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SNL Photonics Fabrication i
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> Low-energy modulators?, detectors?, low-loss waveguides, SiN
edge couplers, travelling wave Mach-Zehnder modulators, grating s
couplers, advanced CMOS flip-chip / direct CMOS integration °

Si-Microdisk
» Suspended Si/SiN resonators N 4B Cusp M
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and metamaterial
based devices.

» Compound semiconductor
devices and fabrication

» MEMS
processing

™M.R. Watts, et al. OPEX 19 21989 (2011)
2C.T. DeRose, et al. OPEX 19 24897 (2011)
3P.T. Rakich, et al. Nature Comm. 4 1 (2013) -
4D.B. Burckel, et al. Advanced Mat. 22 5053 (2010)




Core Silicon Photonics
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Electronic-Photonics Integration ) s

Photonic Layer

Fiber
Interface

Package/Printed Circuit Board.

= Heterogeneous integration

= Independent optimization of
electronics & photonics

= Challenge: Need high yields
and small bond size
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Coherent quantum feedback s
Example: disturbance rejection

Example: disturbance rejection by dynamic compensation

'( A 625 Goal: maintain z(t)=0 in the presence of
z w ' E I f E W(t)
| == :
v & :
/ = § s [7]\ : Feedback.: use cavity output y(t) and
L3 Ew—= : actuate with u(t)
: 8 ;
" l ‘ w PZTI \
- Mabuchi, H. Phys. Rev. A, 78, 032323 (2008).
ol | | _ 1 James, M. R., Nurdin, H. I., & Petersen, |. R. IEEE
mem i Transactions on Automatic Control, 63, 1787 (2008).
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On-chip CQFC

Vitier! Cavity 2!
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Paul Davids
Jonathan Cox

Free parameters in device (in linear mode)

Resonance frequencies of two cavities (wp, wc)

Cavity-waveguide coupling
Intrinsic cavity losses
Feedback phase

Losses in waveguide coupling

K
(Yps Ye)

¢
7




On-chip CQFC h) =,

S
§
u X f
}' r@%‘, Z -
Virer! (Ca:litﬁg}\\'\\xxw§ Y phase ’ Waritﬁ )1v !
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1

Built SLH model for this device.
Weak probe power => all components in their linear regime

Equivalent to the transfer function approach used by Mabuchi
[Mabuchi, H. Phys. Rev. A, 78, 032323 (2008)].
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Transmission spectra .
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Theoretical fit to experiment ) .
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. No independent control over parameters




Integrated optics implementation of ...
CQFC: issues

Laboratories

« Experimental challenges:
* |n-situ control must be well localized and thermal effects
contained
« High quality nonlinear elements (e.g. OPO) necessary

« Theory challenges:

* Nonlinear effects (losses, Raman/Brillouin scattering) must be
taken into account in resonant structures (if Q factor is large
or probe power is large)

« Two-photon absorption: can cause dynamical parameter
changes (due to carrier concentration change, heating)

* Thermal shifts of material properties
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Year 1 research highlights ) ez

= New CV-QKD protocol without local oscillator

transmission
P REF, REF,

s

/SIG,
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Sending a LO is expensive )
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\_ Quadrature
=  Must multiplex SIG and LO
= Strong LO added onto tiny SIG (50 dB power difference)
= Multiple, simultaneous separation through — Time, Polarization, and Frequency
(heterodyne)

Complex phase tracking & control algorithm is needed for dynamic
compensation of phase drift
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LO = reference frame alignment .

= Alice’s encoding = Aligning Bob’s quadrature angle
Quf with Alice’s is important.
e (Pasqa) = Quadrature angle is defined by phase

difference between LO and SIG
= |f there is path-length difference

> between LO and SIG, Alice’s angle may
P, , ,
be different from Bob’s angle.
= Bob’s decoding (homodyne) Example: Alice transmits constant signal,
signal measured by Bob:
A Data
0.02 f f
Measured heterodyne - x
0015 """" """" o
0.01F T s 1
= : :
5 0.005
S o
>
-0.005
-0.01 :
(pb7 qb) 7& (pCU qa) 0015, 0.605 0.61
Time [s] 14



Our solution: real-time referencing @

= Every signal pulse accompanied by a reference pulse

= Replaces LO phase reference

p REF, REF, REF, REF, REF,
X SIG,
[ SIG,
Y/ SIG, \Sle Time
SIG,
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Our solution: real-time referencing @

A A
Data
Alice sends: @
Ref
— =
A .
4 Using the Ref
Data measurements, Bob
Bob measures O computes rotation
', Ref 6 S angle 6 that relates
—> original Data value to
measured Data value

Then Bob corrects the measured Data value or transmits measurement angle to
Alice




Phase drift compensation in action

Alice transmits constant signal
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Benefits of new method

= Transmitting local oscillator no longer necessary

= Simplification of hardware
» A real advantage for on-chip implementation
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= No sacrifice in bandwidth
= Real-time phase tracking & control also requires bandwidth for tracking

and control sessions.
= REF pulses can be used for additional real-time calibration
= e.g. time stamping, channel analysis, frequency locking 18
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Security analysis ) .

« Currently under way

« Similar information leakage as LO transmission

* Noise induced by imperfect phase compensation will
Impact key rate, especially in high loss channels




Task Objectives h) =,
To mature CV-QKD technology and protocols

1. Produce a stable source of squeezed light suitable for CV-QKD
deployment

1

= Demonstrate advantages of =
: © 0.8}
squeezed light for CV-QKD: ' Squeezed states and
) < homodyne/heterodyn
Tolerance to excess noise @ 06/ “~__ e detection
X T~
Q 04 '\\ HH;%%;:_: -
I Ip——
@ 0.2} .__ _ Conherent states ang
2 '\ homodyne/heterodyn
: T . detecti
2. On-chip realization of CV-QKD 05 —edetechon 0

hardware Channel Losses (dB)

(With CS| team. Paul Davids) [ Raul Garcia-Patron, Ph.D thesis, 2008 ]
3. New protocols for CV-QKD
(with QTL team, Junji Urayama)

20
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Advantages of squeezed light encodifig-

* Squeezed light encoding can enable higher key rate/longer distance
CV-QKD, and be more robust against excess noise

Reverse Reconciliation Tolerable excess noise

=
—_— [4] 0]
$10 Squeezed states and 2 Squeezed states and
3: homodyne detection c homodyne/heterodyn
2 B - _ e detection
£ 107"} 3 T~
[4h] Eg \"‘“‘-x:_ - _
& T o -
L g e o
2 107} Coherent states and ™~~~ _ ; B ~~_____ Coherentstates and
homodyne/heterodyn o ~ homodyne/heterodyn
e detection e detection
-3
10 : - - 10 15 20
0 5 10 15 20 Channel Losses (dB)

Channel Losses (dB)
[ Raul Garcia-Patron, Ph.D thesis, 2008 ]

» Possible to generate squeezed light with high degree of squeezing,
high bandwidth, in a portable package? 29
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CV-QKD with squeezed light encodin@ &

1) Alice generates a random real number (a) from a Gaussian distribution of variance V, and
a random bit (b) from a binary distribution. Bob generates a random bit (b’').

2) Depending on the value of the random bit (b) Alice sends a x-squeezed state with first
moment d = (a, 0) or a p-squeezed state with first moment d = (0, a), where the squeezing
r satisfies V, = 2 sinh 2r.

Suppose an X measurement

X X

4) Sifting: Alice discloses for each pulse the value of b (whether she displaced X or P). Bob
keeps only the cases where he measured the right quadrature (b = b").

5) Channel identification, key discretization, error correction, privacy amplification. 23




