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ABSTRACT   

 Identifying an optimal design for a physical security system is critical to mission 

performance. Historically, analyses of security systems have been performed using directed 

graph and path analysis tools like adversary sequence diagrams/attack graphs.  However, there 

are many dimensions in the design space of a security system, including the selection of 

technologies, alternative locations/configurations, different threats, cost limitations, and impacts 

from false alarms. The multiple dimensions of this problem make it effectively impossible to 

evaluate all permutations of potential system architectures.  In practice, the individuals 

configuring the system drive the examination of a small subset of candidate architectures. This 

type of process is likely to lead to suboptimal decisions. There have been several historical 

incidents that highlight a need for a more effective security system design process to protect 

national security assets.  

   To address this need, we have developed a game theoretic model to optimize the design 

of security systems which explicitly includes opportunities to layer security barriers and the 

performance of a range of different technologies based on how they are to be deployed.  The 

model also includes the ability to consider budget limitations and the impact of false alarms on 

system performance.  We demonstrate this model on a realistic problem instance. 
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INTRODUCTION 

On July 28, 2012, three trespassers cut through security fences and reached the exterior of 

the Highly Enriched Uranium Materials Facility (HEUMF) at the Y-12 National Security 

Complex in Oak Ridge, Tennessee. This site is one of four production facilities in the Nuclear 

Security Enterprise. According to a report by the U.S. Department of Energy Office of the 

Inspector General (2012), the trespassers vandalized the building and were able to get through 

several layers of fencing before being physically observed and interrupted by security forces 

(U.S. Department of Energy, Office of Inspector General, Office of Audits and Inspections, 

2012). This was a defeat of what was believed to be a highly reliable, layered security system. 

Issues cited by the Department of Energy (DOE) inquiry into the incident included poor response 

to alarms, failures to maintain critical security equipment, over-reliance on compensatory 

measures, misunderstanding of protocols, and miscommunication. Similar incidents have 

occurred in the past at facilities protecting high value assets.      

The configuration of layered security measures is at the center of efforts to protect a 

range of systems, from high-value facilities to large-scale infrastructures. The research described 

here is part of a Laboratory Directed Research and Development (LDRD) Project at Sandia 

National Laboratories (Sandia) and was motivated in part by the Y-12 incident. The incident 

highlighted an ongoing need for innovative approaches to security system design. Sandia has a 

long history of providing technology and systems solutions to design, develop, test, and 

implement physical security technologies and systems to protect nuclear weapons and other high 

value assets and facilities. Mathematical modeling and complex systems analysis expertise at the 

laboratory, leveraging subject matter expertise from the physical security program, supported 

this research path.  

Historically, analyses of security systems have been performed using directed graph and 

path analysis tools like Adversary Sequence Diagrams.  However, there are many dimensions in 

the design space of a security system, including the selection of technologies, alternative 

locations/configurations, different threats, and competing cost limitations. The multiple 

dimensions of this problem make it effectively impossible to evaluate all permutations of 

potential system architectures.  The experience of the individuals configuring the system drives 

the careful examination of a small subset of architectures.  

The goal for this research effort is the creation of a consistent and robust mathematical 

framework using complex systems analysis algorithms and techniques to better understand the 

emergent behavior, vulnerabilities, and resiliency of layered security systems, subject to budget 

constraints and competing security priorities.   

 

LITERATURE REVIEW 
There are two ideas in the literature that are of particular relevance to this research. The 

first concept is attack graphs. Phillips and Swiler (1998) first defined attack graphs as a 

convenient mechanism to integrate the path choices facing an intruder attempting to reach a 

target. An edge represents a change in state in the system caused by a single action, and a node 

represents a possible state of the attack. The weights on the edges are the probabilities of success, 

the cost of the action, or some benefit-to-cost value associated with the particular action.  This 

structure is then used to perform shortest path-type computations. The approach assumes the 

availability of a generic attack network template and an attacker profile, which is then used to 

customize the attack graph to the capabilities of the attacker.  There has been substantial research 

to expand this core idea in a number of publications, including improved methods for the 
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generation of attacks that are then integrated into these attack graphs as in Chen et al. (2009), Ou 

el al. (2006) and Sheyner et al. (2002), as well as research to integrate minimum cost hardening 

measures as in Wang et al. (2013) and Chen et al. (2008). In practice, the construction of these 

graphs is quite complicated and, in some applications, overwhelming. 

The second concept is attacker-defender models, which is an expansion of the types of 

attacks represented with attack graphs. This includes their extension to defender-attacker-

defender models and the application of those models to many different domains. For example, 

see Romero et al. (2012), Arroyo and Fernández (2009) and Salmeron et al. (2009) for 

applications to power systems. See Alderson et al. (2011), Reilly et al. (2012), Murry-Tuite and 

Fei (2010) and Jones et al. (2006) for applications focused on transportation infrastructure. 

Our mathematical model of interest has a defender-attacker structure for which we do not 

attempt to distill the path network representation down a priori into an attack graph. We use the 

probability of interruption given detection as the relevant measure of interest for the quality of 

the path from the perspective of the intruder. It is also one of the measures used to evaluate the 

performance of a collection of security investments. We develop a solution strategy for this 

model formulation using an extension of a label correcting algorithm and a global search 

technique. 

Risk analysis for physical protection of critical infrastructure or facilities typically 

includes consideration of threat, vulnerability, and consequence as defined by Rinaldi (2004). 

The initial version of this model is primarily focused on characterizing vulnerability of the 

system to a specific threat. We use probability of detection, probability of interruption, delay 

time, and response time as defined by Garcia (2007) as elements in our model.  

 

MODEL FORMULATION 
The attacker is an intruder whom we assume has perfect knowledge of the security 

measures. Their goal is to reach a specific target within the network and then exit without being 

intercepted (interrupted) by the protective force.  The defender is the operator of the security 

system and has a goal which can be represented by three objectives.  The first objective is to 

minimize the investment cost.  The second objective is to minimize the occurrence of nuisance 

and false alarms (NAR/FAR).  The third objective is to maximize the probability of interruption 

(Pint), which is the probability that an intruder is detected and interrupted by the protective force 

while traversing the network.  The last objective is accomplished by adding detection and delay 

elements to impede the progress of an intruder (e.g., fences, ditches, etc.) such that once 

detected, there is sufficient time for the protective force to intercept the intruder prior to them 

exiting the network.   

 More formally, we assume that there is a single origin-destination pair that is of interest.  

Let directional links be denoted by (i,j). Let 𝑧𝑟 be a binary decision variable that indicates 

whether path r has been selected from a specific origin point to the target of interest.  The goal of 

the intruder with a given security architecture is to minimize the probability that, if detected, they 

are intercepted by the protective force before leaving the system. To achieve this goal after being 

detected, the intruder must have a remaining travel time to exit which is less than the time 

needed by the protective force to respond. Explicitly, this can be represented as: 

 

 
𝑚𝑖𝑛
𝑧𝑟 ∑ 𝑔𝑟𝑧𝑟

𝑟       (1)  

Such that 
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∑ 𝑧𝑟
𝑟 = 1      (2) 

𝑧𝑟 ∈ {0,1}       ∀𝑟     (3) 

 

 

where 𝑔𝑟 is the probability that the time remaining in the path once detected exceeds the 

response time.  The method for calculating 𝑔𝑟 based on travel time and detection probability for 

each link is discussed in the Solution Methodology section below. 

In order to identify the trade-off frontier between the probability of interruption given 

detection, system cost, and the nuisance alarm rate we construct the following multi-objective 

defender-attacker model given in equations (4)-(11).   

 
𝑚𝑖𝑛
𝐼𝑖𝑗

𝑦 ∑ ∑ 𝑐𝑖𝑗
𝑦

𝐼𝑖𝑗
𝑦

𝑦𝑖𝑗       (4) 

 
𝑚𝑖𝑛
𝐼𝑖𝑗

𝑦 ∑ ∑ 𝐴𝑖𝑗
𝑦

𝐼𝑖𝑗
𝑦

𝑦𝑖𝑗       (5) 

 

   
𝑚𝑎𝑥

𝐼𝑖𝑗
𝑦  [ 

𝑚𝑖𝑛
𝑧𝑟 ∑ 𝑔𝑟𝑧𝑟

𝑟 ]      (6) 

 

Such that 

  ∑ 𝑧𝑟
𝑟 = 1       (7) 

  𝑧𝑟 ∈ {0,1}    ∀𝑟      (8) 

   𝐼𝑖𝑗
𝑦

∈ {0,1}    ∀(𝑖, 𝑗), 𝑦     (9) 

 

where 𝑐𝑖𝑗
𝑦

 is the cost of investment y on arc (i,j), 𝐴𝑖𝑗
𝑦

 is the nuisance alarm rate on arc (i,j) when 

investment y is made on arc (i,j), and 𝐼𝑖𝑗
𝑦

 is a binary decision variable that takes on a value of 1 if 

investment y is made on arc (i,j) and is zero otherwise.   

 
SOLUTION METHODOLOGY 

We developed a genetic algorithm to solve the formulation given in equations (4)-(9).  

Before describing that algorithm, we focus on the solution method to identify the optimal path 

for the intruder, given a fixed collection of security measures. This step constitutes a 

computationally efficient method to solve the formulation given in (1)-(3). This step is also an 

important element of the genetic algorithm. 

The computation of 𝑔𝑟 can be illustrated as follows. Consider the three link path given in 

Figure 1. The intruder must proceed from A, to B, to C and finally to D.  Assume the response 

time for the protective force is four minutes. The intruder could be detected on the first, second, 

or third link, or not at all. If they are detected on the third link (i.e., from C to D), there is 

insufficient time for the protective force to respond. But, if they are caught on the first or second 

links, there is sufficient time to respond. Hence, the coefficient g for this route is 0.25 + (1-

0.25)*0.5=0.625, which is the probability that they are interrupted given the probabilities of the 

two possible interruption scenarios:  they are detected on link A-B (0.25) or they are detected on 

link B-C (0.5) and not detected on link A-B (1-0.25). 
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Figure 1: Example of computation 𝒈𝒓, with travel time and detection probability shown for 

each link 

 

It is computationally inefficient to perform path enumeration to identify all the paths and 

then compute the values of 𝑔𝑟.  Rather, an algorithm that does this enumeration implicitly to 

identify the optimal route r is more computationally attractive. Hence, we develop a modification 

of Dijkstra’s algorithm, which is also a label correcting algorithm (LCA). For the remainder of 

this paper we simply refer to it as the LCA. 

Let {𝑁, 𝑍} be the directed graph where N is the set of nodes and Z is the set of links. Let 

𝛿𝑢
− be the set of links (𝑖, 𝑢) ∈ 𝑍, 𝑇𝑖𝑗 be the travel time of link (𝑖, 𝑗) ∈ 𝑍 and 𝐷𝑖𝑗 be the detection 

probability on the link. We assume that the detection probabilities are independent. Also, let 𝑇 be 

the required time to interrupt the intruder. Let 𝑎 be the origin and 𝑏 be the target. We define 

𝐼𝑖 = (𝐼𝑖1, 𝐼𝑖2) for each 𝑖 ∈ 𝑁, where 𝐼𝑖1 represents the shortest travel time from node 𝑖 to target  𝑏 

if the travel time is shorter than 𝑇, and 𝐼𝑖2 represents the probability that the intruder is 

interrupted when they are in node 𝑖. The objective for the intruder is to minimize 𝐼𝑎2.   The 

following algorithm is used to find the probability.     

 
1. Let 𝑆 ← 𝑏,  𝐼𝑏 = (0,0), 𝐶 = 𝜙, and 𝐼𝑖 = (𝑖𝑛𝑓, 1), 𝑖 ∈ 𝑁\{𝑏}. 

2. For 𝑢 ∈ 𝑆, if 𝑢 = 𝑎, then stop and report 𝐼𝑎2. Otherwise do the following: 

a. For each 𝑣 ∈ 𝛿𝑢
−, If 𝐼𝑢1 + 𝑇𝑣𝑢 < 𝐼𝑣1 and 𝐼𝑢1 + 𝑇𝑣𝑢 < 𝑇, then let 𝐼𝑣1 = 𝐼𝑢1 + 𝑇𝑣𝑢  

and 𝐼𝑣2 = 0.  

b. For each 𝑣 ∈ 𝛿𝑢
−, if 𝐼𝑢1 + 𝑇𝑣𝑢 ≥ 𝑇 and 𝐷𝑣𝑢 + (1 − 𝐷𝑣𝑢) ∗ 𝐼𝑢2 < 𝐼𝑣2, let 𝐼𝑣1 =

𝐼𝑢1 + 𝑇𝑣𝑢 and 𝐼𝑣2 = 𝐷𝑣𝑢 + (1 − 𝐷𝑣𝑢) ∗ 𝐼𝑢2. 

c. Find 𝑣∗ that minimizes 𝐼𝑣1 for 𝑣 ∈ 𝑁\𝐶 ∪ 𝑆. 

d. If 𝐼𝑣∗1 < 𝑇, then do the following:   

i. 𝑆 ← 𝑣∗. 

ii. Go to step 3. 

e. If  𝐼𝑣∗1 ≥ 𝑇, do the following: 

i. Find 𝑣∗∗ that minimizes 𝐼𝑣2 for 𝑣 ∈ 𝑁\𝐶 ∪ 𝑆. 

ii. 𝑆 ← 𝑣∗∗. 

iii. Go to step 3. 

3. Remove 𝑢 from 𝑆, 𝐶 = 𝐶 ∪ {𝑢} and go to step 2.  

The algorithm starts at the target node b and steps through the graph in reverse order (in 

practice the node b will be a dummy exit node from the system). The set S contains the next node 

to be explored by the algorithm. The set C is the set of nodes that have been permanently labeled 

with a final travel time and probability of interruption. All nodes except b are temporarily labeled 
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with infinite travel times and likelihoods of detection of 1.0. At each step of the algorithm, a 

node to explore (node u) is identified. The temporary label for each node v that has a link leading 

to node u is updated if necessary. If the travel time from node v to node b through node u is 

shorter than 𝑇 and the current travel time for node v, the travel time is set to the shorter travel 

time and the probability is set to zero for node v. For cases where the travel time from node v 

through node u exceeds T and the probability of detection is less than the current temporary 

label, the travel time and probability of detection are updated. This ensures that at each step of 

the algorithm each node is labeled with the values that correspond to the best known path for the 

intruder. Once each neighbor of node u has been explored, the next node to explore is identified. 

The current node and the permanently labeled nodes cannot be selected as the next node to 

explore. The node with the shortest travel time is explored next, unless the travel time is longer 

than T, in which case, the node with the lowest probability is considered next. The node that was 

just explored is added to the set of permanently labeled nodes. The algorithm is repeated until the 

next mode to consider is the origin node a. 

Figure 2 is an illustration of the algorithm where the response time is assumed to be six 

time units. The links have been labeled with a travel time and a probability of detection. The goal 

of the intruder is to get from a to b. 

 
Figure 𝟐: Illustrative security network 

 
We execute the algorithm from b to a (i.e., reverse direction) because our interest is only 

in computing the relevant interruption probability once a partial path exceeds the response time 

of the protective force.  Eight iterations are required in this example.  A node is labeled with a 

belief of how much time a partial path from that node to the target will require and an estimate of 

the probability they will be detected if intercepted using that partial path.  The first three 

iterations are as follows: 
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1. Node 9 has two neighbors:  nodes 6 and 8.  Each of these neighbors is given a new 

temporary label where the travel time is 3 for each, and the probability of interruption is 

zero, since the force response time of 6 is not exceeded for either partial path.   

2. Since nodes 6 and 8 are equally attractive at this point, we arbitrarily choose node 6 as 

the next node to expand from.  Node 6 has two neighbors:  nodes 3 and 5.  Each of these 

neighbors is given a new temporary label where the travel time is 5 for each, and the 

probability of interruption is zero, since the force response time of 6 is not exceeded for 

either partial path to node 9. 

3. Node 8 is then evaluated for its two neighbors:  nodes 5 and 7.  The temporary label 

previously given to node 5 (5,0%) is replaced by (4,0%) because it is better to use a path 

from node 5 to the target via node 8.  The new path requires only 4 units of time rather 

than 5 units of time given that neither of these partial paths has yet to accumulate any 

probability of interruption if detected.  Node 7 is labeled with a temporary label of 

(5,0%). 

After eight iterations, Figure 3 shows the final labeling of all nodes.  Labels that have 

been crossed out were updated during the procedure (and we suppress the initial labels of 

(𝑖𝑛𝑓, 1) for all nodes that are not the target for clarity).  In labels where the travel time is six or 

greater, that value has been labeled as “F” indicating that the force response time has been met 

starting with that node and moving to the target.  Node 2 is permanently labeled, and the 

question remains as to whether that partial path when extended to the origin is better than the one 

which has already been identified via node 4 because 3% < 2% * (1-4%) + 4%.  However, since 

(1-10%) * 3% + 10% > 2% * (1-4%) + 4%, the old label is not replaced.  At this point we can 

permanently label node 1, and the algorithm terminates.  The best path for the intruder is (1,4), 

(4,7), (7,8) and (8,9) with a probability that, after detection, the remainder of the path travel time 

exceeds 6 is 5.92%.   

 
Figure 3: The eighth iteration 
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Given the computational complexity of the investment problem, we develop a genetic 

algorithm (GA) to search the solution space.  This algorithm combines a GA with local search 

methods to create a set of Pareto optimal points similar to the techniques referenced in Konak et 

al. (2006) and Deb (2012).  The solution procedure is summarized in the following list and in 

Figure 4. 

 
1. Select security investments to apply: The decision regarding which investments to 

apply to which links drives this optimization. There are three objectives that must be 

simultaneously considered:  minimization of security investment cost, minimization of 

NAR/FAR, and maximization of the intruder’s probability of interruption.  The initial 

collection of solutions will be a completely random selection, which has a size on the 

order of a few thousand.  Each new collection of solutions is generated by the GA 

crossover/mutate process described in step 3. 

2. Determine the worst probability of interruption per solution:  This step is 

accomplished by selecting the “best” path from the perspective of the intruder, which is 

determined by the LCA described above. 

3. Crossover and Mutate: After the first iteration, genetic crossover is used to create each 

new generation of potential security investments based on preserving desirable objective 

characteristics, but also to allow random mutation to provide solution diversity.  The gene 

used for this algorithm is a vector of binary decision variables. Each entry in the vector is 

an ID which corresponds to a security investment of a specific type at a specific location 

within the network.  Note that multiple investment types can appear at the same location 

(e.g., a fence and a magnetic sensor).  By utilizing the biased parent selection criteria as 

described in Brown et al. (2013) and a region crossover procedure, each new pair of 

individuals is created via the genetic crossover of two parents which are relatively close 

to the Pareto frontier based on their fitness score.  The same variable rate mutation 

strategy employed in Brown et al. (2013) is used to counter the tendency for crossover to 

produce homogenous populations as described in Sait (1999). 

4. Exit Strategy:  The algorithm is run a fixed number of iterations. 
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Figure 4: Defender investment optimization  

 

The region crossover strategy referenced in Step 3 above is based on the idea that it is 

important to find synergies between investments on the same link and on neighboring links. This 

strategy makes use of the concept of a two-dimensional encoding strategy as described in 

Cohoon and Pairs (1987). The procedure is as follows: 

 

1. From one to four random two-dimensional regions within the network are selected, each 

ranging in size from 5% to 25% of the total network area, but not exceeding 85% of the 

total network area in aggregate. 

2. Investments from each parent strategy are collected based on their presence within the 

random regions.   

3. Each parent has a primary child which receives all of the parent’s investments outside of 

the region but none of the investments within the region. 

4. The investments within the region are then assigned such that each child receives those 

from its non-primary parent. 

Figure 5 gives a simple example of the region crossover strategy. In this scenario, there 

are only two types of investments that can be made at a location:  a fence (F) or security camera 

(SC).  The top half of the figure illustrates the investments at their physical locations for each of 

the parent solutions, P1 and P2.  The shaded areas indicate the regions to be swapped between 

the parent solutions.  C1 and C2 are the child investment strategies resulting from the crossover 

procedure.  C1 is the primary child of P1 and receives all of P1’s investments outside the region 

combined with all of P2’s investments within the region. Similarly, C2 is the primary child of P2 
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and receives all of P2’s investments outside the region and all of P1’s investments within the 

region.  

 

 
Figure 5: Region crossover  

 

A key part of this procedure is determining which solutions to retain after each crossover 

iteration based on their “fitness” to the overall goal.  An effective strategy is to construct a Pareto 

frontier with the initial population, which is updated during each crossover iteration, and to use 

the distance from the frontier as the fitness value for each solution.  A common distance metric is 

the Euclidean distance between the candidate solution and the closest solution on the frontier.  

For a three-dimensional objective, this calculation requires three subtraction operations, three 

multiplication operations, two additions, and a square root.  Since this calculation can become 

somewhat expensive as the sizes of both the frontier and candidate solutions grow, the algorithm 

is modified to instead use the taxicab (a.k.a. Manhattan) distance, as described by Krause (1987), 

which requires only three subtraction operations per solution pair.  By applying an appropriate 

normalization factor to each objective after each crossover iteration, it is possible to calculate the 

relative fitness values for each collection of solutions such that they mirror the results produced 

when using Euclidean distance.  The objective normalization factors are determined by 

calculating the average solution, which is composed of the average objective values across the 

frontier, and by setting the objective weights such that each objective contributes equally to the 

average solution. 

In addition to homogeneity, another side effect of the crossover procedure is that there 

tends to be a large number of investments in each child solution.  Since many of the investments 

do not improve the probability of interruption, Pint, it is useful to “clean” the solutions on the 

frontier by executing an iterative local search which examines each investment and removes it if 

Pint is not impacted.  This procedure has the additional benefit of reducing the investment cost 

and (typically) reducing NAR/FAR as well.  To increase the diversity of the solutions on the 

frontier, an additional procedure is performed on each solution which randomly decimates the 

remaining investments to produce solutions that have a lower, but still non-zero, Pint.  The final 

output of the overall optimization is a Pareto frontier which holds the final collection of solutions 

and avoids arbitrary weighting of the objectives to determine an aggregate value.  This technique 

allows a decision maker to select an investment strategy which satisfies their needs based on 

which objective(s) are most important to them. 

 

ILLUSTRATIVE EXAMPLE 
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 The following example uses notional data to demonstrate the type of analysis that can be 

performed using the tool. In order to allow analysts to interact with the model, a user interface 

was developed in Java and Python. The software allows users to create analysis scenarios, 

populate the input data, solve the model, and view the results. The notional example was created 

and analyzed through that interface. 

 This example assumes that an entirely new system is to be designed, rather than improving 

upon an existing design. There is a target (some high value asset) that the intruder wants to 

acquire and escape with. There are two buildings on site, but the target is not in either of the two 

buildings. For the purposes of this analysis, the buildings are treated as barriers that the intruder 

cannot pass through and the system owner can’t place security measures in or on. In this case, 

there is a single intruder, and the force response time is 45 seconds. 

 The security investments under consideration for this example include radar (R), fence (F), 

buried cable (BC), magnetic (Mag) sensor, microwave (Mic) sensor, and security camera (SC). 

The fence, buried cable, microwave sensor, and magnetic sensor investments can be applied on a 

per link basis. If radar is installed, it will cover a four link by four link (200 ft by 200 ft) area. 

Security cameras cover a two link by two link (100 ft by 100 ft) area directed away from the 

investment node location, to the north, northeast, east, or southeast of the node.  

Table 1 shows the cost, NAR/FAR, probability of detection, and delay time expected for each of 

the investments. Only the fence is considered to be a barrier that can increase delay time on 

affected links. The other investments are sensors and only impact the probability of detection on 

the link. For the purpose of this analysis, we allow any combination of investment types to 

appear at the same location.  
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Investment  10-Year Cost 

(Thousands) 

NAR/FAR Probability of 

Detection on 

Affected Links 

Delay 

(Seconds) on 

Affected Links 

Radar (R) 500 2 0.75 - 

Fence (F) 3 - - 30 

Buried Cable 

(BC) 

200 4 0.9 - 

Magnetic (Mag) 

Sensor 

20 2 0.8 - 

Microwave (Mic) 

Sensor 

30 2 0.9 - 

Security Camera 

(SC) 

90 2 0.8 - 

 

Table 1: Investment alternatives under consideration (notional data) 

 

 The model identifies a Pareto frontier of solutions. This allows the system owner to 

determine which solution balances system performance, NAR/FAR, and cost in a way that best 

meets their needs. The solutions for this example are presented in Table 2. 

 

Solution 10-Year Cost 

(Thousands) 

Probability of 

Interruption 

NAR/FAR 

A $1,256 1 210 

B $864 0.9998 144 

C $516 0.9990 72 

D $234 0.9951 24 

E $144 0.9900 8 

F $138 0.9000 8 

G $122 0.8000 8 

H $114 0.9600 16 

I $102 0.8000 16 

Figure 2: Solutions on the Pareto Frontier 

  

The system owner has the ability to view the detailed solution represented by each of the 

points on the Pareto frontier and to see where each investment was placed for that solution 

(shown in Figure 7 as a dark blue link label, with fences drawn in light blue). The solution grid 

also shows the entry and exit path with the lowest probability of interruption, highlighted in red. 

Figure 7 shows the highest cost/highest Pint solution on the frontier. 
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Figure 7: Highest cost and highest Probability of Interruption (Pint) 
 

Once these solutions have been provided, the system owner must decide what level of 

risk they are willing to accept, how much money they are willing to spend, and how much they 

are concerned with NAR/FAR versus cost and Pint. For example, solutions B and E in Table 2 

both provide a high level of protection, at 0.9998 and 0.9900 probability of interruption 

respectively. However, solution B is six times more expensive than solution E and has a 

significantly higher NAR/FAR. Policy and budget will affect the system owner’s decision. If 

they are required to have a Pint of at least 0.995, they would choose solution B. If the Pint 

provided by solution E is sufficient, they would likely choose that solution in order to save 

money and to avoid the increased nuisance and false alarms anticipated with solution B.  

 

CONCLUSIONS 

There have been several historical incidents that highlight a need for more effective 

security system design and operation to protect national security assets. There are many 

dimensions in the design space of a security system, including technology selection, alternative 

configurations, diverse threats, and budget considerations, making it effectively impossible to 

evaluate all permutations of potential system architectures.   

We have developed a game theoretic model to optimize the design of security systems 

which explicitly includes opportunities to layer security barriers and the performance of a range 

of different technologies based on how they are to be deployed.  The model also includes the 

ability to consider budget limitations and the impact of false alarms on system performance.  We 

demonstrated this model on a realistic but notional problem instance. 

 There are at least three extensions to this model that would be useful. First, the performance 

of many security technologies varies based on weather conditions.  Simply using average values 

for the detection probability, the time required to overcome each barrier, and the NAR/FAR 
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could be misleading. For this reason, some sensors are actually complementary rather than 

substitutes (as they might appear in this analysis).  One method to include this in the model is to 

create a stochastic program for which the scenarios represent different weather and lighting 

conditions.  With this type of approach, it may be important to maximize the minimum 

effectiveness of the system, where the effectiveness is measured across the different weather and 

lighting conditions.  Second, different intruders have different capabilities. It is likely useful to 

include some representation of the capability of the intruders, both in skills as well as tools they 

might be able to carry, and therefore some explicit consideration of how they might use those 

items to decrease the effectiveness of the security system.  Finally, this model focuses on a single 

group of intruders on the same path. There are likely to be scenarios for attacks that involve 

subsets of individuals synergistically working together to achieve their goal, and therefore 

intrusions that each require multiple paths. 
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