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Abstract

Iron is the most abundant transition metal in the Earth’s interior, yet
consider able uncertainties remain as to why mantle-derived rocks have diverse
iron isotopic compositions. In particular, the isotopic fractionation behavior of
iron in the lower-mantle minerals bridgmanite and ferropericlase are largely
unexplored. The reason isthat it is challenging to study isotopic fractionation at
the high pressures relevant to the deep mantle. Here we report in situ
measurements of the mean force constants of iron bonds in these minerals
pressurized in a diamond anvil cell using the technique of nuclear resonant
inelastic X-ray scattering (NRIXS). Wefind that the transition from high- to low-
spin iron in ferropericlase ((Mgo7sFen25)O) at approximately 60 GPa drastically
stiffens its iron bonds in the low-spin state. The mean force constant of iron
bonds in both Fe-bearing and (Fe,Al)-bearing bridgmanite exhibits softening by
21% at approximately 40-60 GPa, which seems to be caused by changes in the
iron local environment during the transition from low to high quadrupole
splitting states. These results indicate that in the lower mantle, low-spin
ferropericlase is enriched in heavy iron isotopes relative to bridgmanite and
metallic iron by +0.15%. and +0.12%o., respectively. Based on these results, we
investigate whether terrestrial magma ocean crystallization or protracted
core-mantle interaction in the lowermost mantle could have fractionated iron
isotopes. We conclude that these this processes cannot be responsible for the

heavy iron isotope enrichment measured in terrestrial basalts.
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1. Introduction

The +0.1%o heavy iron isotope enrichment (expressed in 6°°Fe, the deviation in
permil of *°Fe/**Fe ratios relative to reference materia IRMM-014) of mid-ocean
ridge basalts (MORBS) relative to chondrites (Teng et a., 2013) distinguishes the
Earth from other planetary bodies, such as Mars and Vesta, whose crustal rocks
exhibit a similar iron isotopic signature to chondrites (Poitrasson et a., 2004; Wang et
a., 2012). Core formation, as the most significant differentiation event in Earth’'s
history, shaped the chemistry of the mantle, most obviously by scavenging Fe, Ni and
siderophile elements into the core. Whether a similar imprint was left in the stable
isotopic composition of mantle rocks, in particular for iron, is much more uncertain
and is a topic of active research (e.g. Polyakov 2009; Shahar et a., 2016; Liu et dl.,
2017; Elardo and Shahar, 2017; Bourdon et a., 2018). The most recent results suggest
that due to the comparable strengths of the iron bonds in Fe**-bearing silicate glasses
and metal aloys at high pressure, and the high temperatures involved (~3000-4000 K),
core formation likely played a minor role in fractionating iron isotopes (Liu et al.,
2017). Other hypotheses for the superchondritic iron isotopic composition of
terrestrial basalts include mantle partiad melting (Dauphas et al., 2009) and early
evaporation processes (Poitrasson et a., 2004). Magma ocean crystallization could
also have fractionated the stable isotopic composition of elements such as silicon
(Huang et a., 2014) but iron isotopic fractionation in this process has been largely
unexplored. While core formation was probably not responsible for fractionating iron

isotopes in Earth’s mantle, significant exchange could still have taken place at the
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core-mantle boundary (CMB). This boundary marks the largest thermochemical
contrast in the Earth’s interior, therefore chemica exchange between the lowermost
lower mantle and core is expected to have possibly influenced the geochemical
evolution of the mantle (Brandon and Walker 2005; Humayun et al., 2004). These
geochemical signatures could be transported back to the shallower mantle through
mantle convection (van Keken and Zhong, 1999). In particular, such interactions
might be responsible for the low &®W values measured in plume samples

characterized by high *He/*He ratios (Mundl et al. 2017).

The most abundant iron-bearing phases in the lower mantle are bridgmanite (Bm)
and ferropericlase (Fp). As such, they control how iron isotopes will be fractionated at
the interface between the core and mantle or during magma ocean crystalization.
Pressure-induced spin transitions of iron in both minerals have been documented to
significantly influence their elastic, transport, rheological, and geochemical properties
(Lineta., 2005, 2013; Wentzcovitch et al., 2009; Wu et al., 2013). The spin transition
of Fe** in Fp with a composition Fep2sMgo7sO occurs at 80-110 GPa along a mantle
geotherm (Mao et al., 20114d), which is associated with a ~2% volume decrease and
presumably a shortening of the iron bonds by at least 0.7% (Tsuchiya et a., 2006; Lin
et a., 2013), which is expected to influence iron isotopic fractionation significantly.
On the other hand, Bm contains both Fe** and Fe** ions in the large
pseudo-dodecahedral (8/12-fold) A-site as well as Fe** in the small 6-fold, octahedral
B-site (Hsu et a., 2011; Lin et a., 2013). In a pyrolitic lower-mantle composition,

most Fe** will be distributed in the A-site due to the charge-coupled substitution of
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approximately 5-7% AI*" in the octahedral B-site (Hsu et al., 2012; Lin et al., 2013).
Recent studies have shown that the B-site Fe** undergoes a spin transition at
approximately 15-50 GPa (Catalli et a., 2010; Hsu et al., 2011; Mao et al., 2015; Liu
et a., 2018) while the A-site iron ions experience loca site distortions at ~45 GPa
associated with an increase in the quadrupole splitting (Mao et al., 2017; Hsu and
Wentzcovitch, 2014). The site distortion of A-site iron can affect the local electronic
bonding characters resulting in distinct equation of state parameters and thermal
conductivity of Bm (Mao et a., 2017; Hsieh et al., 2017). Spin transitions in Fp and
Bm can aso significantly change the partitioning of iron and magnesium between
these minerals (Lin et al., 2013, Irifune et al., 2010). The partitioning coefficient
K=(FE/Mg)am/(FEIMQ)r, in a pyrolitic mantle compositionis ~0.8 a 30 GPa and
drops to ~0.4 at 136 GPa corresponding to the core-mantle boundary (CMB)
conditions (Irifune et a., 2010). This means that at the CMB, the proportion of iron
atoms in Fp and Bm is about 3:2 and ferropericlase becomes the magjor iron carrier in
the deeper lower mantle. Of particular interest to geochemistry are the potential
effects of the spin transition and local site distortions on the vibrational properties and
mean force constant <F> of the iron bonds. Indeed, equilibrium iron isotopic
fractionation between phases is directly related to the difference in stiffness of iron

bonds of coexisting minerals. of the iron bonds in the phases under consideration

To explore the possible fractionation induced by the spin transition and lattice
distortion under compression and quantify the magnitude of iron isotopic fractionation

in the lower mantle, we measured the mean force constant <F> of the iron bonds in
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Fp and Bm samples with compositions relevant to the lower mantle. For this purpose,
we pressurized the samples using diamond anvil cells (DACs) and measured their
lattice vibrations using nuclear resonant inelastic X-ray scattering (NRIXS)
spectroscopy. Synchrotron Mdssbauer spectra were also collected to characterize the

spin and valence states of iron in the samples.

2. Methods

2.1 Sample synthesis

Polycrystalline >’Fe-enriched ferropericlase ((Mgo7sFep25)O) was synthesized
using the inter-diffusion of a mixture of MgO and metallic >’Fe powder (>98%
enrichment; Cambridge Isotopes) at approximately 1450 K for 8 hours under a
controlled CO,-CO atmosphere near the Fe-FeO redox buffer (Lin et a., 2006).
(FeAl)-bearing Bm  single crystas  (MgogoFe® 002aF€0.006Al0.11Si08903)
(Fe*IFex=0.8) were synthesized from a mixture of MgSiOs, Mg(OH),, Al-Os, and
>"FeO powder (>98% enrichment; Cambridge Isotopes) in a Kawai-type apparatus at
24 GPa and 2023 K for 7 hours at the Institute for Planetary Materials, Okayama
University at Misasa, Japan (Okuchi et a., 2015; Mao et a., 2017). Poly-crystaline
Bm (MgogoFe* 007Fe* 000Singe0s) (Fe*'/Fex=0.25-0.30) was synthesized from
>"Fe-enriched enstatite powder (MgooFey1SiOs) in a multi-anvil press at 24 GPa and
1673 K for an hour at the Geodynamic Research Center (GRC), Ehime University

(Lin et al., 2010). Another poly-crystalline Bm (Mgo,74F92+o,12Fe3+0,123i0,9303)
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(Fe*'/Fe=0.50) was synthesized from laser heating *>'Fe-enriched enstatite powder
(Mgo.75Fep25Si03) sandwiched between NaCl pellets in a panoramic DAC. The
sample was pressurized and heated at approximately 35 GPa and 1500 K for about 2
hours a the GSECARS of the Advanced Photon Source, Argonne Nationa
Laboratory (Mao et a., 2011b). The chemical compositions, lattice parameters, and
iron valence states of these samples were previously characterized using an electron
micro-probe, X-ray diffraction, and Mdssbauer spectroscopy (Mao et a., 2011b, 2017;
Lin et a., 2012). Additional XRD measurements of the samples were performed at

beamline 13-1DD of GSECARS to confirm their crystal structures at high pressures.

2.2 DAC preparation and Synchrotron NRI XS measurements

We conducted in situ high pressure NRIXS experiments on >'Fe-enriched
ferropericlase ((Mgo.75Fep.25)O) and bridgmanite (Mgo.soFe* 0.024F€*0.006A10.11Si0.8903,
Mo.g2Fe” 0.07F€* 002800603, Mo74F€* 0.12F€*0.15Si00s03) in diamond anvil cells
(DACs) up to 104 GPa at sector 3ID-B of the Advanced Photon Source, Argonne
National Laboratory. Each starting sample of about 10-20 pm in thickness and 20-30
pum in diameter was separately loaded into a sample chamber. The chamber was a hole
drilled in a Be gasket embedded with a cubic BN gasket insert and squeezed between
a pair of diamond anvils. We used panoramic diamond anvil cells as compression
devices and the anvil culet size ranged from 400 pum flat to 150-300 um beveled. For

most of the experiments, we used a mini anvil (culet size 150 um) or a partialy
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perforated anvil (culet size 400 um) facing the incident X-ray beam to reduce the
intensity loss of the X-ray when it penetrated through the anvil; this also allowed us to
collect the energy spectra with enhanced signal-to-noise ratio within a reasonable data
collection times. Fp powder was loaded into a DAC using mineral oil as the pressure
medium and a ruby sphere as the pressure calibrant. For Bm, two sets of NRIXS

experiments were performed:

(1) A single-crystal (Fe,Al)-bearing Bm sample was polished to approximately
10~15 pum thick and then loaded into a DAC using mineral oil as the pressure medium
and a ruby sphere as the pressure calibrant. The sample was measured a room

temperature without laser annealing.

(2) The poly-crystaline Fe-bearing Bm samples were also polished and
compressed between two NaCl pellets and laser-annealed to ~2000 K to release
potential stress at each given pressure before the spectra were collected. The pressure
was calibrated using ruby fluorescence spectra below 80 GPa. Above 80 GPa XRD
patterns of NaCl were collected and used as the pressure gauge, while the diamond

Raman spectra were used as a secondary reference.

NRIXS spectra were scanned around the nuclear transition energy of *'Fe
(14.4125 keV) with a step size of 0.25~0.33 meV for the 1 meV energy resolution of
the incident X-ray or 0.5~0.6 meV for the 2 meV energy resolution. The acquisition
time was 3~5s per energy step. The energy spectra of Fp below 70 GPa and

(Fe,Al)-bearing Bm at ambient conditions were measured using the 1 meV energy
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resolution of the incident X-ray source, whereas the 2 meV energy resolution X-ray
was used for the Fp sample above 70 GPa and all the Bm samples at high pressure.
The incident X-ray source with a 2 meV resolution has a photon flux of 1x10™
photons/s, double of that of the X-ray source with a 1 meV resolution. Therefore, its
use was necessary for the high-pressure Bm measurements as (i) the samples had a
relatively dilute Fe content and (ii) the high pressure increases the Lamb-Mdssbauer
factor, which means a decrease in the inelastic scattering probability, making the data
collection even more challenging. Each NRIXS scan took about 1 to 1.5 hours to
complete, and 17~44 NRIXS scans (about 1~2 days of beamtime) were collected and
combined in order to achieve good statistics for the inelastic signals. The energy
spectra were collected over a broad energy scan range (for example from -160 to +180
meV for ferropericlase), which is crucial to capture the multi-phonon contributions
and possible high-energy vibration modes that can influence the calculated <F>

values.

2.3 Data quality and reliability of <F> derivation

High-quality NRIXS data (Fig. 1, 2) with high signal/noise ratios were collected
with sufficient numbers of energy scans (17-44) over an extended range (+ 120 to 200
meV). It is necessary to scan over wider energies at high pressure as the phonon

modes shift to higher energies (Fig. 3).

Equilibrium iron isotopic fractionation is governed by the bonding strengths of
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the iron-bearing phases. The strength of the iron bonds is quantified using the mean
force constant <F>, which can be derived under the harmonic approximation from
the analysis of the moments of the NRIXS energy spectra S(E) using the-SciPhon
seftware (Dauphas et al., 2012, 2018). This method gives a better assessment of the
experimental uncertainties and systematic errors than using the moments of the
phonon density of states (Dauphas et al., 2012). In the quasi-harmonic lattice model,
the mean force constant of iron <F> (in N/m) is related to the third moment of the

NRIXS spectrum SE) through:

M o 3
<F >=E—anw(E— E.) S(E)dE, (1)

where M is the mass of the nuclear resonant isotope (°’Fe in this study), E is the
energy difference between incident X-ray and the nuclear resonant energy Ep (in
meV), and Er=Eo%/2Mc? is the nuclear recoil energy (that is, 1.956 meV for *Fe,
where Eq=14.4125keV is the nuclear resonant energy of >’Fe, and c is the speed of
light). Within the harmonic approximation (interatomic potentials are quadratically
related to atomic displacements), the <F> value of iron is independent of temperature.
The B-factors can be calculated from <F> using the following relationship (Dauphas

et al., 2012):

56 54 F
1000Inp ™ Fe:1000(M1 -Ml ]Sk’fT2<F>=2904<T—2>, @)
%Fe

=)

where Kk is the Boltzmann’'s constant, 7 is the reduced Planck constant, M represents

the mass of an **Fe or *°Fe nucleus and T is the absolute temperature in K. The
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pS-factor, also known as the reduced partition function ratio, represents the ratio of
(*°Fe/®*Fe) in the investigated iron-bearing phase, to the (*°Fe/**Fe) in the ideal
dissociated iron gas at equilibrium. Accordingly, by subtracting the Ing of phase A
from that of phase B, we obtained the predicted equilibrium fractionation between

two coexisting phases A and B (Urey, 1947) ,
56 54, 56 54 F = F
AsGFe‘;‘{A:(556FeB—556FeA)eq =1000Ing, ™ "-1000Ing, ™ Fe:2904<>BT#, ©)

where 5°°Fen and 6°Fes are the iron isotopic compositions of phases A and B,
respectively, and A°Fe® g4 is the permil difference in the isotopic ratio (*°Fe/*'Fe)
between phases A and B at thermodynamic equilibrium. The uncertainties of the
derived mean force constant <F> in this study using SciPhon (Dauphas et al., 2018)
include both statistical and systematic errors and are typically about 10-15% (Table

1).

3. Reaults

The iron force constant of Fp increases with pressure up to 60 GPa at a rate of 3.0
N-m™*.GPa™. Starting at 60 GPa, the force constant increases more rapidly at a rate of
8.6 N-m™*-GPa*! (Figs. 4 and 5). The spin transition of Fe** in Fp ((Mgo7sFen25)0)
takes place around 60 GPa (Lin et al., 2005, 2013), as confirmed by synchrotron
Mo6ssbauer spectroscopy (SMS), which showed a transition from several quantum
beats to a natural decay line implying the disappearance of quadrupole splitting in

iron (Fig. 6). Across the spin transition, the unit cell volume collapses by ~ 2% and
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the Fe-O bond length decreases by at least 0.7% (Tsuchiya et al., 2006; Lin et al.,
2013), respectively. The spin transition is visible in our experiments as a change of the
dependence of the <F> value with pressure. The <F> value of Bm increases with
increasing pressure up to about 45 GPa at arate of ~5.5 N-m™>-GPa™. It dlightly drops
down to ~350 N/m and remains amost unchanged up to 100 GPa (Figs. 4 and S1).
The <F> vaues of al Bm samples fall on the same trend, regardless of their
Fe**/Fey ratios that range between 0.25 and 0.8 (Fig. 4). Finally we aso included
here the iron force constants <F> of silicate a basaltic glass previously determined to
a maximum pressure of 64 GPa (Liu et a., 2017). Since there is no observable spin
transition of iron in slicate glasses (Mao et al., 2014; Gu et a., 2012), we modeled
the pressure dependence of <F> with alinear trend and extrapolated it to around 100
GPa. At pressures above 60 GPa, the LS Fp has a much larger <F> value than the Bm,
basaltic glass (Liu et a., 2017) and iron aloys (Liu et a., 2017; Shahar et al., 2016)
(Fig. 4), implying that heavy iron isotopes would be concentrated in LS Fp beneath

the middle part of the lower mantle (Fig. 5).

4. Discussion

4.1 Deter mining the evolution of <F>in Bm and Fp asafunction of Pand T

The effect of the spin transition on <F> and the fractionation of isotopesin Fp has
been demonstrated at 300 K. To address the fractionation of iron isotopes in the lower

mantle, the measured mean force constant of the iron bonds <F> in Fp at high
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pressure and 300K can be used to derive the pressure and temperature dependence of
the force constant based on our prior knowledge on how iron partitions between low
and high spins. We shall assume that the low-spin and high-spin iron atoms can be
treated as independent components so that the mean force constant of iron can be
calculated from the weighted average of the force constants of iron in the different

spin states,

<F>=<F> Xngr<F>usx (1'nLS)| (4)

where nis is the fraction of the low-spin iron, and <F>us and <F>s are the force
constants of iron in the high-spin (HS) and low-spin (LS) states. The LS iron fractions
for Fp at different pressures and temperatures are reported in Mao et al. (2011a). The
force constants of iron in different spin states can be expressed as a linear function of

jpressure:

<F> sa XP+bs, <F>ps=ansxP+bys, (5)

where a and b are empirical fitting coefficients obtained by regressing the mean force

constant <F> against P:

ays=3.00+0.18 N-m*-GPa?, by=186+6 N-m™,

a, =8.62+0.61 N-m™*-GPa?, b s=-182+52 N-m™™.

Note that LS iron is not stable below 60 GPa so it is inconsequential that b s is

negative.

The force constant along an expected geotherm of the lower mantle (Brown and
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Shankland, 1981) was calculated using the pressure-temperature-dependent n,s given
in Mao et a. (2011a) and the results above (Fig. 5). With this new set of force
constants, the p-factors of various phases along the expected geotherm (Brown and
Shankland, 1981) were calculated from Eq. 2 and the isotopic fractionation between
Fp and Bm is determined by Eq. 3. To estimate the isotopic composition of each phase,
we aso need to know how iron partitions between Fp and Bm, which allows us to

write the following mass-balance relationship,
856Femant|e:856|:a:px an+856FeBmanm| (6)

where ng, and ngm are the mass fraction of iron in ferropericlase and bridgmanite,
respectively. Combining equation (3) and (6), we calculated 656Fe|:p and 5>°Fesm (Fig.
7). In the calculation, we assumed that the lower mantle has a chondritic iron isotopic
composition (5°°Femanie=0). The values of ng, and ngy are calculated from the
previously determined iron partition coefficients by taking into account the effects of
the spin transition in Fp and the Al-substitution in Bm for a pyrolitic mantle (Irifune et
a., 2010). In a pyrolitic mantle, the presence of Al in the B-site of Bm tends to
prevent ferric iron from partitioning into that site so only the A-site iron needs to be
considered. Furthermore, based on our data, the force constant of the iron cations in
the A-site defines a single trend regardless of the proportions of ferric and ferrous iron.
To the first order, our experimental determination of the <F> for the Bm is therefore
appropriate to model iron isotopic fractionation in natural settings. Finaly, there is a
negligible amount of iron in CaSiOs silicate perovskite (Irifune, 1994) so we did not

consider its partitioning into this phase.



308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

Within this framework, our model indicates that little fractionation between Bm
and Fp would be expected in the middle part of the lower mantle at depths between
1200 to 1800 km because of the counter effects between lattice-distertion-tnduced the
iron local site change that induced softening in Bm and the pressure-enhanced <F> in
Fp. The spin transition of iron in Fp starts at about 80 GPa along an expected
geotherm (Brown and Shankland, 1981) such that Fp is expected to increasingly
concentrate the heavy isotopes of iron compared with Bm at depths higher than 1800
km. Using the Feg7NigSis alloy as an analogue for iron in the outer core (Liu et al.,
2017), our modeling further shows that the equilibrium iron isotopic fractionation
between Fp and metallic iron at CMB conditions (3570 K) (Nomuraet a., 2014) isas
large as 0.12 %o, while the equilibrium isotopic fractionation between Bm and
metallic iron isonly -0.02 %0 (Fig. 7). A similarly negligible fractionation is expected
between a molten silicate and metallic iron (Liu et a., 2017). Taking into account the
partitioning of iron between Fp and Bm under CMB conditions, we estimate a

core-mantle iron isotopic fractionation factor of ~0.08 %o.

4.2 Bonding environment and force constant of iron in Bm at high pressure

The iron bonding environment and thus its force constants in Bm can be
influenced by several factors including the site occupancy (A and B sites), spin and
valence states, and lattice changes at high pressure. Our current understanding of the

site occupancy in Bm is that the A-site hosts Fe** and Fe** while the B-site only
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accommodates Fe** (Catalli et a., 2010; Hsu et a., 2011; Lin et al., 2013). The
addition of AI** to Bm makes the B-site energetically unfavorable for Fe** such that
(Fe,Al)-bearing Bm would contain A-site Fe** and B-site AlI** via charge-coupled
substitution (Hsu et a., 2012; Hummer and Fei, 2012; Potapkin et a., 2013). The
current understanding of the spin states in Bm is that the B-site Fe** undergoes the
HS-LS transition around 15-50 GPa (Catali et al., 2010; Hsu et a., 2011; Mao et al.,
2015; Liu et al., 2018) while Fe** and Fe*" in A-site remain in the HS state throughout
the lower mantle pressure range (Lin et a., 2016; Hsu et al., 2010, 2011). We should
also note that an intermediate spin state of Fe** with very high QS at high pressure
was also reported to occur (Lin et a., 2008; McCammon et a., 2008) but not
confirmed computationally (Hsu et a., 2010; Hsu and Wentzcovitch, 2014). Instead,
what was found computationally (Hsu et a., 2010) was a change in iron d-orbital
occupancy along with a lateral displacement of iron in the perovskite “A-site”. This
change in Mossbauer quadrupole splitting (QS) corresponds to the theoretically
identified displacement of iron in the A-site occurs between 30-60 GPa (Hsu et al.,
2010). Beyond 60 GPa, the two states cannot be distinguished in the Md&ssbauer
spectra, which suggested a double-well-like energetic structure for the low-QS and
high-QS pair of states, with a final merging of both states into a single well at high
pressures. Such double-well structure was verified computationally (Hsu et al., 2010).
State changes such as the low-QS to high-QS in a double-well type energetic structure

should be very anharmonic.

To understand the effects of spin, valence, and lattice on the Fe-O force constants
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of our Bm samples at high pressure, we assume the charge-couple substitution
mechanisms of [Fe*]a-[Al*'] for the (Al,Fe)-bearing samples and [Fe*']a-[Fe* g for
the Al-free samples. For example, based on the chemical formulae of our samples,
their B site Fe* content should be [MgoseFe™ 0024 0.006] A[Alo11SioaslsOs,
[Mgo.soFe™ 007> 001l AlFE* 0.01Si0.00] 803 and
[Mgo.7aF€* 012F€* 0.10] Al F€* 0.02Si0.08]80s. The latter might be an incomplete picture
since charge balance in this Al-free sample implies in considerable amount of A-site
vacancies. This reasonable assumption implies that there is very limited amount of
B-site Fe** (up to few percent) in our (Al,Fe)-bearing and Al-free Bm samples. That is,
the B-site spin transition in (Al,Fe)-bearing Bm would likely play a very minor role
on the <F> results here. Therefore, the measured <F> values should predominantly
represent a weight-averaged contribution from Fe** and Fe** bonding strengths in the
A-site. We should note that Bm in the relevant lower-mantle composition is likely to
contain significant amounts of Fe and Al such that the B-site Fe** should be very

limited (Irifune et al., 2010; Hsu et a., 2012).

Both experimental and theoretical studies have documented significant change in
the local iron environment in A-site Fe”* at around 45 GPa associated with the
low-QS to high-QS state change (Mao et al., 2017; Hsu at a., 2010; Boffa Ballaran et
al., 2012) shown in the Mossbauer spectrain Fig. 6. The change in local environment
and QS is also reflected in the lattice parameters indicating an increase in Si-Og
octahedron tilting angle (Mao et al., 2017). Our high-pressure Bm results show that

the <F> value increases with increasing pressure up to approximately 40 GPa, which
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should be caused by the pressure-enhanced shortening of the interatomic distance of
Fe?* in the relatively low-QS state. At higher pressures, the lower value of <F> and
the weak pressure dependence of the <F> value, an amost flat feature with
increasing pressure, could be reflecting a balance between a negative effect on the
<F> values from the enhanced site distortion and a positive effect from shortened
inter-atomic distance. However, the “average” Fe**-O interatomic distance in the
low-QS and high-QS states are quite similar (Fig. 2 in Hsu et a., 2010) with the
low-QS site displaying a wider range of bond-lengths. Alternatively, the dynamics of
Fe?* throughout the low-QS to the high-QS state change, a double-well like energetic
structure changing into a single well at high pressures could be highly anharmonic. In
this case, the harmonic expression for <F> and the harmonic calculation of phonon
frequencies might not be appropriate. The dynamics of Fe** during the co-existence of
these states, with a possibly small barrier between them and different electronic
occupancy of d-orbitals in each side of the double well could be highly anharmonic
and non-adiabatic. At the moment, neither experimental nor theoretica methods are

prepared to address this complex situation.

As shown in previous studies of silicate glasses (Dauphas et a., 2015) and spinels
(Roskosz et d., 2015), the valence state of iron is also expected to influence the force
constant of the host materials. These studies have found the iron force constant
differences between ferrous and ferric end-members, A<F>pqu-rery, 0 be
152+33N/m, 145+27N/m and 104+17N/m, for basdltic glasses, rhyoalitic glasses and

spinels respectively. Our three Bm samples contained different Fe**/Fey ranging
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between 0.25 and 0.8, primarily in the A-site, and showed indistinguishable <F>

results from each other.

Results of previous ab initio calculations can shed light on this indistinguishable
force constants of Fe** and Fe** in the A-site. First, the average bond-lengths of Fe**
in low QS and high QS states (Hsu et a., 2010), and Fe** in the HS state in the A-site
(Hsu et a., 2011) are very similar. Only Fe** in the B-site, which is not abundant in
our samples has a much shorter average bond-length. The similarity of average Fe-O
bond-lengths of Fe** and Fe?* in the A-site can be reasoned on the basis of orbital
occupancies. The bond-lengths depend strongly on the occupancy of ey type orbitals
which point toward the nearest neighbor oxygen atoms in an octahedra-like
environment or nearly so. For both Fe** and Fe** in the HS state, as expected here, the
d-electrons configurations are: t3,e’ and t3,e;, respectively, with the same
occupancy of e, states, therefore, resulting in similar Fe-O bond lengths. This
symmetry classification of d-orbitals is not completely adequate because the
symmetry is not octahedral but it is sufficient to say that the spin up electrons
completely fill the spin up d-sub-shell with similar radii in both cases. The different
ionization state of these ions plays a secondary role to electronic configuration (HS or
LS) in determining the Fe-O bond-lengths. Not even the possible presence of “A-site”

vacanciesin one of our samples seems to affect this behavior.

4.3 Modelling the evolution of iron isotopic fractionation during magma ocean
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crystallization

The Earth is thought to have formed from collisions between large planetary
embryos, which must have induced the formation of magma oceans (Ito et al., 2004).
In particular, the Moon-forming giant impact may have induced widespread melting
in the Earth. From alargely molten body to the present-day solid Earth, crystallization
of the magma ocean would have shaped the Earth’s chemical structure and potentially
fractionated iron isotopes in a manner analogous to what has been advocated for the
Moon (Weyer et al., 2005; Poitrasson et al., 2004). Meanwhile, this large-scae
melting event drastically redistributed iron within the different planetary reservoirs
and it is possible that some Fe-rich regions became geodynamicaly isolated and

eventually became a hidden iron isotope reservair.

Here we use the fractionation factors of solid Fp and Bm together with a
previously reported fractionation factor of a basaltic glassas an analogue to basaltic
melts (Liu et al., 2017) to explore the possible consequences of a crystallization
process happening in the deep lower mantle (Fig. 7). The <F> vaue for melts in the
magma ocean is taken by extrapolating the <F> values of basdltic glass (Liu et a.,
2017) to the relevant pressure assuming that the spin state of iron in silicate glass is
unchanged at lower mantle conditions (Mao et al., 2014; Gu et d., 2012). The <F>
value for the solid fraction was caculated as the weighted average of the force

constants of Fp and Bm,

<F>sm=<F>ppNrpt <F>gmNem, (7)
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where ngp and ngm are the proportions of iron in Fp and Bm in the solid fraction

respectively.

We simulated the iron isotopic composition of melts and solid aggregates during
the whole crystallization process. Fractional crystallization and a mass-balance
relationship were used in the model. The compositions of the solid and melt were
calculated after each 1 wt% increment of crystallization. For the iy separation of
crystals, the isotopic composition of crystals equilibrated with the remaining melts

can be calculated by 8°Feyysa.i+1=0" Femaiti+A Feuysa-met, and based on the isotopic

mass-bal ance we have;
856Feme|t_i+1=[856|:eme|t_i—(856Feme|t-i+A56Fecrystal—me|t) Nerystal]/(1-Nerystal) (8)
8Feurysasi+1=-0" Femat.i+1-N meit/ (1-Nmet), (9)

where 8®Fenati and 5°°Femaris1 are the iron isotopic composition of the melt before
and after the iy, increment of crystal removal, A56Fecrystaj-me|t is the equilibrium iron
isotopic fractionation between Fp and Bm aggregates and melts, neysa 1S the fraction
of iron taken up by crystals at each step, 856Fecry5¢a]&i+1 IS the iron isotopic composition
for accumulated Fp and Bm crystals after the iy, increment and Ny 1S the fraction of

total iron in the remaining melt.

The compositional evolution of minerals crystallizing from the magma ocean was
adapted from a previously reported thermodynamic model by Boukaré et al. (2015).
The crystallization starts from the liquidus phase Mg-Bm containing almost no iron.

After about 20 wt% of the melt solidifying, Fe begins to be incorporated in the
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iron-bearing Fp. When ~27wt% of the melt has crystallized, iron-bearing Bm appears.
There is very limited iron isotopic fractionation in melts during most of the
crystallization process because (i) iron is moderately incompatible and prefers to stay
in the melt rather than in crystals (Andrault et al., 2012; Boukaré et al., 2015) and, (ii)

the extreme high temperature suppresses the isotopic fractionation (Urey 1947).

Over the whole crystallization process, melts are isotopically heavier than solids
but the fractionation between solids and melts does not exceed +0.025%.. Much of
that small fractionation would have presumably been erased by mantle mixing over
Earth’s history and would be hardly resolved given present analytical uncertainties.
Our results thus suggest that crystallization of the magma ocean and associated
equilibrium iron isotopic fractionation between melt and crystals is unlikely to have

caused significant iron isotopic fractionation in any mantle reservoir.

5. Conclusion

We have measured the thermochemical and lattice dynamical properties of Fp and Bm
at high pressure by applying the synchrotron technique of nuclear resonant inelastic
X-ray scattering to samples loaded in diamond anvil cells. The results revea a
substantial change in the increase rate of the mean force constant of iron bonds at 60
GPain Fp, corresponding to a spin transition of iron around that pressure. The mean

force constant of Bm increases up to 45 GPa and then drops and remains constant
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above this pressure. This behavior is not easily understood but it could result from
combined effects of strong anharmonicity in the dynamics of iron in the perovskite
A-site and by a lattice distortion rather than a strengthening of the Fe-O bonds. The
indistinguishable force constants of Fe** and Fe** in the A-site can be reasoned on the
basis of the d-orbital occupancies and resulting comparable bond-lengths of these ions.
The derived force constants are used to calculate the extent of the iron isotopic
fractionation associated with magma ocean crystallization and the fractionation during
this process was found to be minimal. Because of the significant differences in the
iron force constants of the coexisting high pressure phases, strong iron isotopic
heterogeneity is expected between coexisting minerals at high pressure but this
heterogeneity may not be expressed in the isotopic geochemistry of the igneous rocks
available at Earth’'s surface. Test of the iron isotope heterogeneity profile would be

enabled by future isotopic analysis of Fp and Bm from the lower mantle.
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