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Moving optical networks on-chip
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Paul Davids



SNL Photonics Fabrication
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 Low-energy modulators1, detectors2, low-loss waveguides, SiN
edge couplers, travelling wave Mach-Zehnder modulators, grating 
couplers, advanced CMOS flip-chip / direct CMOS integration

 Suspended Si/SiN resonators 
phononic/photonic crystals3, aluminum 

nitride resonators 
and transducers.

 Compound semiconductor 
devices and fabrication

 MEMS
processing

 Near to long-wave IR plasmonics
and metamaterial4

based devices.

1M.R. Watts, et al. OPEX 19 21989 (2011) 
2C.T. DeRose, et al. OPEX 19 24897 (2011)
3P.T. Rakich, et al. Nature Comm. 4 1 (2013)
4D.B. Burckel, et al. Advanced Mat. 22 5053 (2010)

3 C. DeRose et. al., IEEE Optical Interconnects 2013



Core Silicon Photonics

Resonant Optical 
Modulator/Filter

Thermally stabilized 
modulator 

Fast Reconfigurable 
Interconnects Tunable Resonant 

Filter

Thermo-optic Phase 
Shifter

Broadband Mach-Zehnder
Filter/Switch Low loss 

optical 
coupler

Switch Arrays

Si Photonics-
CMOS 

Integration

3.2fJ/bit at 
12Gb/s

High-speed  
Ge Detector in 

Si

< 1V-cm at 10 Gb/s

Free-carrier Effect (high-speed) Thermal Optic Effect (wide-
band)

Ge



Electronic-Photonics Integration

5

2.5 mm

3.9 mm

Vdd

GND

Vm

Modulated optical output at 5 Gbps

 Heterogeneous integration
 Independent optimization of 

electronics & photonics

 Challenge: Need high yields 
and small bond size

Photonic Layer Fiber 
Interface

CMOS 
Bond Pad

Package/Printed Circuit Board.

80 fJ/bit measured



Coherent quantum feedback
Example: disturbance rejection

Example: disturbance rejection by dynamic compensation

Mabuchi, H. Phys. Rev. A, 78, 032323 (2008).

James, M. R., Nurdin, H. I., & Petersen, I. R. IEEE 
Transactions on Automatic Control, 53, 1787 (2008).

Goal: maintain z(t)=0 in the presence of 
w(t)

detuning

Feedback: use cavity output y(t) and 
actuate with u(t)
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Free parameters in device (in linear mode)

Resonance frequencies of two cavities

Cavity-waveguide coupling 

Intrinsic cavity losses

Feedback phase 

Losses in waveguide coupling
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On-chip CQFC
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Built SLH model for this device. 

Weak probe power => all components in their linear regime

Equivalent to the transfer function approach used by Mabuchi 
[Mabuchi, H. Phys. Rev. A, 78, 032323 (2008)].

On-chip CQFC
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Feedback phase Waveguide loss

Plant resonance Controller resonance

Out coupling

Thermal effect induced by thermo-optic 
phase shifter is not localized

No independent control over parameters

Theoretical fit to experiment



Integrated optics implementation of 
CQFC: issues
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• Experimental challenges:
• In-situ control must be well localized and thermal effects 

contained
• High quality nonlinear elements (e.g. OPO) necessary

• Theory challenges:
• Nonlinear effects (losses, Raman/Brillouin scattering) must be 

taken into account in resonant structures (if Q factor is large 
or probe power is large)

• Two-photon absorption: can cause dynamical parameter 
changes (due to carrier concentration change, heating)

• Thermal shifts of material properties



 Single OPO squeezed light apparatus almost complete

 Analysis and optimization of coupled OPO CQF network

 Implementation and analysis of on-chip optical feedback 
device

 New CV-QKD protocol without local oscillator 
transmission
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Year 1 research highlights
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Sending a LO is expensive
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Hardware complexity

 Must multiplex SIG and LO

 Strong LO added onto tiny SIG (50 dB power difference)

 Multiple, simultaneous separation through – Time, Polarization, and Frequency 
(heterodyne)

 Complex phase tracking & control algorithm is needed for dynamic 
compensation of phase drift



LO = reference frame alignment
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 Alice’s encoding

 Bob’s decoding (homodyne)

 Aligning Bob’s quadrature angle 
with Alice’s is important.
 Quadrature angle is defined by phase 

difference between LO and SIG

 If there is path-length difference 
between LO and SIG, Alice’s angle may 
be different from Bob’s angle. 

Measured heterodyne - x

Measured heterodyne - y

Example: Alice transmits constant signal, 
signal measured by Bob:



Our solution: real-time referencing
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 Every signal pulse accompanied by a reference pulse

 Replaces LO phase reference

SIG3 Time
SIG1

SIG2

SIG4

SIG5

REF1 REF2 REF3 REF4 REF5



Our solution: real-time referencing
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Ref

Data

Ref

Data

Alice sends:

Bob measures

Then Bob corrects the measured Data value or transmits measurement angle to 
Alice

θ

Using the Ref 
measurements, Bob 
computes rotation 
angle θ that relates 
original Data value to 
measured Data value



Alice transmits constant signal
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 Transmitting local oscillator no longer necessary

 Simplification of hardware
 A real advantage for on-chip implementation

 No sacrifice in bandwidth
 Real-time phase tracking & control also requires bandwidth for tracking 

and control sessions.

 REF pulses can be used for additional real-time calibration
 e.g. time stamping, channel analysis, frequency locking

Benefits of new method

18



• Currently under way

• Similar information leakage as LO transmission

• Noise induced by imperfect phase compensation will 
impact key rate, especially in high loss channels

19

Security analysis



To mature CV-QKD technology and protocols

1. Produce a stable source of squeezed light suitable for CV-QKD 
deployment

 Demonstrate advantages of 

squeezed light for CV-QKD:

Tolerance to excess noise

2. On-chip realization of CV-QKD

hardware

(with CSI team, Paul Davids)

3. New protocols for CV-QKD

(with QTL team, Junji Urayama)
20

Task Objectives

[ Raul Garcia-Patron, Ph.D thesis, 2008 ]

Squeezed states and 
homodyne/heterodyn
e detection

Coherent states and 
homodyne/heterodyn
e detection



Backup slides
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Advantages of squeezed light encoding

• Squeezed light encoding can enable higher key rate/longer distance 
CV-QKD, and be more robust against excess noise

• Possible to generate squeezed light with high degree of squeezing, 
high bandwidth, in a portable package?

[ Raul Garcia-Patron, Ph.D thesis, 2008 ]
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Tolerable excess noise

Squeezed states and 
homodyne/heterodyn
e detection

Coherent states and 
homodyne/heterodyn
e detection

Squeezed states and 
homodyne detection

Coherent states and 
homodyne/heterodyn
e detection



CV-QKD with squeezed light encoding
1) Alice generates a random real number (a) from a Gaussian distribution of variance VA and 

a random bit (b) from a binary distribution. Bob generates a random bit (b′).

2) Depending on the value of the random bit (b) Alice sends a x-squeezed state with first 
moment d = (a, 0) or a p-squeezed state with first moment d = (0, a), where the squeezing 
r satisfies VA = 2 sinh 2r.

3) Bob, depending on his random bit (b′), measures either X or P. 

4) Sifting: Alice discloses for each pulse the value of b (whether she displaced X or P). Bob 
keeps only the cases where he measured the right quadrature (b = b′).

5) Channel identification, key discretization, error correction, privacy amplification.

or

Suppose an X measurement
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