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ABSTRACT

Identifying an optimal design for a physical security system is critical to mission
performance. Historically, analyses of security systems have been performed using directed
graph and path analysis tools like adversary sequence diagrams/attack graphs. However, there
are many dimensions in the design space of a security system, including the selection of
technologies, alternative locations/configurations, different threats, cost limitations, and impacts
from false alarms. The multiple dimensions of this problem make it effectively impossible to
evaluate all permutations of potential system architectures. In practice, the individuals
configuring the system drive the examination of a small subset of candidate architectures. This
type of process is likely to lead to suboptimal decisions. There have been several historical
incidents that highlight a need for a more effective security system design process to protect
national security assets.

To address this need, we have developed a game theoretic model to optimize the design
of security systems which explicitly includes opportunities to layer security barriers and the
performance of a range of different technologies based on how they are to be deployed. The
model also includes the ability to consider budget limitations and the impact of false alarms on
system performance. We demonstrate this model on a realistic problem instance.
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INTRODUCTION

On July 28, 2012, three trespassers cut through security fences and reached the exterior of
the Highly Enriched Uranium Materials Facility (HEUMF) at the Y-12 National Security
Complex in Oak Ridge, Tennessee. This site is one of four production facilities in the Nuclear
Security Enterprise. According to a report by the U.S. Department of Energy Office of the
Inspector General (2012), the trespassers vandalized the building and were able to get through
several layers of fencing before being physically observed and interrupted by security forces
(U.S. Department of Energy, Office of Inspector General, Office of Audits and Inspections,
2012). This was a defeat of what was believed to be a highly reliable, layered security system.
Issues cited by the Department of Energy (DOE) inquiry into the incident included poor response
to alarms, failures to maintain critical security equipment, over-reliance on compensatory
measures, misunderstanding of protocols, and miscommunication. Similar incidents have
occurred in the past at facilities protecting high value assets.

The configuration of layered security measures is at the center of efforts to protect a
range of systems, from high-value facilities to large-scale infrastructures. The research described
here is part of a Laboratory Directed Research and Development (LDRD) Project at Sandia
National Laboratories (Sandia) and was motivated in part by the Y-12 incident. The incident
highlighted an ongoing need for innovative approaches to security system design. Sandia has a
long history of providing technology and systems solutions to design, develop, test, and
implement physical security technologies and systems to protect nuclear weapons and other high
value assets and facilities. Mathematical modeling and complex systems analysis expertise at the
laboratory, leveraging subject matter expertise from the physical security program, supported
this research path.

Historically, analyses of security systems have been performed using directed graph and
path analysis tools like Adversary Sequence Diagrams. However, there are many dimensions in
the design space of a security system, including the selection of technologies, alternative
locations/configurations, different threats, and competing cost limitations. The multiple
dimensions of this problem make it effectively impossible to evaluate all permutations of
potential system architectures. The experience of the individuals configuring the system drives
the careful examination of a small subset of architectures.

The goal for this research effort is the creation of a consistent and robust mathematical
framework using complex systems analysis algorithms and techniques to better understand the
emergent behavior, vulnerabilities, and resiliency of layered security systems, subject to budget
constraints and competing security priorities.

LITERATURE REVIEW

There are two ideas in the literature that are of particular relevance to this research. The
first concept is attack graphs. Phillips and Swiler (1998) first defined attack graphs as a
convenient mechanism to integrate the path choices facing an intruder attempting to reach a
target. An edge represents a change in state in the system caused by a single action, and a node
represents a possible state of the attack. The weights on the edges are the probabilities of success,
the cost of the action, or some benefit-to-cost value associated with the particular action. This
structure is then used to perform shortest path-type computations. The approach assumes the
availability of a generic attack network template and an attacker profile, which is then used to
customize the attack graph to the capabilities of the attacker. There has been substantial research
to expand this core idea in a number of publications, including improved methods for the
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generation of attacks that are then integrated into these attack graphs as in Chen et al. (2009), Ou
el al. (2006) and Sheyner et al. (2002), as well as research to integrate minimum cost hardening
measures as in Wang et al. (2013) and Chen et al. (2008). In practice, the construction of these
graphs is quite complicated and, in some applications, overwhelming.

The second concept is attacker-defender models, which is an expansion of the types of
attacks represented with attack graphs. This includes their extension to defender-attacker-
defender models and the application of those models to many different domains. For example,
see Romero et al. (2012), Arroyo and Fernandez (2009) and Salmeron et al. (2009) for
applications to power systems. See Alderson et al. (2011), Reilly et al. (2012), Murry-Tuite and
Fei (2010) and Jones et al. (2006) for applications focused on transportation infrastructure.

Our mathematical model of interest has a defender-attacker structure for which we do not
attempt to distill the path network representation down a priori into an attack graph. We use the
probability of interruption given detection as the relevant measure of interest for the quality of
the path from the perspective of the intruder. It is also one of the measures used to evaluate the
performance of a collection of security investments. We develop a solution strategy for this
model formulation using an extension of a label correcting algorithm and a global search
technique.

Risk analysis for physical protection of critical infrastructure or facilities typically
includes consideration of threat, vulnerability, and consequence as defined by Rinaldi (2004).
The initial version of this model is primarily focused on characterizing vulnerability of the
system to a specific threat. We use probability of detection, probability of interruption, delay
time, and response time as defined by Garcia (2007) as elements in our model.

MODEL FORMULATION

The attacker is an intruder whom we assume has perfect knowledge of the security
measures. Their goal is to reach a specific target within the network and then exit without being
intercepted (interrupted) by the protective force. The defender is the operator of the security
system and has a goal which can be represented by three objectives. The first objective is to
minimize the investment cost. The second objective is to minimize the occurrence of nuisance
and false alarms (NAR/FAR). The third objective is to maximize the probability of interruption
(Pint), which is the probability that an intruder is detected and interrupted by the protective force
while traversing the network. The last objective is accomplished by adding detection and delay
elements to impede the progress of an intruder (e.g., fences, ditches, etc.) such that once
detected, there is sufficient time for the protective force to intercept the intruder prior to them
exiting the network.

More formally, we assume that there is a single origin-destination pair that is of interest.
Let directional links be denoted by (i,j). Let z" be a binary decision variable that indicates
whether path r has been selected from a specific origin point to the target of interest. The goal of
the intruder with a given security architecture is to minimize the probability that, if detected, they
are intercepted by the protective force before leaving the system. To achieve this goal after being
detected, the intruder must have a remaining travel time to exit which is less than the time
needed by the protective force to respond. Explicitly, this can be represented as:

e (1)
Such that
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where g” is the probability that the time remaining in the path once detected exceeds the
response time. The method for calculating g” based on travel time and detection probability for
each link is discussed in the Solution Methodology section below.

In order to identify the trade-off frontier between the probability of interruption given
detection, system cost, and the nuisance alarm rate we construct the following multi-objective
defender-attacker model given in equations (4)-(11).

min

min

max min .

[ ey ©)

Such that

Yrzl =1 (7)
z" €{0,1} Vvr (8)
[ e{01} vy ©)

where cl?;. is the cost of investment y on arc (i,)), Aiyj is the nuisance alarm rate on arc (i,j) when
investment y is made on arc (i,j), and 15. is a binary decision variable that takes on a value of 1 if
investment y is made on arc (i,j) and is zero otherwise.

SOLUTION METHODOLOGY

We developed a genetic algorithm to solve the formulation given in equations (4)-(9).
Before describing that algorithm, we focus on the solution method to identify the optimal path
for the intruder, given a fixed collection of security measures. This step constitutes a
computationally efficient method to solve the formulation given in (1)-(3). This step is also an
important element of the genetic algorithm.

The computation of g" can be illustrated as follows. Consider the three link path given in
Figure 1. The intruder must proceed from A, to B, to C and finally to D. Assume the response
time for the protective force is four minutes. The intruder could be detected on the first, second,
or third link, or not at all. If they are detected on the third link (i.e., from C to D), there is
insufficient time for the protective force to respond. But, if they are caught on the first or second
links, there is sufficient time to respond. Hence, the coefficient g for this route is 0.25 + (1-
0.25)*0.5=0.625, which is the probability that they are interrupted given the probabilities of the
two possible interruption scenarios: they are detected on link A-B (0.25) or they are detected on
link B-C (0.5) and not detected on link A-B (1-0.25).
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Figure 1: Example of computation g", with travel time and detection probability shown for
each link

It is computationally inefficient to perform path enumeration to identify all the paths and
then compute the values of g”. Rather, an algorithm that does this enumeration implicitly to
identify the optimal route r is more computationally attractive. Hence, we develop a modification
of Dijkstra’s algorithm, which is also a label correcting algorithm (LCA). For the remainder of
this paper we simply refer to it as the LCA.

Let {N, Z} be the directed graph where N is the set of nodes and Z is the set of links. Let
&, be the set of links (i,u) € Z, T;; be the travel time of link (i,/) € Z and D;; be the detection
probability on the link. We assume that the detection probabilities are independent. Also, let T be
the required time to interrupt the intruder. Let a be the origin and b be the target. We define
I; = (I;1,1;,) for each i € N, where I;; represents the shortest travel time from node i to target b
if the travel time is shorter than T, and I;, represents the probability that the intruder is
interrupted when they are in node i. The objective for the intruder is to minimize I,,. The
following algorithm is used to find the probability.

1. LetS« b, I, = (0,0),C = ¢,and I; = (inf, 1), i € N\{b}.
2. Foru €S, if u = a, then stop and report I,,. Otherwise do the following:
a. Foreachved, Ifl;+T,, <Il,andl,; +T,, <T,thenletl,, =1, + Ty
and I,, = 0.
b. Foreachv € 6,,ifI; + T,y =T and D, + (1 — Dyy) * L, < I, let I,; =
Lyy + Tyy and Ly = Dyy + (1 — Dyy) * Iz
c. Find v* that minimizes I,,; forv € N\C U S.
d. If I,-; < T, then do the following:
i. S<v.
ii. Gotostep 3.
e. If I, =T, do the following:
i. Find v** that minimizes I,,, forv € N\C U S.
ii. Sev™.
iii. Go to step 3.
3. Remove u from S, C = C U {u} and go to step 2.

The algorithm starts at the target node b and steps through the graph in reverse order (in
practice the node b will be a dummy exit node from the system). The set S contains the next node
to be explored by the algorithm. The set C is the set of nodes that have been permanently labeled
with a final travel time and probability of interruption. All nodes except b are temporarily labeled
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with infinite travel times and likelihoods of detection of 1.0. At each step of the algorithm, a
node to explore (node u) is identified. The temporary label for each node v that has a link leading
to node u is updated if necessary. If the travel time from node v to node b through node u is
shorter than T and the current travel time for node v, the travel time is set to the shorter travel
time and the probability is set to zero for node v. For cases where the travel time from node v
through node u exceeds T and the probability of detection is less than the current temporary
label, the travel time and probability of detection are updated. This ensures that at each step of
the algorithm each node is labeled with the values that correspond to the best known path for the
intruder. Once each neighbor of node u has been explored, the next node to explore is identified.
The current node and the permanently labeled nodes cannot be selected as the next node to
explore. The node with the shortest travel time is explored next, unless the travel time is longer
than T, in which case, the node with the lowest probability is considered next. The node that was
just explored is added to the set of permanently labeled nodes. The algorithm is repeated until the
next mode to consider is the origin node a.

Figure 2 is an illustration of the algorithm where the response time is assumed to be six
time units. The links have been labeled with a travel time and a probability of detection. The goal
of the intruder is to get from a to b.

RN
6,4%

1,2% l
° 2,1%

Figure 2: Illustrative security network

1,2% J/

We execute the algorithm from b to a (i.e., reverse direction) because our interest is only
in computing the relevant interruption probability once a partial path exceeds the response time
of the protective force. Eight iterations are required in this example. A node is labeled with a
belief of how much time a partial path from that node to the target will require and an estimate of
the probability they will be detected if intercepted using that partial path. The first three
iterations are as follows:
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1. Node 9 has two neighbors: nodes 6 and 8. Each of these neighbors is given a new
temporary label where the travel time is 3 for each, and the probability of interruption is
zero, since the force response time of 6 is not exceeded for either partial path.

2. Since nodes 6 and 8 are equally attractive at this point, we arbitrarily choose node 6 as
the next node to expand from. Node 6 has two neighbors: nodes 3 and 5. Each of these
neighbors is given a new temporary label where the travel time is 5 for each, and the
probability of interruption is zero, since the force response time of 6 is not exceeded for
either partial path to node 9.

3. Node 8 is then evaluated for its two neighbors: nodes 5 and 7. The temporary label
previously given to node 5 (5,0%) is replaced by (4,0%) because it is better to use a path
from node 5 to the target via node 8. The new path requires only 4 units of time rather
than 5 units of time given that neither of these partial paths has yet to accumulate any
probability of interruption if detected. Node 7 is labeled with a temporary label of
(5,0%).

After eight iterations, Figure 3 shows the final labeling of all nodes. Labels that have
been crossed out were updated during the procedure (and we suppress the initial labels of
(inf, 1) for all nodes that are not the target for clarity). In labels where the travel time is six or
greater, that value has been labeled as “F” indicating that the force response time has been met
starting with that node and moving to the target. Node 2 is permanently labeled, and the
question remains as to whether that partial path when extended to the origin is better than the one
which has already been identified via node 4 because 3% < 2% * (1-4%) + 4%. However, since
(1-10%) * 3% + 10% > 2% * (1-4%) + 4%, the old label is not replaced. At this point we can
permanently label node 1, and the algorithm terminates. The best path for the intruder is (1,4),
4,7, (7,8) and (8,9) with a probability that, after detection, the remainder of the path travel time

exceeds 6 is 5.92%.
- ° %
2,4%

a._ (F,3%)

F,(1-4%)2%+4% |

—F{1-10%)3%+10%
6,4% |
3,6% %
(F,2%) o S e (3,0%)
| 5, 0%
1,2% 1,2% {4 0%) 3,5%
(5,0%) (3,0%)

Figure 3: The eighth iteration
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Given the computational complexity of the investment problem, we develop a genetic
algorithm (GA) to search the solution space. This algorithm combines a GA with local search
methods to create a set of Pareto optimal points similar to the techniques referenced in Konak et
al. (2006) and Deb (2012). The solution procedure is summarized in the following list and in
Figure 4.

1. Select security investments to apply: The decision regarding which investments to
apply to which links drives this optimization. There are three objectives that must be
simultaneously considered: minimization of security investment cost, minimization of
NAR/FAR, and maximization of the intruder’s probability of interruption. The initial
collection of solutions will be a completely random selection, which has a size on the
order of a few thousand. Each new collection of solutions is generated by the GA
crossover/mutate process described in step 3.

2. Determine the worst probability of interruption per solution: This step is
accomplished by selecting the “best” path from the perspective of the intruder, which is
determined by the LCA described above.

3. Crossover and Mutate: After the first iteration, genetic crossover is used to create each
new generation of potential security investments based on preserving desirable objective
characteristics, but also to allow random mutation to provide solution diversity. The gene
used for this algorithm is a vector of binary decision variables. Each entry in the vector is
an ID which corresponds to a security investment of a specific type at a specific location
within the network. Note that multiple investment types can appear at the same location
(e.g., a fence and a magnetic sensor). By utilizing the biased parent selection criteria as
described in Brown et al. (2013) and a region crossover procedure, each new pair of
individuals is created via the genetic crossover of two parents which are relatively close
to the Pareto frontier based on their fitness score. The same variable rate mutation
strategy employed in Brown et al. (2013) is used to counter the tendency for crossover to
produce homogenous populations as described in Sait (1999).

4. Exit Strategy: The algorithm is run a fixed number of iterations.
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Figure 4: Defender investment optimization

The region crossover strategy referenced in Step 3 above is based on the idea that it is
important to find synergies between investments on the same link and on neighboring links. This
strategy makes use of the concept of a two-dimensional encoding strategy as described in
Cohoon and Pairs (1987). The procedure is as follows:

1. From one to four random two-dimensional regions within the network are selected, each
ranging in size from 5% to 25% of the total network area, but not exceeding 85% of the
total network area in aggregate.

2. Investments from each parent strategy are collected based on their presence within the
random regions.

3. Each parent has a primary child which receives all of the parent’s investments outside of
the region but none of the investments within the region.

4. The investments within the region are then assigned such that each child receives those
from its non-primary parent.

Figure 5 gives a simple example of the region crossover strategy. In this scenario, there
are only two types of investments that can be made at a location: a fence (F) or security camera
(SC). The top half of the figure illustrates the investments at their physical locations for each of
the parent solutions, P1 and P2. The shaded areas indicate the regions to be swapped between
the parent solutions. C1 and C2 are the child investment strategies resulting from the crossover
procedure. C1 is the primary child of P1 and receives all of P1’s investments outside the region
combined with all of P2’s investments within the region. Similarly, C2 is the primary child of P2
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and receives all of P2’s investments outside the region and all of P1’s investments within the
region.

F F,SC -- F F,SC - SC F

N . . - = . ——

F,SC - | °F - F,SC FoL SC

F 1 - SC - - 1 F

F F,SC - F F,SC -- SC F

F,SC -- I = sC F,SC F 1 F

F | F = - — SC

Figure 5: Region crossover

A key part of this procedure is determining which solutions to retain after each crossover
iteration based on their “fitness” to the overall goal. An effective strategy is to construct a Pareto
frontier with the initial population, which is updated during each crossover iteration, and to use
the distance from the frontier as the fitness value for each solution. A common distance metric is
the Euclidean distance between the candidate solution and the closest solution on the frontier.
For a three-dimensional objective, this calculation requires three subtraction operations, three
multiplication operations, two additions, and a square root. Since this calculation can become
somewhat expensive as the sizes of both the frontier and candidate solutions grow, the algorithm
is modified to instead use the taxicab (a.k.a. Manhattan) distance, as described by Krause (1987),
which requires only three subtraction operations per solution pair. By applying an appropriate
normalization factor to each objective after each crossover iteration, it is possible to calculate the
relative fitness values for each collection of solutions such that they mirror the results produced
when using Euclidean distance. The objective normalization factors are determined by
calculating the average solution, which is composed of the average objective values across the
frontier, and by setting the objective weights such that each objective contributes equally to the
average solution.

In addition to homogeneity, another side effect of the crossover procedure is that there
tends to be a large number of investments in each child solution. Since many of the investments
do not improve the probability of interruption, Py, it is useful to “clean” the solutions on the
frontier by executing an iterative local search which examines each investment and removes it if
Pint is not impacted. This procedure has the additional benefit of reducing the investment cost
and (typically) reducing NAR/FAR as well. To increase the diversity of the solutions on the
frontier, an additional procedure is performed on each solution which randomly decimates the
remaining investments to produce solutions that have a lower, but still non-zero, Piy. The final
output of the overall optimization is a Pareto frontier which holds the final collection of solutions
and avoids arbitrary weighting of the objectives to determine an aggregate value. This technique
allows a decision maker to select an investment strategy which satisfies their needs based on
which objective(s) are most important to them.

ILLUSTRATIVE EXAMPLE
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The following example uses notional data to demonstrate the type of analysis that can be
performed using the tool. In order to allow analysts to interact with the model, a user interface
was developed in Java and Python. The software allows users to create analysis scenarios,
populate the input data, solve the model, and view the results. The notional example was created
and analyzed through that interface.

This example assumes that an entirely new system is to be designed, rather than improving
upon an existing design. There is a target (some high value asset) that the intruder wants to
acquire and escape with. There are two buildings on site, but the target is not in either of the two
buildings. For the purposes of this analysis, the buildings are treated as barriers that the intruder
cannot pass through and the system owner can’t place security measures in or on. In this case,
there is a single intruder, and the force response time is 45 seconds.

The security investments under consideration for this example include radar (R), fence (F),

buried cable (BC), magnetic (Mag) sensor, microwave (Mic) sensor, and security camera (SC).
The fence, buried cable, microwave sensor, and magnetic sensor investments can be applied on a
per link basis. If radar is installed, it will cover a four link by four link (200 ft by 200 ft) area.
Security cameras cover a two link by two link (100 ft by 100 ft) area directed away from the
investment node location, to the north, northeast, east, or southeast of the node.
Table 1 shows the cost, NAR/FAR, probability of detection, and delay time expected for each of
the investments. Only the fence is considered to be a barrier that can increase delay time on
affected links. The other investments are sensors and only impact the probability of detection on
the link. For the purpose of this analysis, we allow any combination of investment types to
appear at the same location.
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Investment 10-Year Cost NAR/FAR Probability of Delay
(Thousands) Detection on (Seconds) on
Affected Links | Affected Links
Radar (R) 500 2 0.75 -
Fence (F) 3 - - 30
Buried Cable 200 4 0.9 -
(BC)
Magnetic (Mag) 20 2 0.8 -
Sensor
Microwave (Mic) 30 2 0.9 -
Sensor
Security Camera 90 2 0.8 -
(SC)

Table 1:

Investment alternatives under consideration (notional data)

The model identifies a Pareto frontier of solutions. This allows the system owner to
determine which solution balances system performance, NAR/FAR, and cost in a way that best
meets their needs. The solutions for this example are presented in Table 2.

Solution 10-Year Cost Probability of NAR/FAR
(Thousands) Interruption
A $1,256 1 210
B $864 0.9998 144
C $516 0.9990 72
D $234 0.9951 24
E $144 0.9900 8
F $138 0.9000 8
G $122 0.8000 8
H $114 0.9600 16
I $102 0.8000 16

Figure 2: Solutions on the Pareto Frontier

The system owner has the ability to view the detailed solution represented by each of the
points on the Pareto frontier and to see where each investment was placed for that solution
(shown in Figure 7 as a dark blue link label, with fences drawn in light blue). The solution grid
also shows the entry and exit path with the lowest probability of interruption, highlighted in red.
Figure 7 shows the highest cost/highest P, solution on the frontier.
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Figure 7: Highest cost and highest Probability of Interruption (Pin;)

Once these solutions have been provided, the system owner must decide what level of
risk they are willing to accept, how much money they are willing to spend, and how much they
are concerned with NAR/FAR versus cost and Pjy. For example, solutions B and E in Table 2
both provide a high level of protection, at 0.9998 and 0.9900 probability of interruption
respectively. However, solution B is six times more expensive than solution E and has a
significantly higher NAR/FAR. Policy and budget will affect the system owner’s decision. If
they are required to have a Pj, of at least 0.995, they would choose solution B. If the Pjy
provided by solution E is sufficient, they would likely choose that solution in order to save
money and to avoid the increased nuisance and false alarms anticipated with solution B.

CONCLUSIONS

There have been several historical incidents that highlight a need for more effective
security system design and operation to protect national security assets. There are many
dimensions in the design space of a security system, including technology selection, alternative
configurations, diverse threats, and budget considerations, making it effectively impossible to
evaluate all permutations of potential system architectures.

We have developed a game theoretic model to optimize the design of security systems
which explicitly includes opportunities to layer security barriers and the performance of a range
of different technologies based on how they are to be deployed. The model also includes the
ability to consider budget limitations and the impact of false alarms on system performance. We
demonstrated this model on a realistic but notional problem instance.

There are at least three extensions to this model that would be useful. First, the performance
of many security technologies varies based on weather conditions. Simply using average values
for the detection probability, the time required to overcome each barrier, and the NAR/FAR
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could be misleading. For this reason, some sensors are actually complementary rather than
substitutes (as they might appear in this analysis). One method to include this in the model is to
create a stochastic program for which the scenarios represent different weather and lighting
conditions. With this type of approach, it may be important to maximize the minimum
effectiveness of the system, where the effectiveness is measured across the different weather and
lighting conditions. Second, different intruders have different capabilities. It is likely useful to
include some representation of the capability of the intruders, both in skills as well as tools they
might be able to carry, and therefore some explicit consideration of how they might use those
items to decrease the effectiveness of the security system. Finally, this model focuses on a single
group of intruders on the same path. There are likely to be scenarios for attacks that involve
subsets of individuals synergistically working together to achieve their goal, and therefore
intrusions that each require multiple paths.
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