.2

Adagio 9 1 2.6 1 5 8 37.7

Lammps256 7 1 0.05 1 140 1 0.52

Gaussian 8 1 0.22 1 200 1 10.1

READ

WRITE



Conclusions

 LDMS provides necessary capabilities for system-level profiling
 Subsecond sampling enables accurate insight into behavior

 Efficient aggregation enables minimal-to-no impact on application runtime

 System-wide-synchronized data collection enables: • correlation of events in 
time and space; • identification of contention for shared resources; • 
understanding of varying production conditions that can explain performance 
variations ; • identification of hot spots ; • understanding of application 
resource demands vs. system provisioning ; • identification of application 
grouping (e.g. dense blocks of similar behavior implies tight spatial grouping 
which may imply less network contention and lower latency communication)

 Leveraging LDMS-derived data is an ideal initial profiling step

 Data compression via scoring facilitates broad understanding
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Questions?

 Answers other than 42.
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