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Abstract

Active control of the toroidal current density profile is critical for the upgraded National Spherical Torus eXperiment device
(NSTX-U) to maintain operation at the desired high-performance, MHD-stable, plasma regime. Initial efforts towards current
density profile control have led to the development of a control-oriented, physics-based, plasma-response model, which combines
the magnetic diffusion equation with empirical correlations for the kinetic profiles and the non-inductive current sources. The de-
veloped control-oriented model has been successfully tailored to the NSTX-U geometry and actuators. Moreover, a series of efforts
have been made towards the design of model-based controllers, including a linear-quadratic-integral optimal control strategy that
can regulate the current density profile around a prescribed target profile while rejecting disturbances. In this work, the tracking
performance of the proposed current-profile optimal controller is tested in numerical simulations based on the physics-oriented code
TRANSP. These high-fidelity closed-loop simulations, which are a critical step before experimental implementation and testing,
are enabled by a flexible framework recently developed to perform feedback control design and simulation in TRANSP.
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1. Introduction

The National Spherical Torus eXperiment-Upgrade
(NSTX-U) [1] is located in Princeton Plasma Physics
Laboratory (PPPL) in the USA. Compared to the former NSTX
device, it has significantly higher toroidal field and solenoid
capabilities, and three additional neutral beam sources with
significantly larger current-drive efficiency [2]. The main
mission of the NSTX-U research program is to establish the
physics basis for the compact spherical tokamak (ST) as a
candidate for a Fusion Nuclear Science Facility (FNSF), which
is a critical major next step in the US fusion program [3]. At
the same time, the unique operating regimes of NSTX-U can
contribute to several important issues in the physics of burning
plasmas to optimize the performance of ITER [3].

Having the capability of consistently setting up a suitable
current density profile is a key step towards achieving the de-
sired advanced-tokamak operating regime in NSTX-U, which
is characterized by the the non-inductive sustainment of high-
β , high-performance, equilibrium scenarios with neutral beam
heating and longer pulse durations [2]. As a first step to-
wards active current-profile control in NSTX-U, a so-called
first-principles-driven (FPD) plasma response model has been
proposed by combining a first-principles equation like the mag-
netic diffusion equation with empirical correlations for the elec-
tron density, electron temperature, plasma resistivity, and non-
inductive current sources [4]. After tailoring the proposed
FPD model to the NSTX-U geometry and actuators, it is in-
corporated into the control design process to produce a linear-
quadratic-integral optimal controller that can track a prescribed
current-profile target while dealing with model uncertainties

and rejecting external disturbances. In addition to electron den-
sity and total plasma current, which are in turn regulated by
dedicated controllers, auxiliary heating/current-drive sources
(i.e., the six neutral beam injectors available after the upgrade)
are used as actuators to shape the current profile in NSTX-U.

Due to the highly complex physical behavior of tokamak
plasmas, controllers tested in simulations based on control-
oriented models might fail to satisfy the desired performance
criteria when directly tested on the real device. For this reason,
a more physics-oriented simulation stage is proposed in this
work before actually implementing the controller in NSTX-U.
Therefore, the effectiveness of the proposed controller in regu-
lating the current profile in NSTX-U is demonstrated through
closed-loop nonlinear simulations based on the high-fidelity
physics-oriented code, TRANSP [5], using the recently devel-
oped flexible framework for control testing [6].

2. Rotational Transform Profile Evolution Model

In a tokamak plasma, points of constant magnetic flux form
nested concentric surfaces as depicted in Fig. 1. In principle,
magnetic flux surfaces can be associated with any quantity that
stays constant on these surfaces. It is convenient to choose
the mean effective minor radius of the flux surfaces as an in-
dex variable, as it relates to the toroidal magnetic flux Φ as
Φ = πBφ ,0ρ2, where Bφ ,0 is the toroidal magnetic field at the
geometric major radius R0 of the tokamak. To make this index
variable non-dimensional, the normalized mean effective mi-
nor radius can be defined as ρ̂ = ρ/ρb, where ρb is the mean
effective minor radius of the last closed flux surface as shown
in Fig. 1.
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Figure 1: Magnetic flux surfaces in a tokamak. The helical magnetic field (~B)
in a tokamak plasma is composed of toroidal (~Bφ ) and poloidal (~Bθ ) fields.

The toroidal current density in the tokamak can be written as

jφ (ρ̂, t) =−
1
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b R0Ĥ
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where µ0 is the permeability of the free space, Ĝ, Ĥ are geo-
metrical factors associated with the plasma equilibrium, and ψ

is the poloidal stream function, which is related to the poloidal
magnetic flux Ψ as Ψ = 2πψ [7]. The rotational transform ι ,
which is the inverse of the safety factor q, is further related to
the poloidal stream function gradient profile, ∂ψ/∂ ρ̂ , as

ι(ρ̂, t) =−dΨ

dΦ
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It is evident from (1) and (2) that the toroidal current density
( jφ ), rotational transform (ι), and poloidal flux (Ψ) could be
used interchangeably for current-profile control design.

The control-oriented partial-differential-equation (PDE),
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with boundary conditions ∂ψ/∂ ρ̂
∣∣
ρ̂=0 = 0, ∂ψ/∂ ρ̂

∣∣
ρ̂=1 =

−kIpuIp , has been proposed to model the evolution of the ψ pro-
file [4] as a control-oriented version of the magnetic diffusion
equation (MDE). The spatial functions Dψ , fη , fi, fbs, and kIp

can be expressed in terms of the various reference profiles and
constants used in the scenario-specific, equilibrium-dependent,
control-oriented models developed for the electron density and
temperature profiles, the noninductive current sources, and the
plasma resistivity in NSTX-U [4]. The model used for con-
trol synthesis makes the simplifying assumption that the mag-
netic geometry is fixed in time, which makes these spatial
functions constant over time. Equation (3) admits diffusiv-
ity (uη ), interior (ui, ubs) and boundary (uIp ) control terms,
where each of them represents nonlinear combinations of the
physical actuators, u = [n̄e,P1,P2,P3,P4,P5,P6, Ip] ∈ R8×1, and
can be defined as uη(t)=un(t)3/2 Ip(t)−3/2 Ptot(t)−3/4, ui(t)=
Pi(t)Ip(t)−1Ptot(t)−1/2, ubs(t) = un(t)3/2 Ip(t)−1/2 Ptot(t)−1/4,
and uIp(t) = Ip(t), where Ip is the total plasma current, Pi
is the individual neutral beam injector powers (i = 1, ...6),
Ptot(t) =

∑6
i=1 Pi(t) , n̄e is the line-averaged electron density,

and un = n̄e/n̄re f
e , where n̄re f

e is the reference profile used in the
simplified model for the line-averaged electron density [4].

As the rotational transform ι depends on the poloidal mag-
netic flux gradient profile, we define θ(ρ̂, t), ∂ψ/∂ ρ̂ , and by

differentiating (3) with respect to ρ̂ , the PDE governing the evo-
lution of θ(ρ̂, t) can be written as
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with boundary conditions θ
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ρ̂=0 = 0, θ

∣∣
ρ̂=1 = −kIpuIp , where

(.)′ = ∂/∂ ρ̂ for simplicity, and the spatial functions h0,h1,h2
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2.1. Model Reduction via Spatial Discretization
To facilitate control design, the governing PDE (4) is dis-

cretized in space, leaving the time domain continuous. The non-
dimensional spatial domain ρ̂ ∈ [0, 1] is divided into l nodes,
hence, the radial grid size becomes ∆ρ̂ = 1/(l− 1). After ap-
plying the finite difference approximations to the spatial deriva-
tives, the discrete form of (4) yields a set of nonlinear ODEs

θ̇ = g(θ ,u), (5)

where θ = [θ2,θ3, ....,θn]
T ∈ Rn×1 is the state vector (n = l−

2), θi is the discrete values of the θ -profile at each inner node,
u ∈ R8×1 is the already defined vector of physical actuators,
g∈Rn×1 is a nonlinear function of the system inputs and states.

2.2. Model Linearization
Let ur(t) and θr(t) define a set of reference trajectories for

the physical actuators and the system states satisfying the non-
linear, reduced-order model (5), i.e.,

θ̇r = g(θr,ur). (6)

A model suitable for tracking control design can be obtained
by defining the perturbation variables ∆θ(t) = θ(t)−θr(t) and
∆u(t) = u(t)− ur(t), where ∆θ(t) is the deviation away from
the reference state trajectory and ∆u(t) is the to-be-designed
feedback control law. By using (6) and a first-order Taylor se-
ries expansion of g in (5) around θr and ur, it is possible to
obtain the approximate linear time-variant (LTV) model

∆θ̇(t)≈ ∂g
∂θ

∣∣∣∣
θr(t),ur(t)

∆θ(t)+
∂g
∂u

∣∣∣∣
θr(t),ur(t)

∆u(t) , (7)

where ∂g/∂θ ∈ Rn×n and ∂g/∂u ∈ Rn×8 are the system Jaco-
bians. After the initial ramp-up phase of the plasma discharge,
ur and θr remain approximately constant, and as an additional
approximation the Jacobians can be evaluated at a specific time
ts to obtain the linear time-invariant (LTI) model given by

∆θ̇(t)≈ A∆θ(t)+B∆u(t), y(t) =C∆θ(t), (8)

where A = (∂g/∂θ)
∣∣
θr(ts),ur(ts)

, B = (∂g/∂u)
∣∣
θr(ts),ur(ts)

, ts is
some time during the flat-top phase of the discharge, C ∈Rm×n

is the output matrix, and y(t) ∈ Rm×1 is the output vector with
m = 8 (number of control outputs chosen equal to the number
of available physical actuators). Using (2), the LTI model (8)
for ∆θ can be converted into an LTI model for ∆ι as

∆ι̇(t)≈ Ā∆ι(t)+ B̄∆u(t), y(t) = C̄∆ι(t), (9)

where Ā=T−1AT, B̄=T−1B, C̄ = TC, with the transformation
matrix T =−diag(B0ρ2

b ρ̂i), where ρ̂i=i(∆ρ̂), for i=1,2, ...,n.
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Figure 2: Communication flow between TRANSP and the Expert routine [6].

3. Optimal Control Design

Let ιr(t) represent a target rotational transform profile to
achieve. The tracking problem for ι(t) then becomes a regu-
lation problem for ∆ι(t), since ∆ι(t) = ι(t)− ιr(t). Therefore,
the control objective is to regulate the output y(t) around zero
with minimum control effort. To improve upon the tracking
performance and disturbance rejection, integral action should
be added to the standard optimal control solution, leading to a
linear-quadratic-integral (LQI) control design.

To obtain the LQI controller, an enlarged state variable x̃(t)
can be introduced by augmenting the actual state ∆ι(t) with the
time integral of the output vector

x̃(t) =
[ ∫ t

0 y(τ)dτ

∆ι(t)

]
=

[ ∫ t
0 C̄∆ι(τ)dτ

∆ι(t)

]
. (10)

Taking the time derivative of (10) and using (9), a new, aug-
mented system can be obtained as

˙̃x(t)≈ Ãx̃(t)+ B̃∆u(t). (11)

where Ã =

[
0 C̄
0 Ā

]
and B̃ =

[
0
B̄

]
. The optimal control problem

can then be stated in terms of the enlarged system (11) as

min
∆u(t)

J =
1
2

∫
∞

t0

[
x̃T Qx̃+∆uT R∆u

]
dt, (12)

where Q ∈ R(m+n)×(m+n), and R ∈ Rm×m are symmetric, posi-
tive definite weight matrices. The optimal control law is given
by

∆u(t) =−Kx̃(t), (13)

where K = R−1B̃T P+, and P+ is the unique positive definite
solution to the Algebraic Riccati Equation [8]

0 =−ÃT P+−P+Ã+P+B̃R−1B̃T P+−Q. (14)

Finally, using (10) for x̃, the optimal control law (13) becomes

∆u(t) =−KI

∫ t

t0
C̄∆ι(τ)dτ−KP∆ι(t), (15)

where KI ∈ Rm×m and KP ∈ Rm×n are the partitions of the op-
timal gain K, i.e., K = [KI KP]. Note that the optimal solution
(15) yields a PI (Proportional plus Integral) control law.

4. Closed-loop TRANSP Simulation Results
The necessary modifications to enable feedback control sim-

ulations in TRANSP have been implemented through the so-
called Expert routine [6]. It interrupts the standard operation
of the TRANSP code at each time step to recalculate the actua-
tor requests according to the implemented feedback control law
and the current plasma state.

At the beginning of each TRANSP transport time step, the
Expert routine is called and it performs the necessary modifica-
tions through its four main modules (Fig. 2). The electron den-
sity module supplies an electron density profile to the TRANSP
by scaling an experimental electron density profile shape (nre f

e )
to achieve a target line-averaged density, n̄e(t). Similarly, the
electron temperature module supplies an electron temperature
profile to the TRANSP by scaling an experimental profile to
maintain a certain confinement enhancement factor, HST , which
modifies the confinement time calculation based on the ST scal-
ing assumption [9]. The controller module implements the user-
supplied feedback control law at each transport time step to
update the actuator requests based on the current ι-profile ex-
tracted from TRANSP, the reference actuator trajectory ur, and
the reference state trajectory ιr. The boundary shape request
module calculates the coil currents at each time step to best fit
a prescribed plasma boundary shape.

For the simulations in this work, the target (or reference) state
trajectory ιr(ρ̂, t) is generated through an open-loop TRANSP
simulation based on arbitrarily selected actuator trajectories to
ensure the target is feasible (i.e., it is a solution of the MDE).
Both for control design and closed-loop simulations, the non-
dimensional spatial domain (ρ̂ ∈ [0, 1]) is divided into l = 21
radial nodes, hence, the radial grid size is ∆ρ̂ = 0.05.

4.1. Rejection of Disturbed Initial Conditions and Inputs
In this simulation, both initial-condition-perturbation and

input-disturbance rejection capabilities are assessed by setting

u(t) =
{

ur +ud , t < 1s.
∆u(t)+ur +ud , t ≥ 1s. (16)

where ud stands for the constant disturbance inputs (15% of the
reference for the density and plasma current, 10% of the refer-
ence for the beam powers). The feedback controller is turned on
at t = 1 s, and the simulation results are summarized in Fig 3.
The time evolution of the optimal physical inputs are illustrated
in Fig. 3(a). The corresponding time evolution of the selected
optimal outputs are depicted in Fig. 3(b) along with their re-
spective targets. Fig. 3(c) compares actual and reference ι(ρ̂)
profiles achieved at different instants in time. The difference be-
tween ιr(t = 1) and ι(t = 1) in Fig. 3(c) is the consequence of
introducing input perturbations for t ∈ [0,1] without feedback
control. This difference can also be appreciated in Fig. 3(b).
Despite this difference, the feedback controller is able to start
tracking the reference profile after it is turned on at t = 1 s,
showing almost perfect tracking after t = 2.5 s as shown in
Figs. 3(b)-(c). The results of this simulation show that the pro-
posed controller is capable of utilizing all physical actuators,
including plasma density, to effectively regulate the ι-profile
around a target profile in spite of the disturbances.
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Figure 3: Results of the tracking simulation against perturbed initial conditions and input disturbances (Section 4.1) : (a) Time evolution of the physical actuators,
(b) time evolution of the select optimal outputs, (c) target and achieved rotational transform profiles at select times. (The controller is off in the grey region).
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Figure 4: Results of the tracking simulation against decreasing confinement factor (Section 4.2) : (a) Time evolution of the physical actuators, (b) time evolution of
the select optimal outputs, (c) target and achieved rotational transform profiles at select times. (The controller is off in the grey region).

4.2. Rejection of Changes in Confinement
In this simulation study, the simultaneous tracking and

disturbance-rejection capabilities of the controller are further
tested by imposing a linear decrease in the confinement en-
hancement factor (HST ) from 1.25 to 0.75 during t ∈ [2.5, 5] s.
This artificial decrease in the HST factor represents the possible
confinement variations that might happen in NSTX-U experi-
ments. Note that in addition to the variations in the HST factor,
the same input disturbances as in (16) and initial-condition per-
turbations as in the previous simulation study are applied in this
simulation. For simplicity, the line-averaged density is kept at
its reference value, and only plasma current and neutral-beam
powers are used as actuators for this simulation study. Simula-
tion results are summarized in Fig. 4. Note from Fig. 4(b) that
the outputs are once again effectively regulated around their de-
sired values after the controller is turned on and before the con-
finement decrease is imposed at 2.5 s. This can also be noted
from Fig. 4(c) by comparing the actual profile ι and the desired
target profile ιr at t = 2.5 s. Note also from Fig. 4(b) that the
states suddenly deviate from their targets after t = 2.5 s, when
the confinement decrease is imposed. The controller, how-
ever, quickly mitigates the effect of this sudden confinement
change, providing once again almost excellent profile match-
ing at t = 3.5 s as shown in Fig. 4(c). Based on this simulation
analysis, the proposed controller is shown to be effective in reg-
ulating the ι-profile even if the confinement changes.

5. Conclusions and Future Work

In this work, an NSTX-U-tailored plasma response model
is embedded into the control design process to synthesize a

linear-quadratic-integral, optimal controller capable of regulat-
ing the rotational transform profile (or, equivalently, the current
density profile), around a desired target profile. The perfor-
mance of a current-profile controller under the presence of dis-
turbances due to input/initial-condition perturbations and con-
finement factor changes is tested for the first time in closed-
loop TRANSP simulations The contribution of this work re-
sides equally on the control design and on the TRANSP-
based closed-loop simulation for current-profile regulation. The
promising tracking performance motivates the implementation
of the proposed controller in NSTX-U once critical diagnostics
and actuators are commissioned and plasma operation resumes.
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