IVISION
2011-5321C

nd describing
rk, an example
the framework
el

A general framework for modeling mammalian cell growtHy

Phillip 1. Pohl, and John H. Gauthier, Sandia National Laboratories

Abstract — A framework for modeling complex cell-biologic processes Is presented, based on two constructs: one describing the entire lifecycle of a molecule a
the basic cellular machinery. Use of these constructs allows models to be built in a straightforward manner that fosters rigor and completeness. To demonstrate t
model of the mammalian cell cycle Is presented that consists of several hundred differential equations of simple mass action kinetics. The additional complexity
allows the example model to be calibrated to both large-scale and small-scale observations and allows predictions to be made at both the systems level and the mj
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Connect the templates using a relationship - —4 . L : :
diagram. (Modeling to date has been only ol * Explicit growth monitoring Is unnecessary during the mammalian cell cycle.

of these networks.1?)

* Pre-translation mRNA regulation (other than splicing and the number of RNA
polymerase) Is unnecessary during the cell cycle.

* Transcription/translation (i.e., growth) continue during S phase at unimpeded rates.
* For cells capable of division, a ready supply of RNA polymerase must be available

Correct?

« The model is calibrated to quantitative data in the literature®-1L,

aspose_p (K Template for the
lifecycle of a protein
(MRNA template Is

Relationship diagram similar). » GO is calibrated to # proteins (10%°), # ATP (10°), ATP usage (107 ATP/s), Na*- [ during GO.
K* ATPase energy. $32% of tota!&, elongation rates (txs ~30 N'T/s, DNA » For cells capable of division, either a supply of DNA polymerase must be kept
i replication ~50 NT/s, txl ~20 AA/s), etc. inactive during GO or intense transcription and translation activity must occur and
*) - » Cell cycle is calibrated to Hela duration §1-1.5 da%/s, G1~12hr, S ~8 hr, G2 be controlled at a saturation level.
@ ~10 hr, M ~6 hr), # RNA polymerases (~30,000), # rRNA (~5x%10°), fractions » SCF progressively complexes with Fbw7, Skp2, and Btrc through the cell cycle
of various RNAs ShnRNA ~7%, MRNA ~3%, rRNA precursor ~4%, rRNA because of their differences in affinity with SCF and because of autoubiquitination
() o ~71%, tRNA ~15%, RNA in nucleus ~14%), etc. in the absence of substrates.
‘ s noase Model » The most difficult characteristics to match are gl) using the same reaction » Cdc25A and Cdc25B cooperate to Instigate the cycB/Cdk1-Cdc25C cascade and
° @ to show here—about 400 ODES rates for GO as for cell cycle, (2) transmonmﬁ/I rom GO to cell cycle ina the G2/M transition.
reasonable time, and (3) setting a robust G2/M transition time. » Transcription factors act multiplicatively.

 NOTE: Quantitative data do not exist for most individual mRNAs and
proteins. Many concentrations in this model are estimated. However,
reactions are dependent on the concentration and the reaction rate; when a

* p27 Is important for maintaining GO and for timing the duration of G1 in the first
cell cycle after exiting GO.

e - -  p27 does not inhibit cycD/Cdk4 or cycD/Cdk6 activit
concentration is known, rates can be adjusted (often linearly) hence. P yewit yeLiLuko y
» cycD/Cdk4or6 does not activate DNA replication complexes.
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(eL) 25 hr 33 s proteins 0 107 * Not all RNA polymerase are removed from condensed DNA during mitosis
G1 duration 12 hr 15 hr # amino acids (AA) unbound 6x10 5.7x10 K /
S duration 8hr 7 hr GO # nucleotides (NT) unbound 0.4Wt% ~ 2x10™ 2x10"°
Cell [o2 4hr 7hr 4 ATP 10° 10° References
Cycle |m 4 hr 4 hr # ADP 10° 10° 1. Ingolia NT, Murray AW: Current Biology 2004 , 14:R771-R777.
# nucleotides in RNA 5x10" 1.6x10" (ave) ATP usage 10 ATP/s 10" ATP/s 2. Fup H, Dubitzky W, Downes CS, Kurth MJ: Briefings in Bioinformatics
# rRNA (no pre-rRNA) 3.6x10° 1.5x10° Transcription elongation rate 30 NT/s 30 NT/s 3. Csikész-Nagy A: Briefings in Bioinformatics 2009 . 10:424-434
7 7 . . ’ .
Bx Tx icati i . .
# SNRNA 1 or 2 /transcript 9.7x10° (~0.25\transcript) [Na*-K* ATPase energy (fraction of total) 33% 32% 5. Chen KC, Calzone L, CSIkaS?_Nagy A, Cross FRj Novak_ B, Tyson JJ: M
# RNA polymerases 2-4x10" 3x10" (ave) Translation energy fraction Most 51% 6. Cross FR, Ar(_:hambau” V, Miller M, Klovstad M: Mol Biol Cell 2002 ! 1
hnRNA fraction 7% 8% (ave) Same reaction rates in GO and during the cell cycle 7. Chen KC, Csikasz-Nagy A, Gyorffy B, Val J, Novak B, Tyson JJ: Mol Bi
mRNA (cytosol) fraction 3% 3% (ave) Misc. |GO/cell-cycle energy ratio 20% ~7% 8. Gauthier, J.H. and Ponl, P.I.: BMC SYSTEMS BIOLOGY, V5 Num: 3. P
rRNA precursors fraction 4% 8% (ave) GO translation energy fraction Most 51% 9. Alberts, B., Bray, D., Lewis, J., Raff, M., Roberts, K., Watson, J.D., 1994 ell, 31 Ed., Garland, New York.
rRNA fraction 1% 67% (ave) 10. O’Farrell, P.H.: Trends in Cell Biology, 11(12), 512-519, December 200
[(RNA fraction 152/" 14?) (ave) 11. Watanabe, N., H. Arai, Y. Nishihara, M. Taniguchi, T. Hunter, and H. Os . 101:4419-4424, 2004. _
K K |RNAfract|on in nucleus 14% 16% (ave) / S —— Sandia is a multiprogram laboratory operated by Sandia n Company, for the United States r'h ﬁgﬂgﬁm
A TN~ Department of Energy’s National Nuclear Securit ct DE-AC04-94AL85000. Laboratories
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