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Limited success has been achieved in modeling polycrystal 
deformation behavior due to unknown subsurface grains 

“Comparisons between the model and experiments” 
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Specimen Load cell 

LVDT 

Motor 

9 cm 

  
    

  

4.78 

22.81 

0.77 

4.78 

R 3.18 

R 50.80 (Unit: mm) 
Region of Interest 

•  Tantalum oligocrystals with mostly columnar 2D grain 
structure eliminate unknown subsurface grain 
morphology. 

•  In-situ load frame developed at Sandia 

•  HR-DIC (surface strain fields) and EBSD (crystal 
orientations) measurements at load inside SEM 
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Specimen 1 
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Specimen 3 
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•  Rate dependent/ dislocation slip based: 

•  Slip resistance: 

•  Strain hardening: 

 
γ α = γ 0

α τ α

gα
⎛
⎝⎜

⎞
⎠⎟

1/m

gα =min τ EI
*α ,τ LT

*α( )+τ obsα

τ obs
α = Aµb ρβ

β=1

NS

∑ ρα = κ1 ρβ

β=1

NS

∑ −κ 2ρ
α

⎛

⎝
⎜

⎞

⎠
⎟ ⋅ γ

α

•  24 {110}<111> slip systems 

x 

y 

z 

15 grains  
(1,426,650 elements) 

18 grains  
(1,664,150 elements) 

12 grains  
(2,140,020 elements) 

Specimen 1 Specimen 2 Specimen 3 

•  BCC CP-FEM model developed at Sandia (JAS3D)* 

*Lim et al., Int. J. Plasticity (2014) 
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Measured and predicted strain fields agree reasonably well 

ε xx ε xx

ε yy

ε xy

ε yy

ε xy

HR-DIC measurements CP-FEM predictions 
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Applied strain =  4.3%  
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z

Lim et al., Int. J. Plasticity (2014) 
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Deformed specimen Max. Schmid factor 
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Full	
  DIC	
  data	
  (781,015	
  data	
  points)	
   Reduced	
  DIC	
  data	
  (35,667	
  data	
  points)	
  

ε xx

25% 
 
 
 
0% 

ε xx

25% 
 
 
 
0% 

Projection of raw HR-DIC data onto the finite element mesh 

Finite	
  element	
  mesh	
  (35,667	
  elements)	
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Δε = ε DIC − ε sim

Deviation between measured and simulated εxx 

Δε avg = 1
N

ε i
DIC − ε i

sim( )2
i=1

N

∑
3% 
 
 
 
-3% 

6% 
 
 
 
-6% 

9% 
 
 
 
-9% 

12% 
 
 
 
-12% 

15% 
 
 
 
-15% 

εa = 2%  

εa = 4%  

εa = 6%  

εa = 8%  

εa = 10%  

Δε xx

Δε xx

Δε xx

Δε xx

Δε xx

(per element basis) 

Applied 
strain 

0.02 0.007 0.006 0.003 

0.04 0.010 0.010 0.007 

0.06 0.014 0.012 0.010 

0.08 0.021 0.014 0.014 

0.10 0.034 0.018 0.016 

Δε xx
avg Δε yy

avg Δε xy
avg

εa = 0.02

Applied strain 

εa = 0.04

εa = 0.06

εa = 0.08

εa = 0.10
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εa = 2%
εa = 4%
εa = 6%
εa = 8%
εa = 10%

εa = 2%
εa = 4%
εa = 6%
εa = 8%
εa = 10%

Δε xx Δε xx

Effects of max. Schmid factor Effects of volume fraction 

CP-FEM predictions are less successful for grains in extreme orientations 

Under-prediction 

Over-prediction 

Hard grains Soft grains 

Δε xx =
ε xx
DIC − ε xx

sim

εa

Small grains Large grains 

(per grain basis) 
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EBSD measurement CP-FEM prediction 

Applied strain = 0% Applied strain = 10% 

[111] 

[011] [001] 

10% Applied strain = 0% Applied strain = 10% 

IPF contour plots indicate good agreement between model and experiment. 
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CP-FEM predictions 
IPF contour plots indicate good agreement between model and experiment. 
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  Rota;ons:	
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Measured (EBSD) Predicted (CP-FEM) 

g : rotation matrix 

All grains 
Grain 1 
Grain 2 

(a) Measured (EBSD) (b) Predicted (CP-FEM) 

All grains 
Grain 1 
Grain 2 

12° 
 
6° 
 
0° 

12° 
 
6° 
 
0° Misorientation angles (at 10% deformation) relative to the initial orientation  

Soft 

Hard 
Soft Hard 

θ = cos−1 1
2

Δg11
AB + Δg22

AB + Δg33
AB −1( )⎡

⎣⎢
⎤
⎦⎥

ΔgAB = gB gA( )−1

Grain 1 Grain 2 

CP-FEM model under-predicted measured crystal rotation 
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v  Choice of slip system: {110} vs. {112}  

v  Effects of different hardening laws 
ε xx

25% 
 
 
 
0% 

ε xx

25% 
 
 
 
0% 

ε xx

25% 
 
 
 
0% 

Taylor hardening Slip-based hardening Power-law hardening 

{110} slip system {112} slip system {110}+{112} slip system 

Choice of slip system and hardening law has relatively small effect 
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(low temperature and high stress regime), respectively [28, 35, 36, 37, 38]. ⌧⇤↵
EI

and ⌧⇤↵
LT

can be
calculated as follows [28]:
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Here, T is the temperature, ⌧0
EI

and ⌧0
LT

are material parameters and T↵

c

(�̇) is the critical temper-
ature, defined as follows:

T↵

c

(�̇) =
2H

k

k
B

ln("̇
0

/�̇↵)
. (7)

In this equation, H
k

is the formation enthalpy of an isolated kink, k
B

is Boltzmann’s constant
and "̇

0

is the reference shear rate that relates the temperature and shear strain rate to H
k

in an
Arrhenius expression. Material parameters in Equations (5) - (7) were fit to tantalum single crystal
experiments [39, 28]. The best-fit parameters are listed in Table 2.

The athermal part of the flow stress or the strain hardening term, ⌧
obs

, is formulated using a
dislocation density-based Taylor hardening law as follows [40]:

⌧
obs

= Aµb

vuut
24X

�=1

⇢� , (8)

where, A is a material constant, µ is the shear modulus, b is the Burger’s vector, and ⇢� is the
dislocation density on slip system �. The evolution of dislocation density for the ↵-th slip system
is obtained by a standard phenomenological equation as follows [41]:

⇢̇↵ =

0

@
1

vuut
24X
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2
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1

A · |�̇↵|, (9)

where, 
1

and 
2

are hardening parameters representing generation and annihilation of dislocations,
respectively and determine the shape of the stress-strain curve. Hardening parameters, 

1

and 
2

,
were determined from least-squares fitting to experimentally-measured tensile data (Points A - F
in Figure 2). The best-fit hardening parameters were 

1

= 1.4⇥ 106 m�1 and 
2

=15. The best-fit
parameters used in the model are listed in Table 2.

The entire gage section of the tantalum oligocrystal tensile specimen was meshed with 2,140,020
hexahedral elements as shown in Figure 3 (a). To accurately capture the through-thickness stress
and strain distributions and to maintain good aspect ratios of finite elements, 60 elements were used
through the thickness of the specimen. Note that the total number of experimental data points is
approximately 781,015 while there are 35,667 surface elements in the model. Thus, the step size of
the experimental data is smaller than the finite element mesh by a factor of 5. The crystallographic
orientation of each finite element in the simulation was determined by superimposing the mesh onto
the EBSD map. Each surface element was assigned with the grain orientation corresponding to the
nearest EBSD pixel [21] and the identical grain orientation was assigned to elements through the
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4.4. E↵ects of Hardening Laws

In plasticity models, the choice of hardening law can have a significant e↵ect on texture and
stress-strain response predictions in single and polycrystals [45]. In addition to the dislocation
density-based hardening model (Taylor hardening) [40] used in the previous sections, other com-
monly used formulations are isotropic hardening models [46, 47, 48, 49, 50, 51, 52] and slip-based
hardening models [1, 53]. Classical isotropic hardening models generally assume that all slip sys-
tems harden equally as a function of plastic strain. One example is the power-law hardening rule,
represented as follows [46]:

⌧
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0

+ a
1

"̄n
p

(14)

Here, ⌧
0

, a
1

and n are material hardening parameters and "̄
p

is the equivalent plastic strain defined
by,

"̄
p

=

Z
t

0

r
2

3
Fp : Fpdt. (15)

Here, Fp is the plastic component of the deformation gradient.
Slip-based hardening models are also widely used in crystal plasticity models and have been

used to successfully predict texture and anisotropic behaviors in polycrystals [5, 6]. In slip-based
hardening models, the strain hardening term, ⌧

obs

, is related to the slip increment on all slip systems
as follows [53]:

⌧̇↵
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=
24X

�

h↵� |�̇↵|. (16)

Here, h↵� is the hardening coe�cient that relates hardening on one slip system to other active slip
systems as follows [54]:

h↵� = q

↵�h
0
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s
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Here, h
0

is the initial hardening rate, g
s

is the saturated flow stress and a is the hardening exponent.
q

↵� is a hardening matrix that determines the self to latent hardening ratios. The diagonal terms
of q↵� , denoted q

self

, describe self hardening while the non-diagonal terms, q
lat

, describe the latent
hardening e↵ect. q

self

= 1 and q
lat

= 1.4 are the most commonly used values polycrystalline
simulations [1, 5, 55].

To investigate the e↵ects of di↵erent hardening models on surface strain and crystal rotation
field predictions in oligocrystals, CP-FEM models adopting power-law (Equation (14)) and slip-
based (Equation (16)) hardening laws were fit to measured stress-strain data as shown in Figure 14.
Note that the dislocation density-based, slip-based and power-law hardening laws require fitting
three, four and three hardening parameters, respectively. The slip-based model has the ability to
consider additional fitting parameters, i.e. q

lat

and q
self

that determine the self to latent hardening
ratio. CP-FEM simulations using each of the three hardening laws reproduced almost identical
hardening curves in the macroscale stress-strain response of the tantalum oligocrystal as shown in
Figure 14; still, these di↵erent formulations can have a noticeable impact on predictions of local
stress and strain fields in polycrystals as well as in single crystals.

Figures 15 (a)-(c) compare simulated surface strain fields and inverse pole figures, with respect

15
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CP-FEM  
(Back surface) 

CP-FEM  
(Front surface) 

Measured  
(Front surface) 

ε xx

25% 
 
 
 
0% 

CP-FEM  
Applied strain =10% 

Full 3D model is required to accurately model columnar structured specimens. 



Limita;ons:	
  Fracture	
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Experiment (front) Model (front) 

Selected images from various points in the fracture process. 

Model (back) 



Summary	
  

Conclusions 

§  First quantitative comparison between CP-FEM simulations and experimental 
measurements 

§  Model predictions of strain fields showed good agreement with HR-DIC 
measurements (~ 3% deviation at 10% applied strain). 

§  Model predictions of crystal rotations showed good agreement with EBSD 
measurements. Larger deviations at extreme crystal orientations. 

Future Work 
 

§  More sophisticated treatment of grain boundary and dislocation – grain 
boundary interactions 

§  Damage/ Fracture modeling 
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(b) Simulated εxx  
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Failure location agrees with the location of the highest εxx from the simulation 
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ε xx
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z x 
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Surface image (19.2%) Surface image (19.2%) 

Simulated ε xx Simulated ε xx
Side view Top view 
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εa = 4%  
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