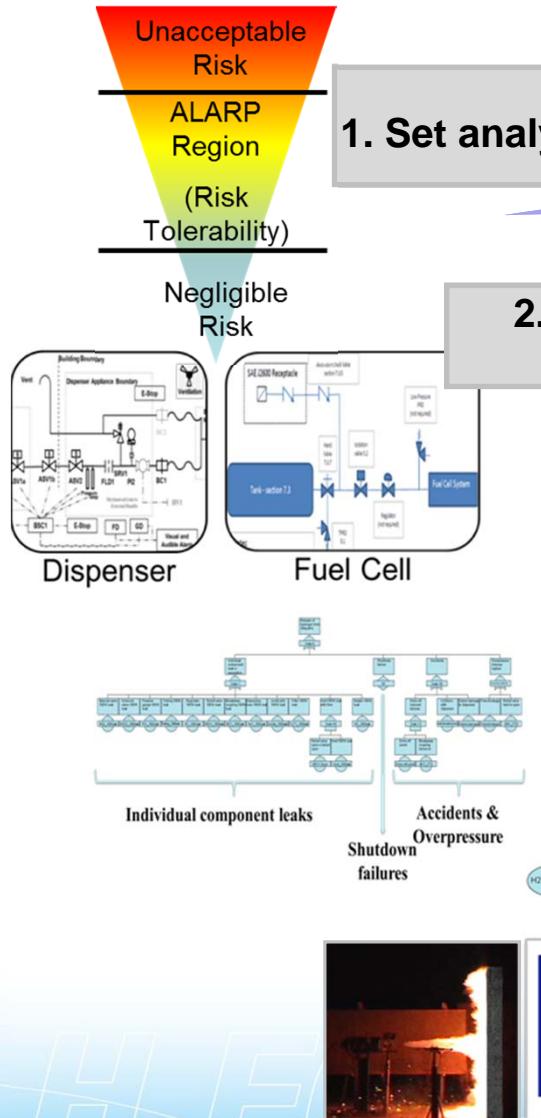
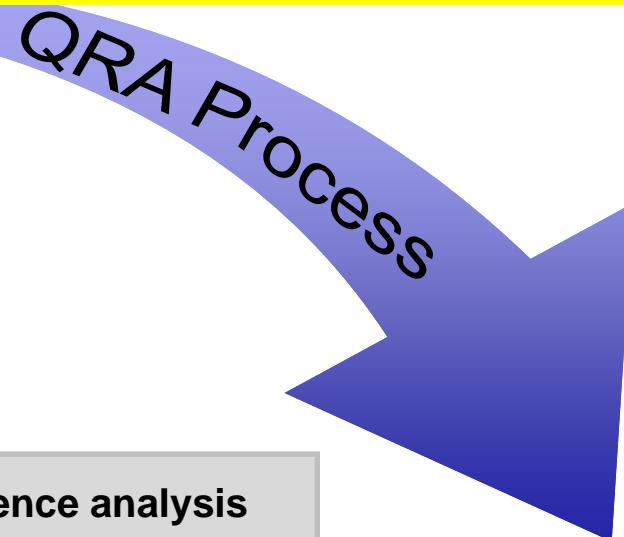


QRA Tools - Gaps, Methods, Models Tools

Katrina M. Groth, Ph.D.


Sandia National Laboratories, Albuquerque, NM, USA

2014 HySafe Research Priorities workshop
Washington DC, USA
11 November 2014



Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000. SAND NO. 2014-XXXXP

QRA Method Overview

Status: The general QRA method is robust – and the hazards are known...**but...**
the method is only as good as the models and tools used

Previously: Gaps from 2012 HySafe document

1. Hydrogen-specific data for updating probability models
 - Component leak frequencies
 - Gas and flame detection probability
2. A credible probability model for ignition occurrence
3. Simplified models of physical effects for deflagration/detonations
4. Inclusion of human, software, & organizational failures
5. Pilot study of external hazards (e.g., earthquakes, high winds)
6. H₂-specific harm models (deterministic criteria, probit models)
7. Guidance on the use of risk insights in decision making
8. Uniform cost-benefit criteria for use in evaluating acceptable risk levels

New approach to thinking about gaps

- Approach:
 - SNL/HySAFE QRA gap analysis workshop to identify gaps & set priorities
 - Sensitivity analysis of gaps with HyRAM
 - Added (and ongoing) focus on *impact* of the gaps
 - Framing out “QRA success”

Sandia/HySafe H2 QRA needs workshop

- **Specifics:**

- Hosted by **Sandia (SNL)** and **HySafe** – Washington DC, June, 2013
- Attendees from industry, academia, research, C&S, government
- Final report: *K. Groth & A. Harris (Sept, 2013). Hydrogen Quantitative Risk Assessment Workshop Proceedings. SAND2013-7888.*

- **Objectives:**

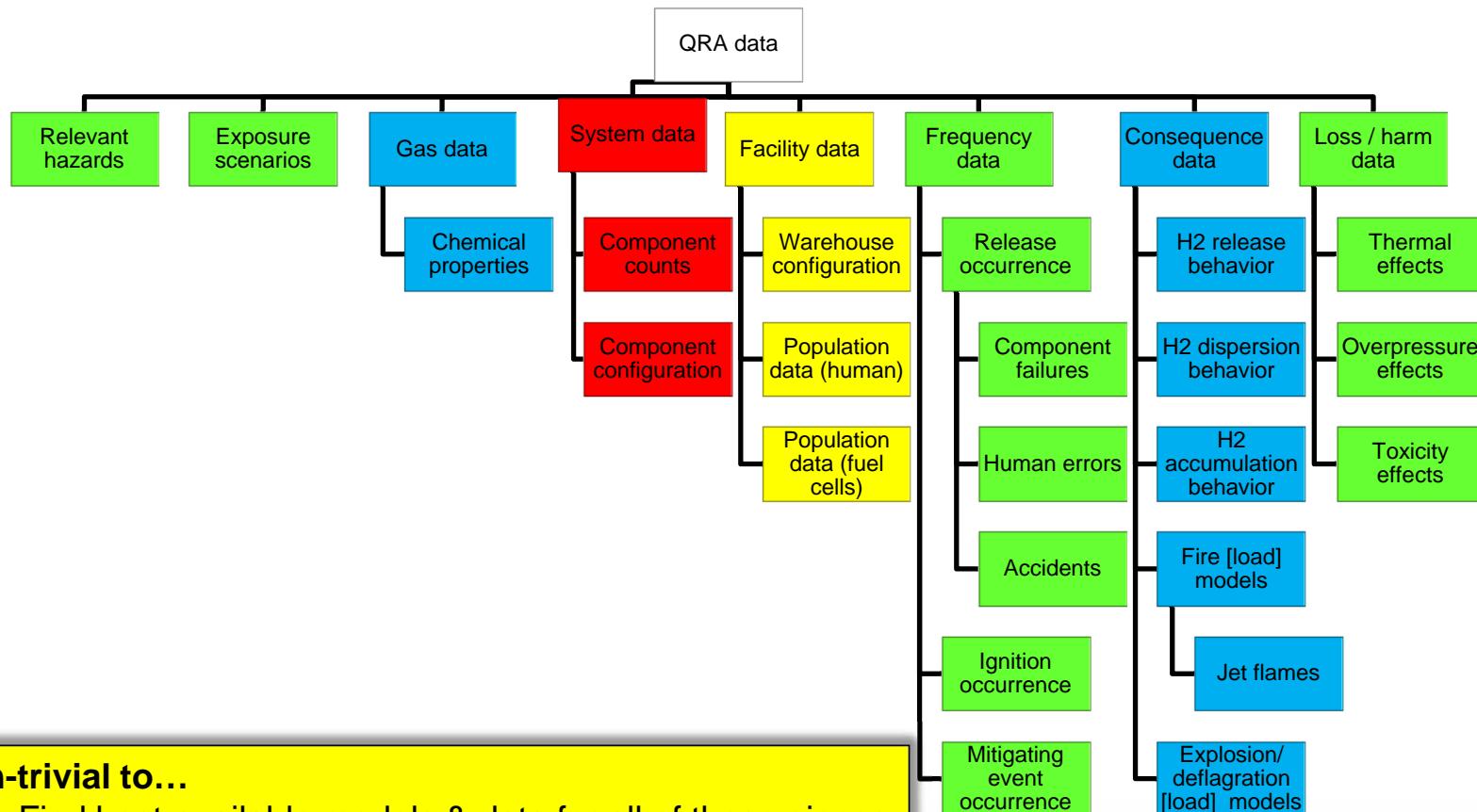
- Understand the goals & needs of early (non-research) users of H2 QRA
- Introduce Sandia QRA methodology and toolkit
- Establish specific user needs and priorities for QRA

- **Results:**

- Identified key priorities for improving H2 QRA; Summarized in SAND2013-7888

Workshop results (1): User needs

- User groups interested multiple types of analysis:
 - High level, generic insights for C&S developers, regulators, etc.;
 - Detailed, site-specific QRA insights for system designers, insurers authorities having jurisdiction (AHJs)
- Most users interested in: relative risk comparisons; graphical output
- Many different preferred risk metrics
- Need for guidance, training for different users
- Established timeline for updates to “user” version


Workshop results (2): Developer needs

- Collective ownership & development among the hydrogen safety community, free license
 - International H₂ community (e.g, SNL, H2CAN, KIT) as developers
- Current QRA tools lack *validated* models and data for hydrogen fuel cell analyses.
 - Datasets must be developed specifically for use in the toolkit – **both users and developers can contribute**
 - Need behavior models to enable consideration of: gas dispersion, overpressure, buoyancy-dominate releases
 - Need to handle duration and timing aspects (e.g., of release and ignition)

QRA– What does success look like?

- **Complete** – Encompasses all hazards and consequences, entire system (as-built and as-operated),
- **Comparable** - Differences in QRA results should be due to differences in designs, not due to model choices
- **Robust**
 - **Validated** – Experimentally validated, simulation-supported physical models; and system-specific data
 - Or at least **Standardized** set of models and data (if unable to validate)
 - **Relevant** – To this system, in the range of use of the models
- **Repeatable & Verifiable** – Different teams should be able to produce the same result
 - Requires: Defined objectives and scope
 - Requires: Clear definitions of failure modes, consequences, the system, and criteria (or data used) to assign severity and likelihood
 - Requires: System, data, models, and analysis are sufficiently documented for a peer reviewer to evaluate correctness

Challenge: A quality QRA incorporates a large body of information from different areas

It is non-trivial to...

- Find best-available models & data for all of these pieces
- Validate those models
- And combine those all into a single framework
- ...And still work your day job

Specific data needs

- Statistical information, Physical models, Expert analyses
- a. Identify accident scenarios
- b. Quantify accident scenarios
 - Release frequencies – leaks, accidents, etc.
 - Component failures
 - Ignition probabilities, timing
 - Detection, Isolation probabilities and timing
- c. Physical consequences (For a range of parameters relevant to hydrogen systems)
 - Fluid release, dispersion & accumulation
 - Fire properties (jet flames, flash fires)
 - Heat fluxes
 - Overpressures (Confined space , Propagation in open)

Motivation for HyRAM: Enable QRA success

Goal	Means
Completeness	Use comprehensive modeling tool
Comparability	Use standard, flexible modeling tool
Robustness	<ul style="list-style-type: none">• Use validated models (as available), standardized models if you don't.• Update models as knowledge improves
Repeatability	Document the analysis
Verifiability	Use the same tool throughout the industry

Motivates building a unifying framework
HyRAM + H2 R&D community

Quantifying gaps with HyRAM: Sensitivity analysis (Indoor fueling model, single param.)

Case	FAR
Baseline indoor fueling analysis	0.17
Uncertainty about modeled <u>overpressures</u> (Multiply by 10)	0.50
Uncertainty about <u>ignition probability</u> . (multiply by 100)	2.60
Uncertainty about <u>ignition probability</u> . (multiply by 10)	1.35
Uncertainty about the <u>design</u> (Multiplying # of components by 10)	1.58
Uncertainty (under-prediction) about <u>leak rate</u> (use 95 percentile).	0.51
Multiply <u>number of vehicles</u> by 10	0.27
Change <u>leak detection probability</u> to 0%	0.19
Change <u>leak detection probability</u> to 50%	0.093
Change <u>thermal exposure time</u> to 180s	0.21
Change <u>thermal exposure time</u> to 30s	0.15
Use Tsao instead of Eisenberg <u>thermal probit model</u>	0.20

Goal: Identify which uncertainties matter the most

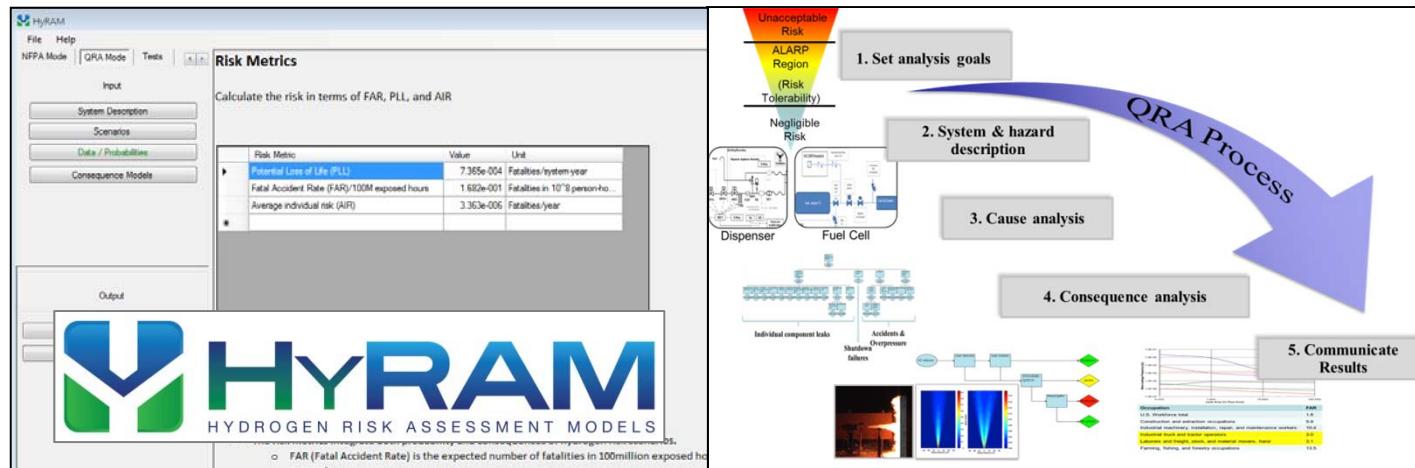
Yellow denotes FAR > 0.3, which means the risk that exceeds tolerable threshold

Impact: Being wrong here changes the decision

Less critical uncertainties
(Being uncertain doesn't change the decision)

Disclaimer: These are model-specific results from a small model – need to run additional cases to verify

HyRAM needs from R&D community


- R&D community provides user confidence in underlying models
- HyRAM needs models, statistics, and data for H₂
 - Behavior models specifically developed & validated for application to hydrogen fuel cell problems
 - Lab-scale experiments, full-scale experiments, simulation
 - H₂ data for improving credibility of probabilistic event models (e.g., release frequencies, harm)
 - Validation activities to enhance credibility of behavior models and data originating from non-fuel-cell applications.
- Engagement with partners to refine QRA approach, standardize, review & adopt models (international and domestic, research and application)

Critical gaps

1. User-friendly, industry-focused software tools (with strong scientific foundation & rigorous documentation) to enable risk-informed decision making
2. Guidance on the use of risk insights in decision making
3. Simplified models for predicting overpressures; cryo-release behavior, barrier walls
4. A validated probabilistic model for ignition occurrence
5. Hydrogen-specific data for updating probability models
 - Leak & release data
 - Component failure rates
 - Component leak frequencies
 - Accidents
 - Human, software, & organizational failures
 - Gas and flame detection probability

...And why they matter

- **Completeness gaps:**
 - Simplified models for predicting overpressures
 - Simplified models for predicting cryo-release behavior,
 - Simplified models for predicting impact of barrier walls
 - Human, software, & organizational failures
 - Comprehensive software tool
- **Comparability gaps:**
 - Need for software tools to enable comparable analyses
- **Robustness gaps:**
 - A validated probability model for ignition occurrence
 - Validation for models for overpressures; cryo-release behavior; barrier walls
 - Hydrogen-specific data
- **Repeatable & Verifiable gaps:**
 - Guidance on the use of risk insights in decision making
 - Software tools to enable standardized analyses & rigorous documentation of the models used in those tools

Thank you!

Katrina Groth
 Sandia National Laboratories
kgroth@sandia.gov

Research supported by DOE Fuel Cell Technologies Office (EERE/FCTO)