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“A	
  vacuum	
  is	
  a	
  hell	
  of	
  a	
  lot	
  beDer	
  than	
  
some	
  of	
  the	
  stuff	
  that	
  nature	
  replaces	
  
it	
  with.”–Tennessee	
  Williams	
  



ALEGRA	
  is	
  a	
  hydrocode	
  with	
  specific	
  mul8-­‐physics	
  
capabili8es	
  develop	
  over	
  the	
  last	
  20+	
  years.	
  

Where	
  does	
  our	
  use	
  of	
  void	
  come	
  
from?	
  CTH	
  
•  Void	
  is	
  used	
  in	
  CTH	
  in	
  several	
  

capaci8es.	
  
•  It	
  is	
  introduced	
  to	
  make	
  

fracture	
  and	
  spall	
  volume	
  
filling.	
  

•  If	
  material	
  is	
  discarded,	
  it	
  is	
  
replaced	
  with	
  void	
  (cell	
  doctor)	
  

What	
  key	
  defining	
  capabili8es	
  does	
  ALEGRA	
  possess?	
  
•  Mime8c	
  magneto-­‐hydrodynamics	
  (MHD),	
  circuit	
  

modeling	
  
•  Extended	
  finite	
  element	
  (XFEM)	
  under	
  

development	
  
•  High	
  fidelity	
  material	
  modeling	
  (especially	
  for	
  

MHD)	
  
•  Ceramic	
  material	
  models	
  
•  Op8miza8on	
  and	
  UQ	
  linkage	
  to	
  DAKOTA	
  
•  Robust	
  modeling	
  of	
  high-­‐strain	
  rate	
  deforma8on.	
  

SNL	
  code	
  capabili8es:	
  
Pronto	
  was	
  a	
  mid-­‐1980	
  
Lagrangian	
  solid	
  dynamics	
  
code	
  and	
  is	
  a	
  predecessor	
  
to	
  SIERRA-­‐MECHANICS	
  
today	
  (Presto).	
  	
  

CALE	
  was	
  an	
  early	
  arbitrary	
  
Lagrangian-­‐Eulerian	
  (ALE)	
  code	
  
influen8al	
  for	
  ASC.	
  

LDRD	
  has	
  contributed	
  to	
  
the	
  large	
  scale	
  linear	
  	
  
algebra	
  (TRILINOS),	
  	
  
material	
  modeling	
  
(QMD/DFT-­‐MD),	
  XFEM	
  	
  
and	
  railgun/coilgun	
  	
  
simula8on	
  capability.	
  

CTH	
  is	
  a	
  fixture	
  in	
  the	
  DoD	
  	
  
community	
  for	
  shock	
  physics.	
  



Six	
  years	
  ago:	
  	
  With	
  growing	
  use	
  on	
  more	
  complex	
  problems,	
  
significant	
  issues	
  arose	
  due	
  to	
  code	
  robustness.	
  

•  Users wanted calculations 
to be reliable. 

•  Our continued support 
depended upon improving 
reliability and resilience. 

•  Many important 
calculations did not 
complete due to a variety 
of issues. Near	
  death	
  

experience!	
  

•  Users had grown to expect 
the code to not reliably work 
for very challenging 
problems. 
–  They expected the code 

to fail! 
–  Some users wouldn’t 

even report problems 
because it was the norm. 

This plot shows a typical time step trace for 
ALEGRA in this time period.  The time step 
“dropouts” were common as was the general 
decay in the magnitude of the time step.  
Calculations either failed or became untenable 
due to small time step size. 

Void	
  is	
  ever-­‐present	
  	
  
when	
  these	
  things	
  
happen!	
  



We	
  made	
  improvements	
  in	
  the	
  remap	
  and	
  
mul8material	
  methods	
  plus	
  the	
  stability	
  criteria.	
  
Summary	
  of	
  remap	
  changes:	
  Detect	
  the	
  
local	
  mul8material	
  flow	
  topology	
  

Problem	
  configura8ons	
  

Third-order remap based on three element 
parabolic conservative interpolation. 

–  For robustness, the edge values are 
third-order, but bounded by neighbors, 

Mixed cell remap is now lower order 
•  ALEGRA uses the minmod scheme (the most 

dissipative second order “TVD” method) 

•  Effectively uses one-sided differencing in 
mixed cells, only differencing into the pure 
material region (closer values). 

φ j+1/2 = 1
6 2φ j+1 + 5φ j −φ j−1( )→ 1

2 φ j+1 +φ j( )− 1
6 ∆ j+1/2 φ −∆ j−1/2 φ( )

∆ j−1/2 φ =minmod φ j −φ j−1, 4 φ j+1 −φ j( )⎡⎣ ⎤⎦

φ j+1/2 = φ j + 1
2 minmod φ j+1 −φ j ,φ j −φ j−1

⎡⎣ ⎤⎦

Summary	
  of	
  mul8material	
  Lagrangian	
  closure	
  
algorithm	
  changes	
  provide	
  a	
  physically	
  based	
  stable	
  
model	
  (void	
  is	
  a	
  “thorn	
  in	
  the	
  side”	
  of	
  this	
  algorithm)	
  

Summary	
  of	
  8me	
  step	
  size	
  calcula8ons:	
  
based	
  upon	
  the	
  Fourier	
  analysis	
  of	
  the	
  
Lagrangian	
  step	
  with	
  dissipa8on.	
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Our	
  exis8ng	
  user	
  base	
  stood	
  up	
  and	
  took	
  no8ce	
  of	
  
the	
  changes	
  we	
  made.	
  

•  The	
  HEDP	
  con8nued	
  to	
  rely	
  
upon	
  ALEGRA	
  for	
  experimental	
  
design	
  despite	
  lack	
  of	
  direct	
  
support.	
  

•  In	
  December	
  2008,	
  I	
  received	
  
the	
  following	
  e-­‐mail	
  from	
  the	
  
lead	
  designer	
  (Ray	
  Lemke,	
  1641)	
  
for	
  EM	
  flyer	
  experiments:	
  

ALEGRA	
  was	
  12	
  8mes	
  faster	
  than	
  before!	
  

60	
  cpu	
  
hours	
  

5	
  cpu	
  
hours	
  

Excerpted	
  From	
  Ray	
  Lemke,	
  Dec	
  11,	
  2008	
  
e-­‐mail:	
  
…I	
  though	
  you	
  would	
  be	
  interested	
  in	
  this	
  8ming	
  
result.	
  A	
  large	
  2D	
  Alegra	
  MHD/thermal-­‐
conduc8on	
  simula8on	
  (655,000	
  elements)	
  I've	
  
been	
  running	
  on	
  150	
  nodes	
  of	
  Red	
  Storm	
  
completes	
  more	
  than	
  10	
  8me	
  faster	
  …	
  (~5	
  hrs	
  
comple8on	
  8me	
  vs.	
  ~60	
  hrs,	
  respec8vely)…	
  





Lunch	
  with	
  Misha	
  

•  Allen	
  and	
  I	
  had	
  lunch	
  with	
  Misha	
  at	
  Mul8mat	
  last	
  
year	
  

•  He	
  is	
  interested	
  in	
  exploring	
  how	
  everyone	
  does	
  
void	
  (and	
  everyone	
  is	
  doing	
  it	
  in	
  an	
  ad	
  hoc	
  
manner)	
  

•  Misha	
  outlined	
  several	
  test	
  problems	
  we	
  should	
  
run:	
  
–  Void	
  closure,	
  1	
  and	
  2-­‐D	
  
–  Free	
  expansions,	
  and	
  shock	
  through	
  material	
  and	
  into	
  
void	
  (JOWOG,	
  NECDC	
  possibili8es)	
  



Misha	
  Shashkov	
  proposed	
  a	
  set	
  of	
  problems	
  
to	
  us	
  at	
  Mul8mat	
  2013	
  in	
  San	
  Francisco	
  

•  He	
  set	
  four	
  problems:	
  
–  Free	
  expansion	
  
–  Blast	
  wave	
  propaga8ng	
  into	
  void	
  
–  Void	
  closure	
  in	
  1-­‐D	
  
–  Void	
  closure	
  in	
  2-­‐D	
  

•  We	
  have	
  started	
  to	
  set	
  up	
  and	
  solve	
  these	
  with	
  
ALEGRA.	
  

•  We	
  know	
  the	
  free	
  expansion	
  problem	
  is	
  an	
  
issue…	
  it	
  does	
  not	
  converge	
  to	
  the	
  right	
  answer	
  

•  We	
  strongly	
  suspect	
  other	
  codes	
  have	
  similar	
  
issues	
  and	
  we	
  can	
  interact	
  on	
  this	
  topic.	
  

Misha	
  Shashkov	
  
LANL	
  Fellow	
  



“I’m	
  gonna	
  make	
  him	
  an	
  	
  
offer	
  he	
  can’t	
  refuse”	
  	
  
–	
  The	
  Godfather	
  



New	
  Test	
  Problems	
  

•  Triple	
  Point	
  Series	
  
–  Single	
  material	
  
– Mul8material	
  
– Asympto8cally	
  strong	
  

•  Void	
  problems	
  
–  Void	
  Closure	
  (material	
  closes	
  out	
  void,	
  results	
  are	
  
good)	
  

–  Void	
  Expansion	
  (no	
  version	
  of	
  ALEGRA	
  solves	
  
correctly,	
  other	
  codes	
  share	
  this	
  problem)	
  

–  Blast	
  to	
  void	
  



Triple	
  Point	
  Results	
  are	
  reasonable	
  



	
  
"Just	
  because	
  there's	
  an	
  exact	
  formula	
  
doesn't	
  mean	
  it's	
  necessarily	
  a	
  good	
  

idea	
  to	
  use	
  it."-­‐	
  Nick	
  Trefethen	
  
	
  



Void	
  expansion	
  results	
  have	
  asked	
  more	
  
fundamental	
  ques8ons	
  of	
  the	
  code	
  

•  Stability	
  issues	
  associated	
  with	
  the	
  expansion	
  
problem	
  highlight	
  a	
  fundamental	
  oversight	
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!!u=0;c = 1.4 !!u ≈6;c =0

The	
  characteris8c	
  speed	
  at	
  the	
  free	
  surface	
  is	
  5	
  8mes	
  larger	
  than	
  the	
  	
  
ini8al	
  condi8ons	
  arising	
  from	
  a	
  change	
  in	
  pressure	
  (∆p)	
  

similarity	
  variable	
  

Exact	
  solu8on	
  ploDed	
  

lo
g(
de
ns
ity
)	
  

ve
lo
ci
ty
	
  



ALEGRA	
  solu8ons	
  do	
  not	
  converge	
  to	
  
the	
  analy8cal	
  solu8on	
  

lo
g(
de
ns
ity
)	
  

ve
lo
ci
ty
	
  

•  Nothing	
  else	
  does	
  either	
  as	
  far	
  as	
  we	
  know…	
  
•  The	
  solu8on	
  is	
  fundamentally	
  flawed,	
  no	
  set	
  of	
  op8ons	
  

helps.	
  	
  The	
  solu8on	
  will	
  never	
  get	
  to	
  the	
  exact	
  one.	
  

•  XFEM	
  is	
  actually	
  worse.	
  	
  Something	
  really	
  bad	
  is	
  
happening,	
  and	
  we	
  don’t	
  know	
  what	
  it	
  is.	
  



The	
  free	
  expansion	
  problem	
  	
  
•  We	
  have	
  an	
  exact	
  solu8on	
  via	
  the	
  asympto8c	
  
limit	
  of	
  a	
  Riemann	
  solu8on	
  

•  The	
  velocity	
  of	
  the	
  free	
  surface	
  is	
  analy8cal,	
  

!!
VF .S . =V

0 + 2a0
γ −1

Lagrangian	
  

Eulerian	
  isentropic	
  

analy8cal	
  



Convergence	
  of	
  the	
  free	
  expansion	
  

•  We	
  look	
  at	
  the	
  problem	
  on	
  several	
  meshes	
  at	
  
t=6.0,	
  VF.S.=3.87.	
  XF.S.=53.24	
  

•  Default	
  (isentropic	
  MM)	
  

•  Lagrangian	
  

•  Default	
  (CV	
  MM)	
  

•  XFEM	
  

!!54.24−8.78∆x0.51

!!54.88−8.71∆x0.45

!!51.75−8.69∆x0.42

!!54.65−12.53∆x0.37 !!54.59−11.13∆x0.48
1st	
  order	
  remap	
   2nd	
  order	
  remap	
  



Almost	
  iden8cal	
  issues	
  show	
  up	
  with	
  a	
  
cell-­‐centered	
  Eulerian	
  calcula8on	
  

•  When	
  the	
  expansion	
  into	
  vacuum	
  problem	
  is	
  
run	
  with	
  an	
  Eulerian	
  cell-­‐centered	
  code	
  using	
  
Riemann	
  solvers,	
  and	
  Piecewise	
  linear	
  or	
  
parabolic	
  reconstruc8on,	
  the	
  problems	
  
persist.	
  

•  No	
  convergence	
  
•  Stability	
  problems	
  
•  This	
  isn’t	
  just	
  a	
  Lagrangian	
  or	
  ALE	
  or	
  staggered	
  
mesh	
  issue.	
  



The	
  Expansion	
  into	
  void	
  may	
  induce	
  
numerical	
  instabili8es	
  

•  The	
  standard	
  8me	
  step	
  es8mate	
  may	
  be	
  inadequate	
  
because	
  the	
  expansion	
  into	
  void	
  induces	
  dynamics	
  that	
  
are	
  faster	
  than	
  the	
  stability	
  es8mate.	
  

•  Analysis	
  is	
  ongoing	
  to	
  produce	
  a	
  prac8cal	
  solu8on	
  to	
  
this	
  problem.	
  

•  The	
  basic	
  idea	
  is	
  to	
  use	
  exis8ng	
  velocity	
  and	
  pressure	
  
differences	
  to	
  es8mate	
  changes	
  in	
  the	
  characteris8c	
  
speeds.	
  

•  These	
  es8mates	
  can	
  then	
  be	
  used	
  to	
  produce	
  a	
  stable	
  
8me	
  step	
  size	
  es8mate.	
  

•  This	
  is	
  straightorward	
  for	
  ideal	
  gases,	
  but	
  harder	
  for	
  
real	
  materials.	
  	
  We	
  don’t	
  want	
  to	
  get	
  an	
  overly	
  
conserva8ve	
  8me	
  step	
  es8mate	
  either.	
  



“Von	
  Neumann	
  told	
  Shannon	
  to	
  call	
  his	
  
measure	
  entropy,	
  since	
  ‘no	
  one	
  knows	
  
what	
  entropy	
  is,	
  so	
  in	
  a	
  debate	
  you	
  will	
  
always	
  have	
  the	
  advantage.’	
  ”	
  	
  
―	
  Jeremy	
  Campbell	
  



Stability	
  and	
  dissipa8on	
  are	
  in8mately	
  
related	
  to	
  each	
  other	
  

•  Theory	
  of	
  hyperbolic	
  conserva8on	
  laws	
  

•  This	
  lineariza8on	
  can	
  be	
  analyzed	
  to	
  give	
  the	
  
eigenvalues.	
  These	
  eigenvalues	
  are	
  used	
  to	
  
define	
  the	
  stability	
  limit.	
  

•  We	
  could	
  get	
  the	
  full	
  stability	
  limit	
  through	
  
solving	
  the	
  Riemann	
  problem	
  exactly	
  	
  
– what	
  was	
  used	
  to	
  create	
  the	
  plots	
  on	
  the	
  previous	
  
slide,	
  this	
  takes	
  about	
  16	
  itera8ons	
  of	
  Newton’s	
  
method	
  in	
  that	
  case!	
  Always	
  converging	
  from	
  
below	
  

!!
∂U
∂t

+ ∂F(U)
∂x

=0→ ∂U
∂t

+ ∂F(U)
∂U

∂U
∂x

=0→ ∂U
∂t

+ A∂U
∂x

=0

!!A= RλL;λ = −c ,0,c( )



A	
  second	
  order	
  expansion	
  of	
  the	
  
analysis	
  offers	
  an	
  answer	
  to	
  the	
  issue	
  

•  Take	
  the	
  nonlinear	
  flux	
  and	
  expand	
  it,	
  

•  Plug	
  this	
  back	
  into	
  the	
  PDE	
  we	
  started	
  with	
  

•  Analyze	
  –	
  usually	
  on	
  the	
  first	
  term	
  is	
  carried,	
  

•  We	
  expand	
  the	
  second	
  order	
  term	
  (see	
  e.g.,	
  
Lax,	
  Dafermos,	
  and	
  Roe	
  &	
  Balsara)	
  

!!F U( ) = F U0( )+ ∂F U0( )
∂U δ + 1

2
∂2F U0( )
∂U2

δ 2 +O δ 3( )

!!
∂U
∂t

+
∂F U( )
∂x

=
∂ U0 +δ( )

∂t
+
∂F U0( )
∂x

+ ∂F U0( )
∂U

∂δ
∂x

+ 1
2
∂2F U0( )
∂U2

∂δ 2

∂x
+O δ 3( )

!!
∂F U0( )
∂U = RkλkLk ;

∂2F U0( )
∂U2

= 12 λ j −λk( )Li Rk ⋅∇URj −Rj ⋅∇URk( )+δ ik Rj ⋅∇Uλi( )

!!λk U( ) = λk U0( )+ Rk U0( )⋅∇Uλk U0( )( )Lk U0( )∂xU

!≈0



Diagnosis:	
  
Is	
  this	
  an	
  entropy	
  viola8ng	
  solu8on?	
  

Lax	
  Entropy	
  Condi8on	
  –	
  Valid	
  Shock	
  

Lax	
  Entropy	
  Condi8on	
  –	
  Valid	
  Expansion	
  

!λL > λ > λR

!λL < λ < λR



Connec8on	
  to	
  ar8ficial	
  viscosity	
  

•  Usually	
  the	
  first	
  order	
  term	
  defines	
  the	
  
stability	
  of	
  the	
  integra8on,	
  i.e.,	
  	
  

•  We	
  are	
  proposing	
  including	
  the	
  second	
  order	
  
term,	
  (for	
  u	
  &	
  p,	
  ∆’s	
  in	
  space)	
  

•  These	
  same	
  ideas	
  are	
  used	
  to	
  define	
  the	
  level	
  
of	
  numerical	
  dissipa8on,	
  usually	
  the	
  first	
  term	
  
is	
  used,	
  but	
  the	
  second	
  term	
  also	
  defines	
  the	
  
quadra8c	
  part	
  of	
  the	
  Q.	
  

!!
∆t ≤ ∆x

u + c
!or!∆t ≤min ∆x

u
, ∆x
c

⎛

⎝
⎜

⎞

⎠
⎟

!!

∆t ≤ ∆x

u + c + γ +1
4 ∆u + ∆p

ρc

⎛

⎝
⎜

⎞

⎠
⎟

!or!∆t ≤min ∆x
u
, ∆x

c + γ +1
4 ∆u + ∆p

ρc

⎛

⎝
⎜

⎞

⎠
⎟

⎛

⎝

⎜
⎜
⎜
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⎞

⎠

⎟
⎟
⎟
⎟
⎟

!!
Q = c∆u+ γ +1

4 ∆u +
∆p
ρc

⎛

⎝
⎜

⎞

⎠
⎟ ∆u



For	
  dissipa8on	
  via	
  ar8ficial	
  viscosity,	
  
Riemann	
  solvers	
  and	
  8me	
  step	
  es8mates	
  	
  

•  We	
  might	
  do	
  well	
  to	
  work	
  with	
  es8mates	
  of	
  
wave	
  speeds	
  that	
  are	
  bounding	
  the	
  “truth”	
  
from	
  above,	
  not	
  below	
  

•  Riemann	
  solver	
  itera8ons	
  might	
  start	
  with	
  
es8mates	
  that	
  are	
  larger	
  than	
  the	
  solu8on	
  

•  The	
  same	
  for	
  8me	
  step	
  sizes.	
  



“Nature	
  abhors	
  a	
  vacuum.”	
  
–Francois	
  Rabelais	
  



Recent	
  progress	
  has	
  focused	
  on	
  the	
  
nature	
  of	
  the	
  velocity	
  at	
  nodes	
  

•  The	
  nodal	
  “velocity”	
  is	
  really	
  a	
  conserved	
  
quan8ty,	
  the	
  momentum	
  of	
  the	
  node	
  

•  We	
  can	
  recover	
  the	
  velocity	
  at	
  the	
  nodal	
  point	
  
and	
  use	
  this	
  to	
  move	
  the	
  nodes	
  

•  This	
  improves	
  the	
  solu8on	
  notably	
  and	
  lessens	
  
the	
  entropy	
  viola8ons.	
  

•  It	
  does	
  not	
  fix	
  things,	
  it	
  makes	
  them	
  beDer.	
  
•  	
  Should	
  this	
  velocity	
  be	
  used	
  for	
  the	
  energy?	
  

!!
u= u − h

2
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2u



“We	
  become	
  aware	
  of	
  the	
  void	
  as	
  we	
  
fill	
  it.”	
  ―	
  Antonio	
  Porchia	
  



We	
  are	
  using	
  a	
  complex	
  test	
  problem	
  with	
  an	
  exact	
  solu8on	
  
to	
  run	
  our	
  code	
  through	
  the	
  “ringer”	
  

CJETB	
  code	
  exodus	
  solu8ons	
  
	
  

Simulations – 2 incident angles, 2 frames of 
reference 

Stagna8on	
  
Point	
  

Slug	
  
Jet	
  

Stagnation 
Point 

Frame of 
Reference 

Laboratory 
Frame of 

Reference 

β β

β = 90° β = 45° 



Exact	
  Solu8on	
  
•  Complex	
  difficult	
  problem	
  with	
  simple	
  characteris8cs	
  
–  Steady	
  Plane	
  Subsonic	
  Isentropic	
  Fluid	
  Flow	
  (no	
  strength)	
  
–  Complex	
  analy8cal	
  representa8on	
  (cjetb.f	
  code)	
  provides	
  a	
  solu8on	
  on	
  

an	
  exodus	
  mesh.	
  Robinson	
  SAND2002-­‐1015.	
  
–  Solu8on	
  imported	
  to	
  ALEGRA	
  using	
  diatoms	
  exodus	
  solu8on	
  import	
  
–  MG	
  Murnaghan	
  EOS	
  Model	
  

•  Two	
  free	
  reference	
  curve	
  parameters,	
  valid	
  for	
  low	
  compression	
  
•  Simplified	
  version	
  of	
  MG	
  US	
  UP	
  useful	
  for	
  V&V	
  



Lagrangian	
  Tracers	
  

1	
  
2	
  

3	
  
4	
  5	
  

In future slides, numbered tracers refer to the distance from the edge of the jet 



Hea8ng	
  Along	
  the	
  Jet	
  –	
  Under	
  Resolved	
  
•  Default	
  se{ngs	
  of	
  ar8ficial	
  viscosity	
  cause	
  
hea8ng	
  along	
  the	
  edge	
  of	
  the	
  jet	
  in	
  under	
  
resolved	
  cases	
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1 – Closest to the edge of the jet 
5 – Farthest from the edge of the jet 
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Resolu8on	
  Study	
  
A	
  resolved	
  mesh	
  completely	
  reduces	
  the	
  hea8ng	
  along	
  the	
  edge	
  of	
  
the	
  jet,	
  results	
  consistent	
  with	
  about	
  a	
  first-­‐order	
  convergence.	
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Debar	
  Energy	
  Advec8on	
  –	
  Resolved	
  
Temperature	
  irregulari8es	
  are	
  s8ll	
  seen	
  with	
  a	
  resolved	
  mesh	
  

Laboratory Frame 

Stagnation Point Frame 

16 elements across jet 
4 elements across jet 



Standard	
  Ar8ficial	
  Viscosity	
  
Limiter	
  and	
  Hyperviscosity	
  ON/OFF	
  

45°	
  Lab	
  Frame	
  case	
  shown	
  below	
  at	
  8.5	
  μs	
  
Standard Artificial Viscosity – Default Settings 

Linear          0.15 
Quadratic       2.0 
Expansion Linear=  OFF 
Expansion Quadratic=  OFF 
Limiter =   OFF 
Hyperviscosity =  0.0 

Standard Artificial Viscosity – New Settings 
Linear          1.00 
Quadratic       2.5 
Expansion Linear=  ON 
Expansion Quadratic=  OFF 
Limiter =   ON 
Hyperviscosity =  1.0 



Entropy	
  
Limiter	
  and	
  Hyper	
  Viscosity	
  ON/OFF	
  

Tracer	
  1	
  
Lim-­‐Hyp	
  On/Off	
  

Tracer	
  2	
  
Lim-­‐Hyp	
  On/Off	
  

Tracer	
  3	
  
Lim-­‐Hyp	
  On/Off	
  

With low resolution, little difference is noticeable 
between tracers with the limiter and hyper 
viscosity on or off 
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Entropy	
  –	
  High	
  Resolu8on	
  
Limiter	
  and	
  Hyper	
  Viscosity	
  ON/OFF	
  

With a resolved mesh, the limiter and hyper 
viscosity improve the results of the simulation 
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“I	
  love	
  to	
  talk	
  about	
  nothing.	
  It's	
  the	
  
only	
  thing	
  I	
  know	
  anything	
  about.”	
  	
  
―	
  Oscar	
  Wilde	
  



Conclusions	
  
• Efforts	
  to	
  improve	
  the	
  modernity	
  and	
  resilience	
  of	
  the	
  
code	
  is	
  in	
  mid-­‐stream.	
  

• The	
  complexity	
  of	
  the	
  effort	
  has	
  made	
  it	
  difficult	
  
• The	
  standard	
  that	
  we	
  apply	
  to	
  code	
  results	
  makes	
  
changing	
  the	
  defaults	
  difficult	
  but	
  drives	
  a	
  detailed	
  
look	
  at	
  old	
  and	
  new	
  algorithms	
  

• We	
  have	
  to	
  balance	
  a	
  number	
  of	
  requirements:	
  
– Regression	
  Tes8ng	
  Suite	
  
– Quality	
  Embedded	
  Verifica8on	
  Expecta8ons	
  
– Prototype	
  Problems	
  Requirements	
  
– Customer	
  Needs	
  and	
  Expecta8ons	
  
– Performance	
  Characteris8cs	
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