

1 Iron isotopic fractionation in mineral phases from Earth's lower

2 mantle: Did terrestrial magma ocean crystallization fractionate iron

3 isotopes?

4 Hong Yang¹, Jung-Fu Lin^{2,*}, Michael Y. Hu³, Mathieu Roskosz⁴, Wenli Bi^{3,5},

⁵ Jiyong Zhao³, Esen E. Alp³, Jin Liu², Jiachao Liu², Renata M. Wentzowitch⁶,

6 Takuo Okuchi⁷, Nicolas Dauphas^{8,*}

⁷ ¹Center for High Pressure Science and Technology Advanced Research (HPSTAR),
⁸ Pudong, Shanghai 201203, China

9 ²Department of Geological Sciences, Jackson School of Geosciences, University of
10 Texas at Austin, Austin, Texas 78712, USA

11 ³Advanced Photon Source, Argonne National Laboratory, Argonne, Illinois 60439,
12 USA

13 ⁴IMPMC – UMR CNRS 7590, Sorbonne Universités, UPMC, IRD, MNHN,
14 Muséum National d'Histoire Naturelle, 61 rue Buffon, 75005 Paris, France

15 ⁵Department of Geology, University of Illinois at Urbana-Champaign, Urbana, IL
16 61801, USA

17 ⁶Department of Applied Physics and Applied Mathematics and Department of Earth
18 and Environmental Sciences, Lamont-Doherty Earth Observatory, Columbia
19 University, New York, NY 10027, USA

20 ⁷Institute for Planetary Materials, Okayama University, Misasa, Tottori 682-0193,
21 Japan

22 ⁸Origins Laboratory, Department of the Geophysical Sciences and Enrico Fermi
23 Institute, The University of Chicago, Chicago, IL 60637, USA

24

25

26 Key Words:

27 Nuclear Resonant Spectroscopy

28 Iron isotopic fractionation

29 Spin transition

30 Magma ocean crystallization

31 ~~Core-mantle interaction~~

32 **Abstract**

33 Iron is the most abundant transition metal in the Earth's interior, yet
34 considerable uncertainties remain as to why mantle-derived rocks have diverse
35 iron isotopic compositions. In particular, the isotopic fractionation behavior of
36 iron in the lower-mantle minerals bridgmanite and ferropericlase are largely
37 unexplored. The reason is that it is challenging to study isotopic fractionation at
38 the high pressures relevant to the deep mantle. Here we report *in situ*
39 measurements of the mean force constants of iron bonds in these minerals
40 pressurized in a diamond anvil cell using the technique of nuclear resonant
41 inelastic X-ray scattering (NRIXS). We find that the transition from high- to low-
42 spin iron in ferropericlase $((\text{Mg}_{0.75}\text{Fe}_{0.25})\text{O})$ at approximately 60 GPa drastically
43 stiffens its iron bonds in the low-spin state. The mean force constant of iron
44 bonds in both Fe-bearing and (Fe,Al)-bearing bridgmanite exhibits softening by
45 21% at approximately 40-60 GPa, which seems to be caused by changes in the
46 iron local environment during the transition from low to high quadrupole
47 splitting states. These results indicate that in the lower mantle, low-spin
48 ferropericlase is enriched in heavy iron isotopes relative to bridgmanite and
49 metallic iron by $+0.15\text{\textperthousand}$ and $+0.12\text{\textperthousand}$, respectively. Based on these results, we
50 investigate whether terrestrial magma ocean crystallization or protracted
51 core-mantle interaction in the lowermost mantle could have fractionated iron
52 isotopes. We conclude that these processes cannot be responsible for the
53 heavy iron isotope enrichment measured in terrestrial basalts.

54 **1. Introduction**

55 The +0.1‰ heavy iron isotope enrichment (expressed in $\delta^{56}\text{Fe}$, the deviation in
56 permil of $^{56}\text{Fe}/^{54}\text{Fe}$ ratios relative to reference material IRMM-014) of mid-ocean
57 ridge basalts (MORBs) relative to chondrites (Teng et al., 2013) distinguishes the
58 Earth from other planetary bodies, such as Mars and Vesta, whose crustal rocks
59 exhibit a similar iron isotopic signature to chondrites (Poitrasson et al., 2004; Wang et
60 al., 2012). Core formation, as the most significant differentiation event in Earth's
61 history, shaped the chemistry of the mantle, most obviously by scavenging Fe, Ni and
62 siderophile elements into the core. Whether a similar imprint was left in the stable
63 isotopic composition of mantle rocks, in particular for iron, is much more uncertain
64 and is a topic of active research (e.g. Polyakov 2009; Shahar et al., 2016; Liu et al.,
65 2017; Elardo and Shahar, 2017; Bourdon et al., 2018). The most recent results suggest
66 that due to the comparable strengths of the iron bonds in Fe^{2+} -bearing silicate glasses
67 and metal alloys at high pressure, and the high temperatures involved (~3000-4000 K),
68 core formation likely played a minor role in fractionating iron isotopes (Liu et al.,
69 2017). Other hypotheses for the superchondritic iron isotopic composition of
70 terrestrial basalts include mantle partial melting (Dauphas et al., 2009) and early
71 evaporation processes (Poitrasson et al., 2004). Magma ocean crystallization could
72 also have fractionated the stable isotopic composition of elements such as silicon
73 (Huang et al., 2014) but iron isotopic fractionation in this process has been largely
74 unexplored. While core formation was probably not responsible for fractionating iron
75 isotopes in Earth's mantle, significant exchange could still have taken place at the

76 core-mantle boundary (CMB). This boundary marks the largest thermochemical
77 contrast in the Earth's interior, therefore chemical exchange between the lowermost
78 lower mantle and core is expected to have possibly influenced the geochemical
79 evolution of the mantle (Brandon and Walker 2005; Humayun et al., 2004). These
80 geochemical signatures could be transported back to the shallower mantle through
81 mantle convection (van Keken and Zhong, 1999). In particular, such interactions
82 might be responsible for the low $\varepsilon^{182}\text{W}$ values measured in plume samples
83 characterized by high $^3\text{He}/^4\text{He}$ ratios (Mundl et al. 2017).

84 The most abundant iron-bearing phases in the lower mantle are bridgmanite (Bm)
85 and ferropericlase (Fp). As such, they control how iron isotopes will be fractionated at
86 the interface between the core and mantle or during magma ocean crystallization.
87 Pressure-induced spin transitions of iron in both minerals have been documented to
88 significantly influence their elastic, transport, rheological, and geochemical properties
89 (Lin et al., 2005, 2013; Wentzcovitch et al., 2009; Wu et al., 2013). The spin transition
90 of Fe^{2+} in Fp with a composition $\text{Fe}_{0.25}\text{Mg}_{0.75}\text{O}$ occurs at 80-110 GPa along a mantle
91 geotherm (Mao et al., 2011a), which is associated with a ~2% volume decrease and
92 presumably a shortening of the iron bonds by at least 0.7% (Tsuchiya et al., 2006; Lin
93 et al., 2013), which is expected to influence iron isotopic fractionation significantly.
94 On the other hand, Bm contains both Fe^{2+} and Fe^{3+} ions in the large
95 pseudo-dodecahedral (8/12-fold) A-site as well as Fe^{3+} in the small 6-fold, octahedral
96 B-site (Hsu et al., 2011; Lin et al., 2013). In a pyrolytic lower-mantle composition,
97 most Fe^{3+} will be distributed in the A-site due to the charge-coupled substitution of

98 approximately 5-7% Al^{3+} in the octahedral B-site (Hsu et al., 2012; Lin et al., 2013).
99 Recent studies have shown that the B-site Fe^{3+} undergoes a spin transition at
100 approximately 15-50 GPa (Catalli et al., 2010; Hsu et al., 2011; Mao et al., 2015; Liu
101 et al., 2018) while the A-site iron ions experience local site distortions at ~45 GPa
102 associated with an increase in the quadrupole splitting (Mao et al., 2017; Hsu and
103 Wentzcovitch, 2014). The site distortion of A-site iron can affect the local electronic
104 bonding characters resulting in distinct equation of state parameters and thermal
105 conductivity of Bm (Mao et al., 2017; Hsieh et al., 2017). Spin transitions in Fp and
106 Bm can also significantly change the partitioning of iron and magnesium between
107 these minerals (Lin et al., 2013, Irfune et al., 2010). The partitioning coefficient
108 $K_d = (\text{Fe}/\text{Mg})_{\text{Bm}}/(\text{Fe}/\text{Mg})_{\text{Fp}}$ in a pyrolytic mantle composition is ~0.8 at 30 GPa and
109 drops to ~0.4 at 136 GPa corresponding to the core-mantle boundary (CMB)
110 conditions (Irfune et al., 2010). This means that at the CMB, the proportion of iron
111 atoms in Fp and Bm is about 3:2 and ferropericlase becomes the major iron carrier in
112 the deeper lower mantle. Of particular interest to geochemistry are the potential
113 effects of the spin transition and local site distortions on the vibrational properties and
114 mean force constant $\langle F \rangle$ of the iron bonds. Indeed, equilibrium iron isotopic
115 fractionation between phases is directly related to the difference in stiffness of iron
116 bonds of coexisting minerals. of the iron bonds in the phases under consideration

117 To explore the possible fractionation induced by the spin transition and lattice
118 distortion under compression and quantify the magnitude of iron isotopic fractionation
119 in the lower mantle, we measured the mean force constant $\langle F \rangle$ of the iron bonds in

120 Fp and Bm samples with compositions relevant to the lower mantle. For this purpose,
121 we pressurized the samples using diamond anvil cells (DACs) and measured their
122 lattice vibrations using nuclear resonant inelastic X-ray scattering (NRIXS)
123 spectroscopy. Synchrotron Mössbauer spectra were also collected to characterize the
124 spin and valence states of iron in the samples.

125

126 **2. Methods**

127 **2.1 Sample synthesis**

128 Polycrystalline ^{57}Fe -enriched ferropericlase $((\text{Mg}_{0.75}\text{Fe}_{0.25})\text{O})$ was synthesized
129 using the inter-diffusion of a mixture of MgO and metallic ^{57}Fe powder (>98%
130 enrichment; Cambridge Isotopes) at approximately 1450 K for 8 hours under a
131 controlled CO_2 -CO atmosphere near the Fe-FeO redox buffer (Lin et al., 2006).
132 (Fe,Al)-bearing Bm single crystals $(\text{Mg}_{0.89}\text{Fe}^{2+}_{0.024}\text{Fe}^{3+}_{0.096}\text{Al}_{0.11}\text{Si}_{0.89}\text{O}_3)$
133 ($\text{Fe}^{3+}/\text{Fe}_{\text{tot}}=0.8$) were synthesized from a mixture of MgSiO_3 , Mg(OH)_2 , Al_2O_3 , and
134 ^{57}FeO powder (>98% enrichment; Cambridge Isotopes) in a Kawai-type apparatus at
135 24 GPa and 2023 K for 7 hours at the Institute for Planetary Materials, Okayama
136 University at Misasa, Japan (Okuchi et al., 2015; Mao et al., 2017). Poly-crystalline
137 Bm $(\text{Mg}_{0.92}\text{Fe}^{2+}_{0.07}\text{Fe}^{3+}_{0.02}\text{Si}_{0.99}\text{O}_3)$ ($\text{Fe}^{3+}/\text{Fe}_{\text{tot}}=0.25-0.30$) was synthesized from
138 ^{57}Fe -enriched enstatite powder $(\text{Mg}_{0.9}\text{Fe}_{0.1}\text{SiO}_3)$ in a multi-anvil press at 24 GPa and
139 1673 K for an hour at the Geodynamic Research Center (GRC), Ehime University
140 (Lin et al., 2010). Another poly-crystalline Bm $(\text{Mg}_{0.74}\text{Fe}^{2+}_{0.12}\text{Fe}^{3+}_{0.12}\text{Si}_{0.98}\text{O}_3)$

141 (Fe³⁺/Fe_{tot}=0.50) was synthesized from laser heating ⁵⁷Fe-enriched enstatite powder
142 (Mg_{0.75}Fe_{0.25}SiO₃) sandwiched between NaCl pellets in a panoramic DAC. The
143 sample was pressurized and heated at approximately 35 GPa and 1500 K for about 2
144 hours at the GSECARS of the Advanced Photon Source, Argonne National
145 Laboratory (Mao et al., 2011b). The chemical compositions, lattice parameters, and
146 iron valence states of these samples were previously characterized using an electron
147 micro-probe, X-ray diffraction, and Mössbauer spectroscopy (Mao et al., 2011b, 2017;
148 Lin et al., 2012). Additional XRD measurements of the samples were performed at
149 beamline 13-IDD of GSECARS to confirm their crystal structures at high pressures.

150

151 **2.2 DAC preparation and Synchrotron NRIXS measurements**

152 We conducted *in situ* high pressure NRIXS experiments on ⁵⁷Fe-enriched
153 ferropericlase ((Mg_{0.75}Fe_{0.25})O) and bridgmanite (Mg_{0.89}Fe²⁺_{0.024}Fe³⁺_{0.096}Al_{0.11}Si_{0.89}O₃,
154 Mg_{0.92}Fe²⁺_{0.07}Fe³⁺_{0.02}Si_{0.99}O₃, Mg_{0.74}Fe²⁺_{0.12}Fe³⁺_{0.12}Si_{0.98}O₃) in diamond anvil cells
155 (DACs) up to 104 GPa at sector 3ID-B of the Advanced Photon Source, Argonne
156 National Laboratory. Each starting sample of about 10-20 μ m in thickness and 20-30
157 μ m in diameter was separately loaded into a sample chamber. The chamber was a hole
158 drilled in a Be gasket embedded with a cubic BN gasket insert and squeezed between
159 a pair of diamond anvils. We used panoramic diamond anvil cells as compression
160 devices and the anvil culet size ranged from 400 μ m flat to 150-300 μ m beveled. For
161 most of the experiments, we used a mini anvil (culet size 150 μ m) or a partially

162 perforated anvil (culet size 400 μm) facing the incident X-ray beam to reduce the
163 intensity loss of the X-ray when it penetrated through the anvil; this also allowed us to
164 collect the energy spectra with enhanced signal-to-noise ratio within a reasonable data
165 collection times. Fp powder was loaded into a DAC using mineral oil as the pressure
166 medium and a ruby sphere as the pressure calibrant. For Bm, two sets of NRIXS
167 experiments were performed:

168 (1) A single-crystal (Fe,Al)-bearing Bm sample was polished to approximately
169 10~15 μm thick and then loaded into a DAC using mineral oil as the pressure medium
170 and a ruby sphere as the pressure calibrant. The sample was measured at room
171 temperature without laser annealing.

172 (2) The poly-crystalline Fe-bearing Bm samples were also polished and
173 compressed between two NaCl pellets and laser-annealed to ~2000 K to release
174 potential stress at each given pressure before the spectra were collected. The pressure
175 was calibrated using ruby fluorescence spectra below 80 GPa. Above 80 GPa XRD
176 patterns of NaCl were collected and used as the pressure gauge, while the diamond
177 Raman spectra were used as a secondary reference.

178 NRIXS spectra were scanned around the nuclear transition energy of ^{57}Fe
179 (14.4125 keV) with a step size of 0.25~0.33 meV for the 1 meV energy resolution of
180 the incident X-ray or 0.5~0.6 meV for the 2 meV energy resolution. The acquisition
181 time was 3~5s per energy step. The energy spectra of Fp below 70 GPa and
182 (Fe,Al)-bearing Bm at ambient conditions were measured using the 1 meV energy

183 resolution of the incident X-ray source, whereas the 2 meV energy resolution X-ray
184 was used for the Fp sample above 70 GPa and all the Bm samples at high pressure.
185 The incident X-ray source with a 2 meV resolution has a photon flux of 1×10^{10}
186 photons/s, double of that of the X-ray source with a 1 meV resolution. Therefore, its
187 use was necessary for the high-pressure Bm measurements as (i) the samples had a
188 relatively dilute Fe content and (ii) the high pressure increases the Lamb-Mössbauer
189 factor, which means a decrease in the inelastic scattering probability, making the data
190 collection even more challenging. Each NRIXS scan took about 1 to 1.5 hours to
191 complete, and 17~44 NRIXS scans (about 1~2 days of beamtime) were collected and
192 combined in order to achieve good statistics for the inelastic signals. The energy
193 spectra were collected over a broad energy scan range (for example from -160 to +180
194 meV for ferropericlase), which is crucial to capture the multi-phonon contributions
195 and possible high-energy vibration modes that can influence the calculated $\langle F \rangle$
196 values.

197

198 **2.3 Data quality and reliability of $\langle F \rangle$ derivation**

199 High-quality NRIXS data (Fig. 1, 2) with high signal/noise ratios were collected
200 with sufficient numbers of energy scans (17-44) over an extended range (± 120 to 200
201 meV). It is necessary to scan over wider energies at high pressure as the phonon
202 modes shift to higher energies (Fig. 3).

203 Equilibrium iron isotopic fractionation is governed by the bonding strengths of

204 the iron-bearing phases. The strength of the iron bonds is quantified using the mean
 205 force constant $\langle F \rangle$, which can be derived under the harmonic approximation from
 206 the analysis of the moments of the NRIXS energy spectra $S(E)$ using the SciPhon
 207 software (Dauphas et al., 2012, 2018). This method gives a better assessment of the
 208 experimental uncertainties and systematic errors than using the moments of the
 209 phonon density of states (Dauphas et al., 2012). In the quasi-harmonic lattice model,
 210 the mean force constant of iron $\langle F \rangle$ (in N/m) is related to the third moment of the
 211 NRIXS spectrum $S(E)$ through:

$$212 \quad \langle F \rangle = \frac{M}{E_R \eta} \int_{-\infty}^{+\infty} (E - E_R)^3 S(E) dE, \quad (1)$$

213 where M is the mass of the nuclear resonant isotope (^{57}Fe in this study), E is the
 214 energy difference between incident X-ray and the nuclear resonant energy E_0 (in
 215 meV), and $E_R = E_0^2 / 2Mc^2$ is the nuclear recoil energy (that is, 1.956 meV for ^{57}Fe ,
 216 where $E_0 = 14.4125\text{keV}$ is the nuclear resonant energy of ^{57}Fe , and c is the speed of
 217 light). Within the harmonic approximation (interatomic potentials are quadratically
 218 related to atomic displacements), the $\langle F \rangle$ value of iron is independent of temperature.
 219 The β -factors can be calculated from $\langle F \rangle$ using the following relationship (Dauphas
 220 et al., 2012):

$$221 \quad 1000 \ln \beta^{^{56}\text{Fe}/^{54}\text{Fe}} = 1000 \left(\frac{1}{M_{^{54}\text{Fe}}} - \frac{1}{M_{^{56}\text{Fe}}} \right) \frac{\hbar}{8k^2 T^2} \langle F \rangle = 2904 \frac{\langle F \rangle}{T^2}, \quad (2)$$

222 where k is the Boltzmann's constant, \hbar is the reduced Planck constant, M represents
 223 the mass of an ^{54}Fe or ^{56}Fe nucleus and T is the absolute temperature in K. The

224 β -factor, also known as the reduced partition function ratio, represents the ratio of
225 ($^{56}\text{Fe}/^{54}\text{Fe}$) in the investigated iron-bearing phase, to the ($^{56}\text{Fe}/^{54}\text{Fe}$) in the ideal
226 dissociated iron gas at equilibrium. Accordingly, by subtracting the $\ln\beta$ of phase A
227 from that of phase B, we obtained the predicted equilibrium fractionation between
228 two coexisting phases A and B (Urey, 1947) ,

$$229 \Delta^{56}\text{Fe}_{\text{B-A}}^{\text{eq}} = (\delta^{56}\text{Fe}_B - \delta^{56}\text{Fe}_A)_{\text{eq}} = 1000 \ln \beta_B^{^{56}\text{Fe}/^{54}\text{Fe}} - 1000 \ln \beta_A^{^{56}\text{Fe}/^{54}\text{Fe}} = 2904 \frac{\langle F \rangle_B - \langle F \rangle_A}{T^2}, \quad (3)$$

230 where $\delta^{56}\text{Fe}_A$ and $\delta^{56}\text{Fe}_B$ are the iron isotopic compositions of phases A and B,
231 respectively, and $\Delta^{56}\text{Fe}_{\text{B-A}}^{\text{eq}}$ is the permil difference in the isotopic ratio ($^{56}\text{Fe}/^{54}\text{Fe}$)
232 between phases A and B at thermodynamic equilibrium. The uncertainties of the
233 derived mean force constant $\langle F \rangle$ in this study using SciPhon (Dauphas et al., 2018)
234 include both statistical and systematic errors and are typically about 10-15% (Table
235 1).

236

237 3. Results

238 The iron force constant of Fp increases with pressure up to 60 GPa at a rate of 3.0
239 $\text{N}\cdot\text{m}^{-1}\cdot\text{GPa}^{-1}$. Starting at 60 GPa, the force constant increases more rapidly at a rate of
240 $8.6 \text{ N}\cdot\text{m}^{-1}\cdot\text{GPa}^{-1}$ (Figs. 4 and 5). The spin transition of Fe^{2+} in Fp ($(\text{Mg}_{0.75}\text{Fe}_{0.25})\text{O}$)
241 takes place around 60 GPa (Lin et al., 2005, 2013), as confirmed by synchrotron
242 Mössbauer spectroscopy (SMS), which showed a transition from several quantum
243 beats to a natural decay line implying the disappearance of quadrupole splitting in
244 iron (Fig. 6). Across the spin transition, the unit cell volume collapses by $\sim 2\%$ and

245 the Fe-O bond length decreases by at least 0.7% (Tsuchiya et al., 2006; Lin et al.,
246 2013), respectively. The spin transition is visible in our experiments as a change of the
247 dependence of the $\langle F \rangle$ value with pressure. The $\langle F \rangle$ value of Bm increases with
248 increasing pressure up to about 45 GPa at a rate of $\sim 5.5 \text{ N}\cdot\text{m}^{-1}\cdot\text{GPa}^{-1}$. It slightly drops
249 down to $\sim 350 \text{ N/m}$ and remains almost unchanged up to 100 GPa (Figs. 4 and S1).
250 The $\langle F \rangle$ values of all Bm samples fall on the same trend, regardless of their
251 $\text{Fe}^{3+}/\text{Fe}_{\text{tot}}$ ratios that range between 0.25 and 0.8 (Fig. 4). Finally we also included
252 here the iron force constants $\langle F \rangle$ of silicate a basaltic glass previously determined to
253 a maximum pressure of 64 GPa (Liu et al., 2017). Since there is no observable spin
254 transition of iron in silicate glasses (Mao et al., 2014; Gu et al., 2012), we modeled
255 the pressure dependence of $\langle F \rangle$ with a linear trend and extrapolated it to around 100
256 GPa. At pressures above 60 GPa, the LS Fp has a much larger $\langle F \rangle$ value than the Bm,
257 basaltic glass (Liu et al., 2017) and iron alloys (Liu et al., 2017; Shahar et al., 2016)
258 (Fig. 4), implying that heavy iron isotopes would be concentrated in LS Fp beneath
259 the middle part of the lower mantle (Fig. 5).

260

261 **4. Discussion**

262 **4.1 Determining the evolution of $\langle F \rangle$ in Bm and Fp as a function of P and T**

263 The effect of the spin transition on $\langle F \rangle$ and the fractionation of isotopes in Fp has
264 been demonstrated at 300 K. To address the fractionation of iron isotopes in the lower
265 mantle, the measured mean force constant of the iron bonds $\langle F \rangle$ in Fp at high

266 pressure and 300K can be used to derive the pressure and temperature dependence of
267 the force constant based on our prior knowledge on how iron partitions between low
268 and high spins. We shall assume that the low-spin and high-spin iron atoms can be
269 treated as independent components so that the mean force constant of iron can be
270 calculated from the weighted average of the force constants of iron in the different
271 spin states,

272
$$\langle F \rangle = \langle F \rangle_{LS} \times n_{LS} + \langle F \rangle_{HS} \times (1 - n_{LS}), \quad (4)$$

273 where n_{LS} is the fraction of the low-spin iron, and $\langle F \rangle_{HS}$ and $\langle F \rangle_{LS}$ are the force
274 constants of iron in the high-spin (HS) and low-spin (LS) states. The LS iron fractions
275 for Fp at different pressures and temperatures are reported in Mao et al. (2011a). The
276 force constants of iron in different spin states can be expressed as a linear function of
277 pressure:

278
$$\langle F \rangle_{LS} = a_{LS} \times P + b_{LS}, \quad \langle F \rangle_{HS} = a_{HS} \times P + b_{HS}, \quad (5)$$

279 where a and b are empirical fitting coefficients obtained by regressing the mean force
280 constant $\langle F \rangle$ against P :

281
$$a_{HS} = 3.00 \pm 0.18 \text{ N} \cdot \text{m}^{-1} \cdot \text{GPa}^{-1}, \quad b_{HS} = 186 \pm 6 \text{ N} \cdot \text{m}^{-1},$$

282
$$a_{LS} = 8.62 \pm 0.61 \text{ N} \cdot \text{m}^{-1} \cdot \text{GPa}^{-1}, \quad b_{LS} = -182 \pm 52 \text{ N} \cdot \text{m}^{-1}.$$

283 Note that LS iron is not stable below 60 GPa so it is inconsequential that b_{LS} is
284 negative.

285 The force constant along an expected geotherm of the lower mantle (Brown and

286 Shankland, 1981) was calculated using the pressure-temperature-dependent n_{LS} given
287 in Mao et al. (2011a) and the results above (Fig. 5). With this new set of force
288 constants, the β -factors of various phases along the expected geotherm (Brown and
289 Shankland, 1981) were calculated from Eq. 2 and the isotopic fractionation between
290 Fp and Bm is determined by Eq. 3. To estimate the isotopic composition of each phase,
291 we also need to know how iron partitions between Fp and Bm, which allows us to
292 write the following mass-balance relationship,

293
$$\delta^{56}\text{Fe}_{\text{mantle}} = \delta^{56}\text{Fe}_{\text{Fp}} \times n_{\text{Fp}} + \delta^{56}\text{Fe}_{\text{Bm}} \times n_{\text{Bm}}, \quad (6)$$

294 where n_{Fp} and n_{Bm} are the mass fraction of iron in ferropericlase and bridgmanite,
295 respectively. Combining equation (3) and (6), we calculated $\delta^{56}\text{Fe}_{\text{Fp}}$ and $\delta^{56}\text{Fe}_{\text{Bm}}$ (Fig.
296 7). In the calculation, we assumed that the lower mantle has a chondritic iron isotopic
297 composition ($\delta^{56}\text{Fe}_{\text{mantle}} = 0$). The values of n_{Fp} and n_{Bm} are calculated from the
298 previously determined iron partition coefficients by taking into account the effects of
299 the spin transition in Fp and the Al-substitution in Bm for a pyrolytic mantle (Irifune et
300 al., 2010). In a pyrolytic mantle, the presence of Al in the B-site of Bm tends to
301 prevent ferric iron from partitioning into that site so only the A-site iron needs to be
302 considered. Furthermore, based on our data, the force constant of the iron cations in
303 the A-site defines a single trend regardless of the proportions of ferric and ferrous iron.
304 To the first order, our experimental determination of the $\langle F \rangle$ for the Bm is therefore
305 appropriate to model iron isotopic fractionation in natural settings. Finally, there is a
306 negligible amount of iron in CaSiO_3 silicate perovskite (Irifune, 1994) so we did not
307 consider its partitioning into this phase.

308 Within this framework, our model indicates that little fractionation between Bm
309 and Fp would be expected in the middle part of the lower mantle at depths between
310 1200 to 1800 km because of the counter effects between ~~lattice distortion induced~~ the
311 iron local site change that induced softening in Bm and the pressure-enhanced $\langle F \rangle$ in
312 Fp. The spin transition of iron in Fp starts at about 80 GPa along an expected
313 geotherm (Brown and Shankland, 1981) such that Fp is expected to increasingly
314 concentrate the heavy isotopes of iron compared with Bm at depths higher than 1800
315 km. Using the Fe₈₇Ni₈Si₅ alloy as an analogue for iron in the outer core (Liu et al.,
316 2017), our modeling further shows that the equilibrium iron isotopic fractionation
317 between Fp and metallic iron at CMB conditions (3570 K) (Nomura et al., 2014) is as
318 large as 0.12 ‰, while the equilibrium isotopic fractionation between Bm and
319 metallic iron is only -0.02 ‰ (Fig. 7). A similarly negligible fractionation is expected
320 between a molten silicate and metallic iron (Liu et al., 2017). Taking into account the
321 partitioning of iron between Fp and Bm under CMB conditions, we estimate a
322 core-mantle iron isotopic fractionation factor of ~0.08 ‰.

323

324 **4.2 Bonding environment and force constant of iron in Bm at high pressure**

325 The iron bonding environment and thus its force constants in Bm can be
326 influenced by several factors including the site occupancy (A and B sites), spin and
327 valence states, and lattice changes at high pressure. Our current understanding of the
328 site occupancy in Bm is that the A-site hosts Fe²⁺ and Fe³⁺ while the B-site only

329 accommodates Fe^{3+} (Catalli et al., 2010; Hsu et al., 2011; Lin et al., 2013). The
330 addition of Al^{3+} to Bm makes the B-site energetically unfavorable for Fe^{3+} such that
331 (Fe,Al)-bearing Bm would contain A-site Fe^{3+} and B-site Al^{3+} via charge-coupled
332 substitution (Hsu et al., 2012; Hummer and Fei, 2012; Potapkin et al., 2013). The
333 current understanding of the spin states in Bm is that the B-site Fe^{3+} undergoes the
334 HS-LS transition around 15-50 GPa (Catalli et al., 2010; Hsu et al., 2011; Mao et al.,
335 2015; Liu et al., 2018) while Fe^{2+} and Fe^{3+} in A-site remain in the HS state throughout
336 the lower mantle pressure range (Lin et al., 2016; Hsu et al., 2010, 2011). We should
337 also note that an intermediate spin state of Fe^{2+} with very high QS at high pressure
338 was also reported to occur (Lin et al., 2008; McCammon et al., 2008) but not
339 confirmed computationally (Hsu et al., 2010; Hsu and Wentzcovitch, 2014). Instead,
340 what was found computationally (Hsu et al., 2010) was a change in iron *d*-orbital
341 occupancy along with a lateral displacement of iron in the perovskite “A-site”. This
342 change in Mössbauer quadrupole splitting (QS) corresponds to the theoretically
343 identified displacement of iron in the A-site occurs between 30-60 GPa (Hsu et al.,
344 2010). Beyond 60 GPa, the two states cannot be distinguished in the Mössbauer
345 spectra, which suggested a double-well-like energetic structure for the low-QS and
346 high-QS pair of states, with a final merging of both states into a single well at high
347 pressures. Such double-well structure was verified computationally (Hsu et al., 2010).
348 State changes such as the low-QS to high-QS in a double-well type energetic structure
349 should be very anharmonic.

350 To understand the effects of spin, valence, and lattice on the Fe-O force constants

351 of our Bm samples at high pressure, we assume the charge-couple substitution
352 mechanisms of $[\text{Fe}^{3+}]_{\text{A}}\text{-}[\text{Al}^{3+}]_{\text{B}}$ for the (Al,Fe)-bearing samples and $[\text{Fe}^{3+}]_{\text{A}}\text{-}[\text{Fe}^{3+}]_{\text{B}}$ for
353 the Al-free samples. For example, based on the chemical formulae of our samples,
354 their B site Fe^{3+} content should be $[\text{Mg}_{0.89}\text{Fe}^{2+}_{0.024}\text{Fe}^{3+}_{0.096}]_{\text{A}}[\text{Al}_{0.11}\text{Si}_{0.89}]_{\text{B}}\text{O}_3$,
355 $[\text{Mg}_{0.92}\text{Fe}^{2+}_{0.07}\text{Fe}^{3+}_{0.01}]_{\text{A}}[\text{Fe}^{3+}_{0.01}\text{Si}_{0.99}]_{\text{B}}\text{O}_3$ and
356 $[\text{Mg}_{0.74}\text{Fe}^{2+}_{0.12}\text{Fe}^{3+}_{0.10}]_{\text{A}}[\text{Fe}^{3+}_{0.02}\text{Si}_{0.98}]_{\text{B}}\text{O}_3$. The latter might be an incomplete picture
357 since charge balance in this Al-free sample implies in considerable amount of A-site
358 vacancies. This reasonable assumption implies that there is very limited amount of
359 B-site Fe^{3+} (up to few percent) in our (Al,Fe)-bearing and Al-free Bm samples. That is,
360 the B-site spin transition in (Al,Fe)-bearing Bm would likely play a very minor role
361 on the $\langle F \rangle$ results here. Therefore, the measured $\langle F \rangle$ values should predominantly
362 represent a weight-averaged contribution from Fe^{2+} and Fe^{3+} bonding strengths in the
363 A-site. We should note that Bm in the relevant lower-mantle composition is likely to
364 contain significant amounts of Fe and Al such that the B-site Fe^{3+} should be very
365 limited (Irifune et al., 2010; Hsu et al., 2012).

366 Both experimental and theoretical studies have documented significant change in
367 the local iron environment in A-site Fe^{2+} at around 45 GPa associated with the
368 low-QS to high-QS state change (Mao et al., 2017; Hsu et al., 2010; Boffa Ballaran et
369 al., 2012) shown in the Mössbauer spectra in Fig. 6. The change in local environment
370 and QS is also reflected in the lattice parameters indicating an increase in Si-O_6
371 octahedron tilting angle (Mao et al., 2017). Our high-pressure Bm results show that
372 the $\langle F \rangle$ value increases with increasing pressure up to approximately 40 GPa, which

373 should be caused by the pressure-enhanced shortening of the interatomic distance of
374 Fe^{2+} in the relatively low-QS state. At higher pressures, the lower value of $\langle F \rangle$ and
375 the weak pressure dependence of the $\langle F \rangle$ value, an almost flat feature with
376 increasing pressure, could be reflecting a balance between a negative effect on the
377 $\langle F \rangle$ values from the enhanced site distortion and a positive effect from shortened
378 inter-atomic distance. However, the “average” Fe^{2+} -O interatomic distance in the
379 low-QS and high-QS states are quite similar (Fig. 2 in Hsu et al., 2010) with the
380 low-QS site displaying a wider range of bond-lengths. Alternatively, the dynamics of
381 Fe^{2+} throughout the low-QS to the high-QS state change, a double-well like energetic
382 structure changing into a single well at high pressures could be highly anharmonic. In
383 this case, the harmonic expression for $\langle F \rangle$ and the harmonic calculation of phonon
384 frequencies might not be appropriate. The dynamics of Fe^{2+} during the co-existence of
385 these states, with a possibly small barrier between them and different electronic
386 occupancy of *d*-orbitals in each side of the double well could be highly anharmonic
387 and non-adiabatic. At the moment, neither experimental nor theoretical methods are
388 prepared to address this complex situation.

389 As shown in previous studies of silicate glasses (Dauphas et al., 2015) and spinels
390 (Roskosz et al., 2015), the valence state of iron is also expected to influence the force
391 constant of the host materials. These studies have found the iron force constant
392 differences between ferrous and ferric end-members, $\Delta\langle F \rangle_{\text{Fe(III)-Fe(II)}}$, to be
393 $152 \pm 33 \text{ N/m}$, $145 \pm 27 \text{ N/m}$ and $104 \pm 17 \text{ N/m}$, for basaltic glasses, rhyolitic glasses and
394 spinels respectively. Our three Bm samples contained different $\text{Fe}^{3+}/\text{Fe}_{\text{tot}}$ ranging

395 between 0.25 and 0.8, primarily in the A-site, and showed indistinguishable $\langle F \rangle$
396 results from each other.

397 Results of previous *ab initio* calculations can shed light on this indistinguishable
398 force constants of Fe^{2+} and Fe^{3+} in the A-site. First, the average bond-lengths of Fe^{2+}
399 in low QS and high QS states (Hsu et al., 2010), and Fe^{3+} in the HS state in the A-site
400 (Hsu et al., 2011) are very similar. Only Fe^{3+} in the B-site, which is not abundant in
401 our samples has a much shorter average bond-length. The similarity of average Fe-O
402 bond-lengths of Fe^{3+} and Fe^{2+} in the A-site can be reasoned on the basis of orbital
403 occupancies. The bond-lengths depend strongly on the occupancy of e_g type orbitals
404 which point toward the nearest neighbor oxygen atoms in an octahedral-like
405 environment or nearly so. For both Fe^{2+} and Fe^{3+} in the HS state, as expected here, the
406 d -electrons configurations are: $t_{2g}^4 e_g^2$ and $t_{2g}^3 e_g^2$, respectively, with the same
407 occupancy of e_g states, therefore, resulting in similar Fe-O bond lengths. This
408 symmetry classification of d -orbitals is not completely adequate because the
409 symmetry is not octahedral but it is sufficient to say that the spin up electrons
410 completely fill the spin up d -sub-shell with similar radii in both cases. The different
411 ionization state of these ions plays a secondary role to electronic configuration (HS or
412 LS) in determining the Fe-O bond-lengths. Not even the possible presence of “A-site”
413 vacancies in one of our samples seems to affect this behavior.

414

415 **4.3 Modelling the evolution of iron isotopic fractionation during magma ocean**

416 **crystallization**

417 The Earth is thought to have formed from collisions between large planetary
418 embryos, which must have induced the formation of magma oceans (Ito et al., 2004).
419 In particular, the Moon-forming giant impact may have induced widespread melting
420 in the Earth. From a largely molten body to the present-day solid Earth, crystallization
421 of the magma ocean would have shaped the Earth's chemical structure and potentially
422 fractionated iron isotopes in a manner analogous to what has been advocated for the
423 Moon (Weyer et al., 2005; Poitrasson et al., 2004). Meanwhile, this large-scale
424 melting event drastically redistributed iron within the different planetary reservoirs
425 and it is possible that some Fe-rich regions became geodynamically isolated and
426 eventually became a hidden iron isotope reservoir.

427 Here we use the fractionation factors of solid Fp and Bm together with a
428 previously reported fractionation factor of a basaltic glass as an analogue to basaltic
429 melts (Liu et al., 2017) to explore the possible consequences of a crystallization
430 process happening in the deep lower mantle (Fig. 7). The $\langle F \rangle$ value for melts in the
431 magma ocean is taken by extrapolating the $\langle F \rangle$ values of basaltic glass (Liu et al.,
432 2017) to the relevant pressure assuming that the spin state of iron in silicate glass is
433 unchanged at lower mantle conditions (Mao et al., 2014; Gu et al., 2012). The $\langle F \rangle$
434 value for the solid fraction was calculated as the weighted average of the force
435 constants of Fp and Bm,

436
$$\langle F \rangle_{sum} = \langle F \rangle_{Fp} \cdot n_{Fp} + \langle F \rangle_{Bm} \cdot n_{Bm}, \quad (7)$$

437 where n_{Fp} and n_{Bm} are the proportions of iron in Fp and Bm in the solid fraction
438 respectively.

439 We simulated the iron isotopic composition of melts and solid aggregates during
440 the whole crystallization process. Fractional crystallization and a mass-balance
441 relationship were used in the model. The compositions of the solid and melt were
442 calculated after each 1 wt% increment of crystallization. For the i_{th} separation of
443 crystals, the isotopic composition of crystals equilibrated with the remaining melts
444 can be calculated by $\delta^{56}\text{Fe}_{\text{crystal-}i+1} = \delta^{56}\text{Fe}_{\text{melt-}i} + \Delta^{56}\text{Fe}_{\text{crystal-melt}}$, and based on the isotopic
445 mass-balance we have:

$$446 \quad \delta^{56}\text{Fe}_{\text{melt-}i+1} = [\delta^{56}\text{Fe}_{\text{melt-}i} - (\delta^{56}\text{Fe}_{\text{melt-}i} + \Delta^{56}\text{Fe}_{\text{crystal-melt}}) \cdot n_{\text{crystal}}] / (1 - n_{\text{crystal}}), \quad (8)$$

$$447 \quad \delta^{56}\text{Fe}_{\text{crystals-}i+1} = -\delta^{56}\text{Fe}_{\text{melt-}i+1} \cdot n_{\text{melt}} / (1 - n_{\text{melt}}), \quad (9)$$

448 where $\delta^{56}\text{Fe}_{\text{melt-}i}$ and $\delta^{56}\text{Fe}_{\text{melt-}i+1}$ are the iron isotopic composition of the melt before
449 and after the i_{th} increment of crystal removal, $\Delta^{56}\text{Fe}_{\text{crystal-melt}}$ is the equilibrium iron
450 isotopic fractionation between Fp and Bm aggregates and melts, n_{crystal} is the fraction
451 of iron taken up by crystals at each step, $\delta^{56}\text{Fe}_{\text{crystals-}i+1}$ is the iron isotopic composition
452 for accumulated Fp and Bm crystals after the i_{th} increment and n_{melt} is the fraction of
453 total iron in the remaining melt.

454 The compositional evolution of minerals crystallizing from the magma ocean was
455 adapted from a previously reported thermodynamic model by Boukaré et al. (2015).
456 The crystallization starts from the liquidus phase Mg-Bm containing almost no iron.
457 After about 20 wt% of the melt solidifying, Fe begins to be incorporated in the

458 iron-bearing Fp. When ~27wt% of the melt has crystallized, iron-bearing Bm appears.
459 There is very limited iron isotopic fractionation in melts during most of the
460 crystallization process because (i) iron is moderately incompatible and prefers to stay
461 in the melt rather than in crystals (Andrault et al., 2012; Boukaré et al., 2015) and, (ii)
462 the extreme high temperature suppresses the isotopic fractionation (Urey 1947).

463 Over the whole crystallization process, melts are isotopically heavier than solids
464 but the fractionation between solids and melts does not exceed +0.025‰. Much of
465 that small fractionation would have presumably been erased by mantle mixing over
466 Earth's history and would be hardly resolved given present analytical uncertainties.
467 Our results thus suggest that crystallization of the magma ocean and associated
468 equilibrium iron isotopic fractionation between melt and crystals is unlikely to have
469 caused significant iron isotopic fractionation in any mantle reservoir.

470

471

472 **5. Conclusion**

473 We have measured the thermochemical and lattice dynamical properties of Fp and Bm
474 at high pressure by applying the synchrotron technique of nuclear resonant inelastic
475 X-ray scattering to samples loaded in diamond anvil cells. The results reveal a
476 substantial change in the increase rate of the mean force constant of iron bonds at 60
477 GPa in Fp, corresponding to a spin transition of iron around that pressure. The mean
478 force constant of Bm increases up to 45 GPa and then drops and remains constant

479 above this pressure. This behavior is not easily understood but it could result from
480 combined effects of strong anharmonicity in the dynamics of iron in the perovskite
481 A-site and by a lattice distortion rather than a strengthening of the Fe-O bonds. The
482 indistinguishable force constants of Fe^{2+} and Fe^{3+} in the A-site can be reasoned on the
483 basis of the *d*-orbital occupancies and resulting comparable bond-lengths of these ions.
484 The derived force constants are used to calculate the extent of the iron isotopic
485 fractionation associated with magma ocean crystallization and the fractionation during
486 this process was found to be minimal. Because of the significant differences in the
487 iron force constants of the coexisting high pressure phases, strong iron isotopic
488 heterogeneity is expected between coexisting minerals at high pressure but this
489 heterogeneity may not be expressed in the isotopic geochemistry of the igneous rocks
490 available at Earth's surface. Test of the iron isotope heterogeneity profile would be
491 enabled by future isotopic analysis of Fp and Bm from the lower mantle.

492

493 **Acknowledgements**

494 We thank J. Yang, S. Fu, C. Zhang, N. Purevjav, T. Inoue, and S. Jacobsen for experimental
495 assistance, T. Qin for helpful discussions, and F. O'toole for editing the manuscript. J.F. Lin
496 acknowledges support from the U.S. National Science Foundation Geophysics and CSEDI
497 Programs as well as the Center for High Pressure Science and Technology Advanced Research
498 (HPSTAR). HPSTAR is supported by NSAF (Grant No: U1530402). N. Dauphas acknowledges
499 support from NSF (Cooperative Studies of the Earth's Deep Interior, EAR150259; Petrology and

500 Geochemistry, EAR144495) and NASA (Laboratory Analysis of Returned Samples,
501 NNX14AK09G; Cosmochemistry, OJ-30381-0036A and NNX15AJ25G). M. Roskoss
502 acknowledges support from the French ANR (2011JS5600401, FrIHIDDA). W. Bi acknowledges
503 the support from the Consortium for Materials Properties Research in Earth Sciences (COMPRES),
504 the National Science Foundation (NSF) through Grant No. DMR-1104742. We acknowledge
505 GSECARS and HPCAT of the APS for use of their diffraction and ruby facilities. This research
506 used resources of the Advanced Photon Source, a U.S. Department of Energy (DOE) Office of
507 Science User Facility operated for the DOE Office of Science by Argonne National Laboratory
508 under Contract No. DE-AC02-06CH11357.

509

510 **References**

511 Andrault, D., Petitgirard, S., Lo Nigro, G., Devidal, J.-L., Veronesi, G., Garbarino, G.,
512 Mezouar, M., 2012. Solid–liquid iron partitioning in Earth’s deep mantle. *Nature* 487, 354–357. <https://doi.org/10.1038/nature11294>

514 Boukaré, C.-E., Ricard, Y., Fiquet, G., 2015. Thermodynamics of the MgO-FeO-SiO₂
515 system up to 140 GPa: Application to the crystallization of Earth’s magma ocean.
516 *J. Geophys. Res. Solid Earth* 120, 2015JB011929.
517 <https://doi.org/10.1002/2015JB011929>

518 Bourdon, B., Roskosz, M., Hin, R.C., 2018. Isotope tracers of core formation.
519 *Earth-Science Reviews*. <https://doi.org/10.1016/j.earscirev.2018.04.006>

520 Brown, J.M., Shankland, T.J., 1981. Thermodynamic parameters in the Earth as
521 determined from seismic profiles. *Geophys J Int* 66, 579–596.
522 <https://doi.org/10.1111/j.1365-246X.1981.tb04891.x>

523 Catalli, K.C., Shim, S.H., Prakapenka, V.B., Zhao, J., Sturhahn, W., Chow, P., Xiao,
524 Y., Liu, H., Cynn, H., Evans, W.J., 2010. Spin state of ferric iron in MgSiO₃
525 perovskite and its effect on elastic properties. *Earth Planet. Sci. Lett.* 289, 68–75.
526 <https://doi.org/10.1016/j.epsl.2009.10.029>

527 Dauphas, N., Craddock, P.R., Asimow, P.D., Bennett, V.C., Nutman, A.P.,
528 Ohnenstetter, D., 2009. Iron isotopes may reveal the redox conditions of mantle
529 melting from Archean to Present. *Earth Planet. Sci. Lett.* 288, 255–267.
530 <https://doi.org/10.1016/j.epsl.2009.09.029>

531 Dauphas, N., Hu, M., Baker, E., Hu, J.Y., Tissot, F., Alp, E., Roskosz, M., Zhao, J.,
532 Bi, W., Liu, J., Lin, J.-F., Nie, N.X., Heard, A. (2018). SciPhon: a Data Analysis
533 Software for Nuclear Resonant Inelastic X-ray Scattering with Applications to Fe,
534 Kr, Sn, Eu and Dy. *Journal of Synchrotron Radiation*, in press.

535 Dauphas, N., Roskosz, M., Alp, E.E., Golden, D.C., Sio, C.K., Tissot, F.L.H., Hu,
536 M.Y., Zhao, J., Gao, L., Morris, R.V., 2012. A general moment NRIXS approach
537 to the determination of equilibrium Fe isotopic fractionation factors: Application
538 to goethite and jarosite. *Geochim. Cosmochim. Acta* 94, 254–275.
539 <https://doi.org/10.1016/j.gca.2012.06.013>

540 Dorfman, S.M., Badro, J., Rueff, J.-P., Chow, P., Xiao, Y., Gillet, P., 2015.
541 Composition dependence of spin transition in (Mg,Fe)SiO₃ bridgemanite. *Am.*
542 *Mineral.* 100, 2246–2253. <https://doi.org/10.2138/am-2015-5190>

543 Elardo, S.M., Shahar, A., 2017. Non-chondritic iron isotope ratios in planetary
544 mantles as a result of core formation. *Nat. Geosci.* 10, 317–321.
545 <https://doi.org/10.1038/ngeo2896>

546 Gu, C., Catalli, K., Grocholski, B., Gao, L., Alp, E., Chow, P., Xiao, Y., Cynn, H.,
547 Evans, W.J., Shim, S.-H., 2012. Electronic structure of iron in magnesium silicate
548 glasses at high pressure. *Geophys. Res. Lett.* 39, L24304.
549 <https://doi.org/10.1029/2012GL053950>

550 Hirose, K., Sinmyo, R., Hernlund, J., 2017. Perovskite in Earth's deep interior.
551 *Science* 358, 734–738. <https://doi.org/10.1126/science.aam8561>

552 Huang, F., Wu, Z., Huang, S., Wu, F., 2014. First-principles calculations of
553 equilibrium silicon isotope fractionation among mantle minerals. *Geochim.*
554 *Cosmochim. Acta* 140, 509–520. <https://doi.org/10.1016/j.gca.2014.05.035>

555 Hsu, H., Umemoto, K., Blaha, P., Wentzcovitch, R.M., 2010. Spin states and
556 hyperfine interactions of iron in (Mg,Fe)SiO₃ perovskite under pressure. *Earth*
557 *Planet. Sci. Lett.* 294, 19–26. <https://doi.org/10.1016/j.epsl.2010.02.031>

558 Hsu, H., Blaha, P., Cococcioni, M., Wentzcovitch, R.M., 2011. Spin-State Crossover
559 and Hyperfine Interactions of Ferric Iron in MgSiO₃ Perovskite. *Phys. Rev. Lett.* 106, 118501. <https://doi.org/10.1103/PhysRevLett.106.118501>

561 Hsu, H., Yu, Y.G., Wentzcovitch, R.M., 2012. Spin crossover of iron in aluminous
562 MgSiO₃ perovskite and post-perovskite. *Earth Planet. Sci. Lett.* 359–360, 34–39.
563 <https://doi.org/10.1016/j.epsl.2012.09.029>

564 Hsu, H., Wentzcovitch, R.M., 2014. First-principles study of intermediate-spin
565 ferrous iron in the Earth's lower mantle. *Phys. Rev. B* 90, 195205.
566 <https://doi.org/10.1103/PhysRevB.90.195205>

567 Hummer, D.R., Fei, Y., 2012. Synthesis and crystal chemistry of Fe³⁺-bearing
568 (Mg,Fe³⁺)(Si,Fe³⁺)O₃ perovskite. *Am. Mineral.* 97, 1915–1921.
569 <https://doi.org/10.2138/am.2012.4144>

570 Irifune, T., 1994. Absence of an aluminous phase in the upper part of the Earth's
571 lower mantle. *Nature* 370, 131–133. <https://doi.org/10.1038/370131a0>

572 Irifune, T., Shinmei, T., McCammon, C.A., Miyajima, N., Rubie, D.C., Frost, D.J.,
573 2010. Iron Partitioning and Density Changes of Pyrolite in Earth's Lower Mantle.
574 *Science* 327, 193–195. <https://doi.org/10.1126/science.1181443>

575 Ito, E., Kubo, A., Katsura, T., Walter, M.J., 2004. Melting experiments of mantle
576 materials under lower mantle conditions with implications for magma ocean
577 differentiation. *Phys. Earth Planet. Inter.* 143–144, 397–406.
578 <https://doi.org/10.1016/j.pepi.2003.09.016>

579 Lin, J.-F., Alp, E.E., Mao, Z., Inoue, T., McCammon, C., Xiao, Y., Chow, P., Zhao, J.,
580 2012. Electronic spin states of ferric and ferrous iron in the lower-mantle silicate
581 perovskite. *Am. Mineral.* 97, 592–597. <https://doi.org/10.2138/am.2012.4000>

582 Lin, J.-F., Gavriluk, A.G., Struzhkin, V.V., Jacobsen, S.D., Sturhahn, W., Hu, M.Y.,
583 Chow, P., Yoo, C.-S., 2006a. Pressure-induced electronic spin transition of iron
584 in magnesiowustite-(Mg,Fe)O. *Phys. Rev. B* 73, 113107.
585 <https://doi.org/10.1103/PhysRevB.73.113107>

586 Lin, J.-F., Jacobsen, S.D., Sturhahn, W., Jackson, J.M., Zhao, J., Yoo, C.-S., 2006b.
587 Sound velocities of ferropericlase in the Earth's lower mantle. *Geophys. Res. Lett.*
588 33, L22304. <https://doi.org/10.1029/2006GL028099>

589 Lin, J.-F., Speziale, S., Mao, Z., Marquardt, H., 2013. Effects of the Electronic Spin
590 Transitions of Iron in Lower Mantle Minerals: Implications for Deep Mantle
591 Geophysics and Geochemistry. *Rev. Geophys.* 51, 244–275.
592 <https://doi.org/10.1002/rog.20010>

593 Lin, J.-F., Struzhkin, V.V., Jacobsen, S.D., Hu, M.Y., Chow, P., Kung, J., Liu, H.,
594 Mao, H., Hemley, R.J., 2005. Spin transition of iron in magnesiowüstite in the
595 Earth's lower mantle. *Nature* 436, 377–380. <https://doi.org/10.1038/nature03825>

596 Lin, J.-F., Watson, H., Vankó, G., Alp, E.E., Prakapenka, V.B., Dera, P., Struzhkin,
597 V.V., Kubo, A., Zhao, J., McCammon, C., Evans, W.J., 2008. Intermediate-spin
598 ferrous iron in lowermost mantle post-perovskite and perovskite. *Nat. Geosci.* 1,
599 688–691. <https://doi.org/10.1038/ngeo310>

600 Lin, J.-F., Mao, Z., Yang, J., Liu, J., Xiao, Y., Chow, P., Okuchi, T., 2016. High-spin
601 Fe²⁺ and Fe³⁺ in single-crystal aluminous bridgmanite in the lower mantle.
602 *Geophys. Res. Lett.* 43, 2016GL069836. <https://doi.org/10.1002/2016GL069836>

603 Liu, J., Dauphas, N., Roskosz, M., Hu, M.Y., Yang, H., Bi, W., Zhao, J., Alp, E.E.,
604 Hu, J.Y., Lin, J.-F., 2017. Iron isotopic fractionation between silicate mantle and
605 metallic core at high pressure. *Nat. Commun.* 8, 14377.
606 <https://doi.org/10.1038/ncomms14377>

607 Liu, J., Dorfman, S.M., Zhu, F., Li, J., Wang, Y., Zhang, D., Xiao, Y., Bi, W., Alp,
608 E.E., 2018. Valence and spin states of iron are invisible in Earth's lower mantle.
609 *Nat. Commun.* 9, 1284. <https://doi.org/10.1038/s41467-018-03671-5>

610 Mao, Z., Lin, J.-F., Liu, J., Prakapenka, V.B., 2011. Thermal equation of state of
611 lower-mantle ferropericlase across the spin crossover. *Geophys. Res. Lett.* 38,
612 L23308. <https://doi.org/10.1029/2011GL049915>

613 Mao, Z., Lin, J.F., Scott, H.P., Watson, H.C., Prakapenka, V.B., Xiao, Y., Chow, P.,
614 McCammon, C., 2011. Iron-rich perovskite in the Earth's lower mantle. *Earth*
615 *Planet. Sci. Lett.* 309, 179–184. <https://doi.org/10.1016/j.epsl.2011.06.030>

616 Mao, Z., Lin, J.-F., Yang, J., Wu, J., Watson, H.C., Xiao, Y., Chow, P., Zhao, J., 2014.
617 Spin and valence states of iron in Al-bearing silicate glass at high pressures
618 studied by synchrotron Mössbauer and X-ray emission spectroscopy. *Am.*
619 *Mineral.* 99, 415–423. <https://doi.org/10.2138/am.2014.4490>

620 Mao, Z., Wang, F., Lin, J.-F., Fu, S., Yang, J., Wu, X., Okuchi, T., Tomioka, N.,
621 Prakapenka, V.B., Xiao, Y., Chow, P., 2017. Equation of state and hyperfine
622 parameters of high-spin bridgmanite in the Earth's lower mantle by synchrotron
623 X-ray diffraction and Mössbauer spectroscopy. *Am. Mineral.* 102, 357–368.
624 <https://doi.org/10.2138/am-2017-5770>

625 Mao, Z., Lin, J., Yang, J., Inoue, T., Prakapenka, V.B., 2015. Effects of the Fe³⁺ spin
626 transition on the equation of state of bridgmanite. *Geophys. Res. Lett.* 42,
627 4335–4342. <https://doi.org/10.1002/2015GL064400>

628 McCammon, C., Kantor, I., Narygina, O., Rouquette, J., Ponkratz, U., Sergueev, I.,
629 Mezouar, M., Prakapenka, V., Dubrovinsky, L., 2008. Stable intermediate-spin
630 ferrous iron in lower-mantle perovskite. *Nat. Geosci.* 1, 684–687.
631 <https://doi.org/10.1038/ngeo309>

632 McDonough, W.F., 2014. Compositional Model for the Earth's Core, in: Holland,
633 H.D., Turekian, K.K. (Eds.), *Treatise on Geochemistry (Second Edition)*. Elsevier,
634 Oxford, pp. 559–577. <https://doi.org/10.1016/B978-0-08-095975-7.00215-1>

635 Nomura, R., Hirose, K., Uesugi, K., Ohishi, Y., Tsuchiyama, A., Miyake, A., Ueno,
636 Y., 2014. Low Core-Mantle Boundary Temperature Inferred from the Solidus of
637 Pyrolite. *Science* 1248186. <https://doi.org/10.1126/science.1248186>

638 Okuchi, T., Purejav, N., Tomioka, N., Lin, J.-F., Kuribayashi, T., Schoneveld, L.,
639 Hwang, H., Sakamoto, N., Kawasaki, N., Yurimoto, H., 2015. Synthesis of large
640 and homogeneous single crystals of water-bearing minerals by slow cooling at
641 deep-mantle pressures. *Am. Mineral.* 100, 1483–1492.
642 <https://doi.org/10.2138/am-2015-5237>

643 Poitrasson, F., Halliday, A.N., Lee, D.-C., Levasseur, S., Teutsch, N., 2004. Iron
644 isotope differences between Earth, Moon, Mars and Vesta as possible records of
645 contrasted accretion mechanisms. *Earth Planet. Sci. Lett.* 223, 253–266.
646 <https://doi.org/10.1016/j.epsl.2004.04.032>

647 Polyakov, V.B., 2009. Equilibrium Iron Isotope Fractionation at Core-Mantle
648 Boundary Conditions. *Science* 323, 912–914.
649 <https://doi.org/10.1126/science.1166329>

650 Potapkin, V., Mccammon, C., Glazyrin, K., Kantor, A., Kupenko, I., Prescher, C.,
651 Sinmyo, R., Smirnov, G.V., Chumakov, A.I., Ruffer, R., 2013. Effect of iron
652 oxidation state on the electrical conductivity of the Earth's lower mantle. *Nat.*
653 *Commun.* 4, 1427. <https://doi.org/10.1038/ncomms2436>

654 Roskosz, M., Sio, C.K.I., Dauphas, N., Bi, W., Tissot, F.L.H., Hu, M.Y., Zhao, J., Alp,
655 E.E., 2015. Spinel–olivine–pyroxene equilibrium iron isotopic fractionation and
656 applications to natural peridotites. *Geochim. Cosmochim. Acta* 169, 184–199.
657 <https://doi.org/10.1016/j.gca.2015.07.035>

658 Shahar, A., Schable, E.A., Caracas, R., Gleason, A.E., Reagan, M.M., Xiao, Y., Shu,
659 J., Mao, W., 2016. Pressure-dependent isotopic composition of iron alloys.
660 *Science* 352, 580–582. <https://doi.org/10.1126/science.aad9945>

661 Struzhkin, V.V., Mao, H., Hu, J., Schwoerer-Böhning, M., Shu, J., Hemley, R.J.,
662 Sturhahn, W., Hu, M.Y., Alp, E.E., Eng, P., Shen, G., 2001. Nuclear Inelastic
663 X-Ray Scattering of FeO to 48 GPa. *Phys. Rev. Lett.* 87, 255501.
664 <https://doi.org/10.1103/PhysRevLett.87.255501>

665 Sturhahn, W., 2000. CONUSS and PHOENIX: Evaluation of nuclear resonant
666 scattering data. *Hyperfine Interact.* 125, 149–172.
667 <https://doi.org/10.1023/A:1012681503686>

668 Tsuchiya, T., Wentzcovitch, R.M., da Silva, C.R.S., de Gironcoli, S., 2006. Spin
669 Transition in Magnesiowüstite in Earth's Lower Mantle. *Phys. Rev. Lett.* 96.
670 <https://doi.org/10.1103/PhysRevLett.96.198501>

671 Urey, H.C., 1947. The thermodynamic properties of isotopic substances. *J Chem Soc*
672 562–581. <https://doi.org/10.1039/JR9470000562>

673 Walter, M.J., Nakamura, E., Trønnes, R.G., Frost, D.J., 2004. Experimental
674 constraints on crystallization differentiation in a deep magma ocean. *Geochim.*
675 *Cosmochim. Acta* 68, 4267–4284. <https://doi.org/10.1016/j.gca.2004.03.014>

676 Wang, K., Moynier, F., Dauphas, N., Barrat, J.-A., Craddock, P., Sio, C.K., 2012. Iron
677 isotope fractionation in planetary crusts. *Geochim. Cosmochim. Acta* 89, 31–45.
678 <https://doi.org/10.1016/j.gca.2012.04.050>

679 Weyer, S., Anbar, A.D., Brey, G.P., Münker, C., Mezger, K., Woodland, A.B., 2005.
680 Iron isotope fractionation during planetary differentiation. *Earth Planet. Sci. Lett.*
681 240, 251–264. <https://doi.org/10.1016/j.epsl.2005.09.023>

682 Wentzcovitch, R.M., Justo, J.F., Wu, Z., Silva, C.R.S.D., Yuen, D.A., Kohlstedt, D.L.,
683 2009. Anomalous compressibility of ferropericlase throughout the iron spin
684 cross-over. *Proc. Natl. Acad. Sci. USA* 106, 8447–8452.
685 <https://doi.org/10.1073/pnas.0812150106>

686 Wicks, J.K., Jackson, J.M., Sturhahn, W., 2010. Very low sound velocities in
687 iron-rich (Mg,Fe)O: Implications for the core-mantle boundary region. *Geophys.*
688 *Res. Lett.* 37, L15304. <https://doi.org/10.1029/2010GL043689>

689 Wu, Z., Justo, J.F., Wentzcovitch, R.M., 2013. Elastic Anomalies in a Spin-Crossover
690 System: Ferropericlase at Lower Mantle Conditions. *Phys. Rev. Lett.* 110,
691 228501. <https://doi.org/10.1103/PhysRevLett.110.228501>

692