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TEM Liquid Cell Design

* A sealed lLiquid electrochemical cell enables unique in-situ
experiments on a transmission electron microscope (TEM) in
standard volatile electrolytes.

* To link observed morphological changes in electrodes to standard
electrochemical cells (e.g. batteries), quantitative current/voltage
control 1s required at fA-pA levels.

* We developed a electrochemical platform optimized for nanoscale
measurements and TEM 1maging:
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Assembled chip on holder:

Our priorities: narrow electrolyte gap for good resolution,
quantitative electrochemistry capability, ability to add active
materials, and multiple electrodes for multiple experiments.

* To localize electrochemistry to viewable area, electrodes are
masked with ALD Al,O; and patterned using electron-beam
lithography.
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Nanoparticde assembly also possible:
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Electron Beam Effects

* Metallic L1 1s an 1deal battery negative electrode, but high-
surface-area dendrites cause degradation and safety 1ssues.

 TEM liquid cell enables unprecedented visualization of dendrite
initiation conditions and electrodeposition/dissolution dynamics.

* Plate and strip 1n typical electrolyte (1:1 EC:DMC / 1 M LiPFy)
at typ1ca1 Li- battery current density: 1, 10, and 25 mA/cm?.

nan Experiment:

« Apply galvanostatic current to 0.26-pm? Ti working
electrode to induce Li deposition

« Counter / reference electrodes are 750-ym? Ti circles

« Take first image halfway through electrodeposition.

* Image periodically through deposition and stripping.

Low-density Li appears light in BF STEM images.

’ngh efficiency cycling.

(e) after stripping

= |<—Cyc|e 1—>|le—Cycle 2—»]

(h) after stripping

%280

IIIIIIIIIIIIIIIIII IIIIIIIIIIIIIIIIIIr

0O 60 120 180 240 300 360
t (min)

During electrochemical stripping, dissolution initiates from discrete weak points in surface film rather than uniformly.

w_ Needle- hke dendrites appear.

(d) after stripping
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Dendrites appear on later cycles, likely
due to formation of passivating surface
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w— Larger dendrite growth poor efficiency.

Some Li needles observed
to grow from the base,
not just from the tip.

Cycle 2

EELS confirms light deposits
are Li (7.3 eV bulk plasmon):

* Electron beam induces radiolysis in electrolyte that can interfere
with the intended electrochemistry even at minimal dose rates.

* For reactive metal plating, surface films (solid-electrolyte
interphase, SEI) critically affect deposition location/morphology.

* Test beam effect: scan in electrolyte near Li at high dose rate, and
do plating/stripping with nearly constant imaging.

Imaging dose rate: 10 e nm2 s for 5s.
Dose rate during test: 3,750 e nm2 s

« Beam creates a SEI surface film upon
extended exposure.

« Beam-induced film continues to grow
without Li present.

« Scanning beam in dark deposit reduces it
back to light-colored Li:
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Note: Little beam effect while scanning in elecirolyte away from Li.

W Uniform, spherlcal grains.
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Compare to deposition morphology without beam exposure.
\ Beam mediates Li nucleation and growth even with minimial beam current. /

« CINT TEM liquid cell platform development enables
visualization of the difficult Li plating process.

* Small exposed electrode area allows quantitative
electrochemical measurements, linking observed nanoscale
phenomena to bulk electrochemistry.

* Initiation of needle-like L1 dendrites visible in TEM and are
more pronounced at higher current density.

* Electron beam exposure induces a surface film and modifies
the Li plating morphology, causing spherical grains rather
than crystalline needles.
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