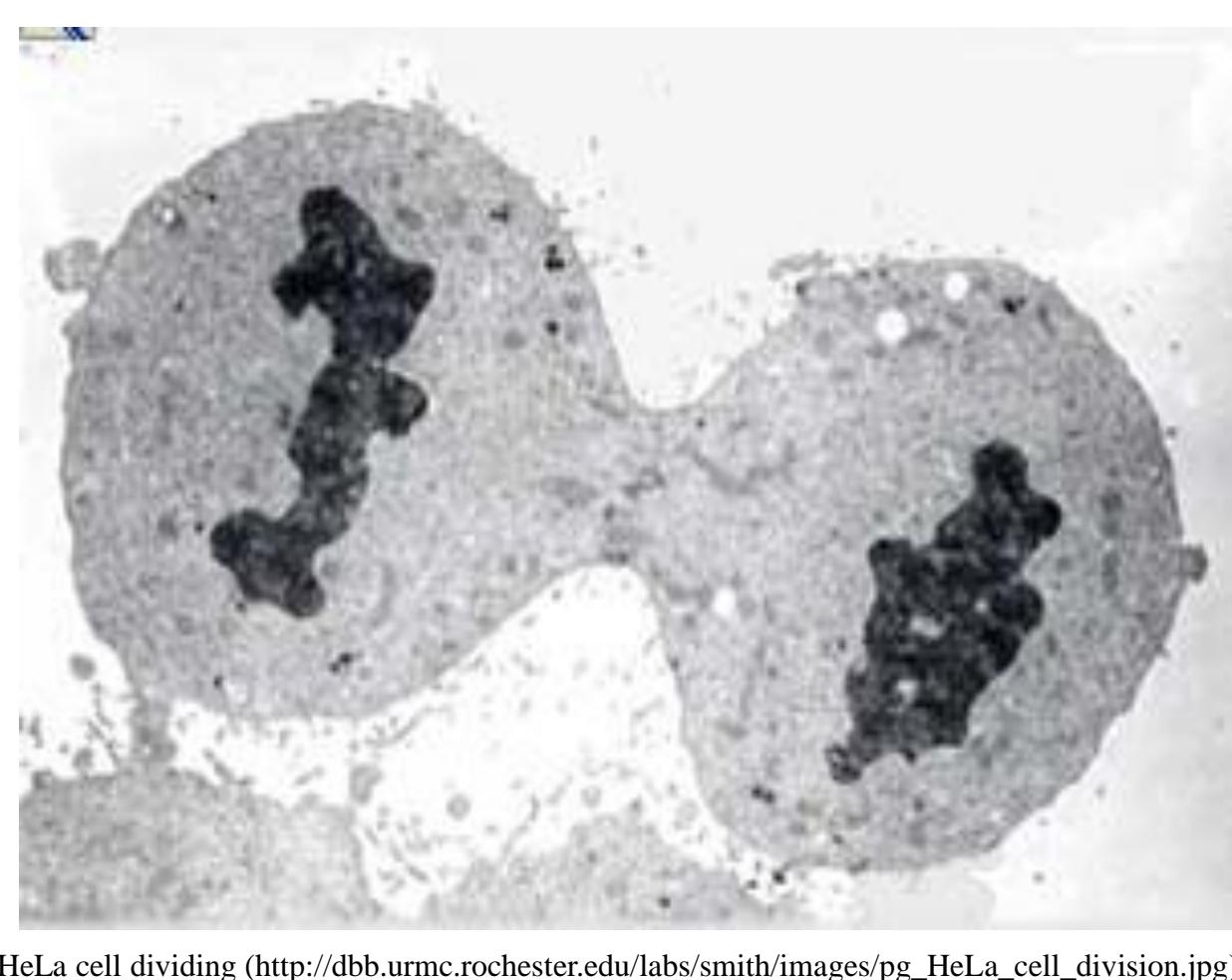


# A general framework for modeling mammalian cell growth & division

Phillip I. Pohl, and John H. Gauthier, Sandia National Laboratories

SAND2011-5321C


**Abstract** — A framework for modeling complex cell-biologic processes is presented, based on two constructs: one describing the entire lifecycle of a molecule and the second describing the basic cellular machinery. Use of these constructs allows models to be built in a straightforward manner that fosters rigor and completeness. To demonstrate the framework, an example model of the mammalian cell cycle is presented that consists of several hundred differential equations of simple mass action kinetics. The additional complexity afforded by the framework allows the example model to be calibrated to both large-scale and small-scale observations and allows predictions to be made at both the systems level and the molecular level.

## Why?

A standard model can be a bridge between experimentalists and theorists (as it is in Physics).

But it must be...

1. Explanatory
2. Alterable
3. Rigorous
4. Useful



HeLa cell dividing ([http://dbb.urmc.rochester.edu/labs/smith/images/pg\\_HeLa\\_cell\\_division.jpg](http://dbb.urmc.rochester.edu/labs/smith/images/pg_HeLa_cell_division.jpg))

And to be useful, a standard model should generate testable hypotheses.

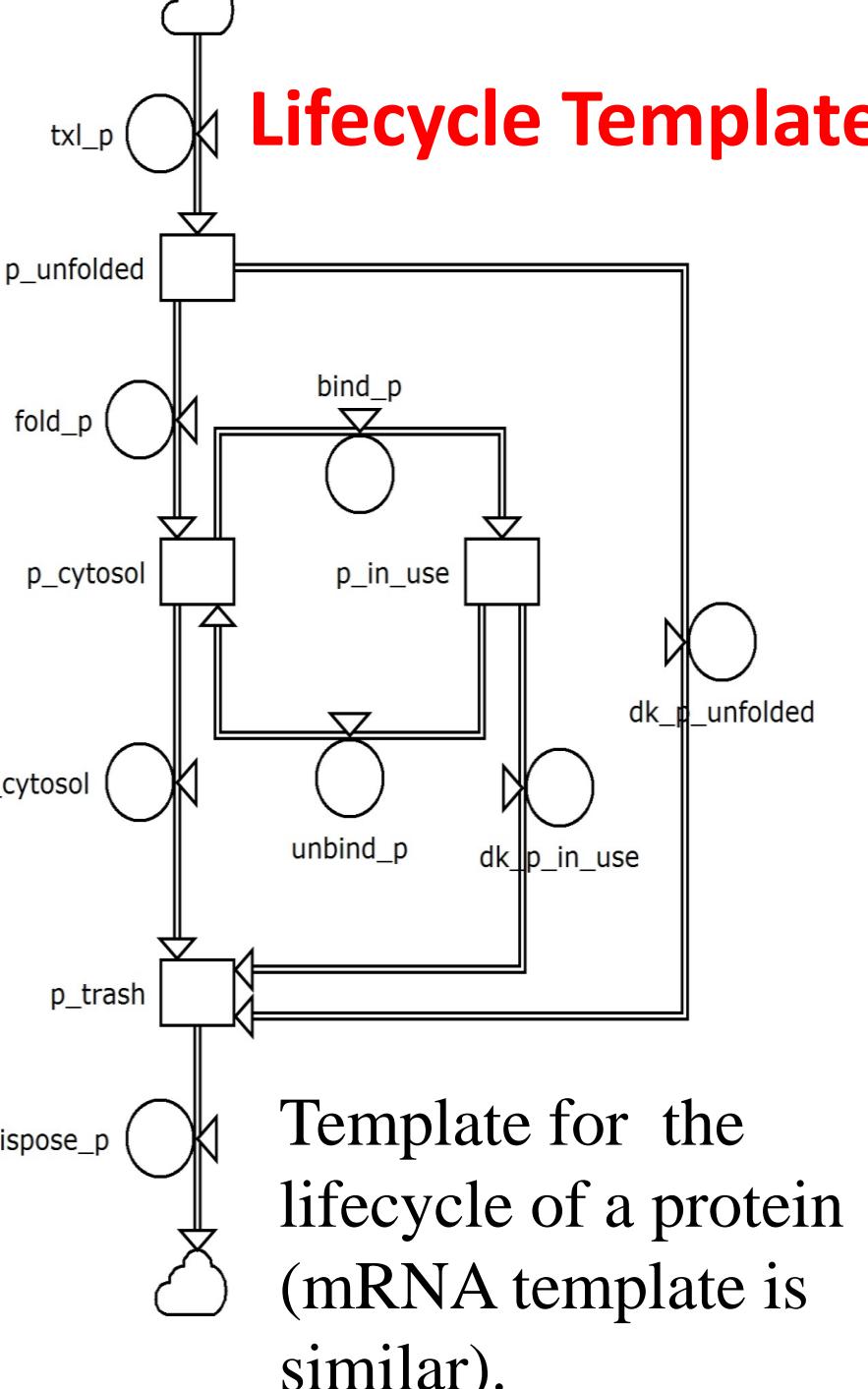
### PURPOSE

- Modeling of the eukaryote cell cycle, has been practiced for many decades<sup>1-3</sup>,
- These have produced descriptions of cell-cycle subprocesses<sup>4</sup> and predictions<sup>5,6,7</sup>,
- Beyond the realm of the mental models used by many researchers,
- These models typically involve a small set of regulating enzymes (<ten) and are often independent of the functioning of the entire cell.

We have developed a general framework that allows an increase in modeling complexity and tying of pathways to the basic cellular machinery. The framework is demonstrated in a cell-cycle model that allows several novel predictions. Application of the model to viral entry and in predicting host-virus interactions is outlined and discussed.

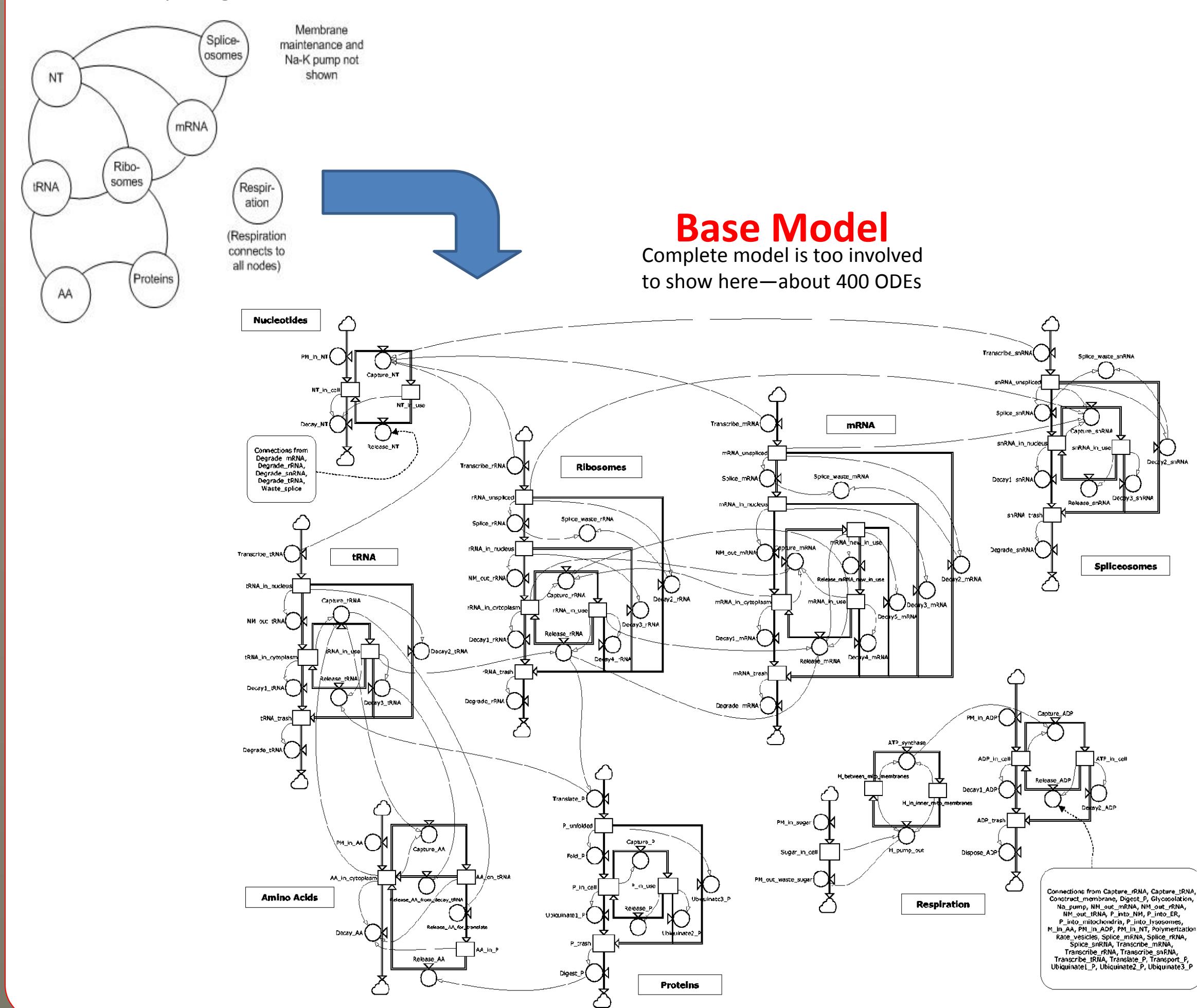
## How?

Use templates based on System Dynamics to describe molecule lifecycles.


The squares represent states, ODEs typically of the form:

$$\frac{dC}{dt} = R_{in} - R_{out}$$

The circles represent rates, typically of the form:


$$R = kC_1 C_2 \dots$$

Connect the templates using a relationship diagram. (Modeling to date has been only of these networks.<sup>1,2</sup>)



Template for the lifecycle of a protein (mRNA template is similar).

### Relationship diagram



### Base Model

Complete model is too involved to show here—about 400 ODEs

## Cell Cycle Model Details

- Involves describing the lifecycle of individual molecules and describing the basic cellular machinery (the base model).<sup>8</sup>
- Lifecycle construct calculates the creation and destruction of a molecule as well as applicable interactions with other molecules.
- Base model calculates energy usage, amino acid and nucleotide usage, membrane transport, RNA synthesis and destruction, and overall protein synthesis and destruction.
- Cell-cycle model built on the framework calculates the quantities of 33 proteins, and their concomitant 33 mRNAs, over time.
- Exclusive of the base model, consists of 387 ODEs and 1100 rate equations.
- The model is implemented in Matlab with ODE solver, ode15s.

| PROTEIN                          | LOC | GO    | UBIQ                                                                 | INDUCER                            | ACTIVATOR                                       | INACTIVATOR                                              | FUNCTION                                                                                                       |
|----------------------------------|-----|-------|----------------------------------------------------------------------|------------------------------------|-------------------------------------------------|----------------------------------------------------------|----------------------------------------------------------------------------------------------------------------|
| p27                              | N   | high  | KPC, SCF(Skp2), APC(Cdc20)                                           | constitutive                       |                                                 |                                                          | inhibits cyclins—prevent S                                                                                     |
| Rb                               | N   | high  |                                                                      | constitutive, E2F inhibits         | Cdc14*                                          |                                                          | inhibits E2F                                                                                                   |
| cycD                             | N   | 0     | SCF(Skp2), APC(Cdc20)*                                               | mitogen, B-Myb*                    | Cdk4or6                                         |                                                          | activates Cdk4or6 kinase; inactivates APC(Cdh1)                                                                |
| Cdk2                             | N   | high  |                                                                      | constitutive, E2F                  | cycE, cycA, Cdc25A                              |                                                          | kinase—phosphorylates RC—allows DNA replication                                                                |
| cycE                             | N   | 0     | SCF(Fbw7)-on Cdk2, SCF(Skp2)-free                                    | E2F                                | Cdk2                                            | p27                                                      | activates Cdk2 kinase                                                                                          |
| B-Myb                            | N   | 0     | SCF(Skp2)-free                                                       | E2F, B-Myb                         | cycA/Cdk2, cycE/Cdk2*                           | TF for cycD, Cdk1, Plk1, DNA pol, B-Myb, TF-grow, others |                                                                                                                |
| NF-Y                             | N   | 0 ?   |                                                                      | constitutive, E2F                  | cycA/Cdk2, cycE/Cdk2*                           |                                                          | TF for cycA, cycB, Cdk1, Cdc25C, TF-grow                                                                       |
| E2F                              | N   | 0     | SCF(Skp2), APC(Cdc20)*                                               | constitutive, E2F, B-Myb inhibits* | Cdk4or6*                                        | Rb, cycB/Cdk1*, cycA/Cdk2*, cycE/Cdk2*, cycC/Cdk2*       | TF for cycA, cycB, Cdk1, Cdc25C, DNA pol, others                                                               |
| cycA                             | N   | 0     | APC(Cdh1), SCF(Skp2)**, APC(Cdc20)**                                 | E2F, NF-Y, mitogen, adhesion**     | Cdk4or6*                                        | Rb, cycB/Cdk1*, cycA/Cdk2*, cycE/Cdk2*, cycC/Cdk2*       | activates Cdk2 and Cdk1 kinases                                                                                |
| SCF                              | CN  | 0     | APC(Cdh1)                                                            | constitutive                       | Skp2, Brc, Fbw7                                 |                                                          | ubiquitinase (requires subunit)                                                                                |
| Skp2                             | N   | 0     | auto (when no Em1 or Wee1), APC(Cdh1)                                | constitutive                       | SCF                                             |                                                          | ubiquitinase subunit for p27, E2F, RC, TF-grow, B-Myb, free cycE, cycA, cycD, others                           |
| Btrc                             | C   | 0     | auto (when no p27, cycE, E2F, or RC), APC(Cdh1), APC(Cdc20)          | E2F                                | SCF                                             |                                                          | ubiquitinase subunit for Em1, Cdc25A (sometimes), Wee1, others                                                 |
| Fbw7                             | N   | 0     | auto (when no cycE, TF-grow*, or RC*)                                | E2F                                | SCF                                             |                                                          | ubiquitinase subunit for cycE, TF-grow, RC**                                                                   |
| TF-grow (eg-c-myc, c-Jun, Notch) | N   | 0     | SCF(Fbw7)*, SCF(Skp2)*, (not ubiquitinates while TF-grow is on DNA*) | mitogen, Skp2, B-Myb               |                                                 |                                                          | TF for cell growth                                                                                             |
| RC(eg, IORC1, tCdc6)             | N   | 0     | SCF(Fbw7)**, SCF(Skp2), APC(Cdh1)                                    | E2F                                | cycD, Cdk2, cycA/Cdk2, cycE/Cdk4or6             | p27                                                      | DNA replication complex                                                                                        |
| RNA pol                          | N   | 0     | Y*, inhibits itself                                                  | RC                                 |                                                 |                                                          | DNA polymerase                                                                                                 |
| Wee1                             | C   | high  | SCF(Btrc)                                                            | constitutive                       | Cdc14                                           | cycA/Cdk2**                                              |                                                                                                                |
| cycB                             | CN  | 0     | APC(Cdc20), APC(Cdh1)                                                | E2F, B-Myb, NF-Y                   | Cdk1                                            | cycA/Cdk1*, Plk1                                         | kinase—prevents Cdk1 activation                                                                                |
| Cdk1                             | CN  | high* |                                                                      | E2F, B-Myb, NF-Y, constitutive     | cycA, cycB, B-Myb, Cdk1, Cdc25A, Cdc25B, Cdc25C | Wee1, Cdc14                                              | activate Cdk1 kinase                                                                                           |
| Cdc25C                           | CN  | high  |                                                                      | constitutive, NF-Y**               | cycB/Cdk1, cycA/Cdk1*                           | Cdc14                                                    | phosphatase—activates cycB/Cdk1                                                                                |
| Plk1                             | C   | 0     | APC(Cdh1)                                                            | E2F, TF-grow                       | cycB/Cdk1, cycA/Cdk1*                           |                                                          | kinase—activates Cdc25C; deactivates Em1, Wee1; translocates cycA/Cdk1, cycB/Cdk1, Cdc25C, and Plk1 to nucleus |
| Em1                              | CN  | 0     | SCF(Btrc), SCF(Skp2)*                                                | E2F                                |                                                 | cycA/Cdk1*                                               | inhibits Cdk1, Cdc20                                                                                           |
| APC                              | N   | high  |                                                                      | constitutive                       | Cdh1, Cdc20                                     |                                                          | ubiquitinase (requires subunit)                                                                                |
| Cdh1                             | N   | high  | auto (when no Skp2, cycA, cycB, Cdc25A, Plk1, RC, Cdc20, SCF, p27**) | constitutive                       | APC, Cdc14                                      | Em1, cycA/Cdk2, cycB/Cdk1, cycC/Cdk2, cycD/Cdk2*         | ubiquitinase subunit—minimizes G0, G1—ubiq Cdc20, cycA (free), cycB (free), Cdc25A, RC, Plk1, Skp2, others     |
| Cdc20                            | N   | 0     | APC(Cdh1)                                                            | constitutive                       | APC, cycB/Cdk1, cycC/Cdk1*                      | Em1, Cdc14                                               | ubiquitinase subunit for Securin, cycB, cycA                                                                   |
| Cdk14 (represents MEN pathway)   | N   | high  |                                                                      | constitutive                       | Plk1*                                           | Securin                                                  | phosphatase—acts p27, Wee1, Cdk1; deactivates Cdc25A, Cdc25B, Cdc25C                                           |
| Cdc25A                           | N   | 0     | APC(Cdh1), SCF(Btrc)*                                                | constitutive, E2F, TF-grow         | cycE/Cdk2, cycA/Cdk2, cycB/Cdk1*, cycC/Cdk1*    | Cdc14                                                    | phosphatase—activates cycE/Cdk2, cycA/Cdk2, cycB/Cdk1*, cycC/Cdk1*                                             |
| Cdc25B                           | C   | 0     | APC(Cdh1)*, SCF(Btrc)*                                               | E2F*, TF-grow*                     | cycE/Cdk1*, cycA/Cdk1*, cycB/Cdk1*              | Cdc14                                                    | phosphatase—activates cycE/Cdk1, cycB/Cdk1*                                                                    |
| Securin                          | N   | 0     | APC(Cdc20)                                                           | E2F                                |                                                 |                                                          | keeps separate from destroying chromatin cohesion proteins                                                     |
| cycC                             | N   | high  |                                                                      | constitutive                       | Cdk8, Cdc14*                                    | mitogen*                                                 | inhibits RNA pol                                                                                               |
| KPC                              | N   | high  |                                                                      | constitutive                       |                                                 | mitogen*                                                 | ubiquitinase for p27                                                                                           |
| RNA pol                          | N   | high  |                                                                      | constitutive, NF-Y*                |                                                 | cycC/Cdk8, APC(Cdc20)*                                   | txs                                                                                                            |
| eIF-4                            | C   | high  |                                                                      | constitutive                       |                                                 |                                                          | initiates ttx                                                                                                  |

The proteins represent different layers of abstraction (see Additional file 1). LOC = location N = nucleus, C = cytoplasm, GO = steady-state concentration, UBIQ = ubiquinating molecules, auto = autoubiquitination, INDUCER = molecule effecting transcription, ACTIVATOR = molecule promoting activity, TF = transcription factor, ttx = transcription, ttx = translation, ? = unknown, \* = assumed, \*\* = ignored.

## Correct?

- The model is calibrated to quantitative data in the literature<sup>9-11</sup>.
- G0 is calibrated to # proteins ( $10^{10}$ ), # ATP ( $10^9$ ), ATP usage ( $10^7$  ATP/s),  $\text{Na}^+$ - $\text{K}^+$  ATPase energy (32% of total), elongation rates (txs ~30 NT/s, DNA replication ~50 NT/s, ttx ~20 AA/s), etc.
- Cell cycle is calibrated to HeLa duration (1-1.5 days, G1 ~12 hr, S ~8 hr, G2 ~10 hr, M ~6 hr), # RNA polymerases (~30,000), # rRNA (~5 $\times 10^6$ ), fractions of various RNAs (hnRNA ~7%, mRNA ~3%, rRNA precursor ~4%, rRNA ~71%, tRNA ~15%, RNA in nucleus ~14%), etc.
- The most difficult characteristics to match are (1) using the same reaction rates for G0 as for cell cycle, (2) transitioning from G0 to cell cycle in a reasonable time, and (3) setting a robust G2/M transition time.
- **NOTE:** Quantitative data do not exist for most individual mRNAs and proteins. Many concentrations in this model are estimated. However, reactions are dependent on the concentration and the reaction rate; when a concentration is known, rates can be adjusted (often linearly) hence.

| Quantity                   | Lit Value | Model Value | Quantity                                                                                                                                     | Lit Value                   | Model Value          |
|----------------------------|-----------|-------------|----------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------|----------------------|
| Cell Cycle                 |           |             | G0                                                                                                                                           |                             |                      |
| Cell-cycle duration (HeLa) | 25 hr     | 33 hr       | # proteins                                                                                                                                   | $10^{10}$                   | $10^{10}$            |
| G1 duration                | 12 hr     | 15 hr       | # amino acids (AA) unbound                                                                                                                   | $6 \times 10^{10}$          | $5.7 \times 10^{10}$ |
| S duration                 | 8 hr      | 7 hr        | # nucleotides (NT) unbound                                                                                                                   | 0.4wt% - $2 \times 10^{10}$ | $2 \times 10^{10}$   |
| G2                         | 4 hr      | 7 hr        | # ATP                                                                                                                                        | $10^7$                      | $10^7$               |
| M                          | 4 hr      | 4 hr        | ATP usage                                                                                                                                    | $10^7$ ATP/s                | $10^7$ ATP/s         |
|                            |           |             | Transcription elongation rate                                                                                                                | 30 NT/s                     | 30 NT/s              |
|                            |           |             | Translation elongation rate                                                                                                                  | 20 AA/s                     | 20 AA/s              |
|                            |           |             | DNA replication elongation rate                                                                                                              | 50 NT/s                     | 50 NT/s              |
|                            |           |             | Na <sup>+</sup> -K <sup>+</sup> ATPase energy (fraction of total)                                                                            | 33%                         | 32%                  |
|                            |           |             | Transl. energy fraction                                                                                                                      | Most                        | 51%                  |
|                            |           |             |                                                                                                                                              |                             |                      |
|                            |           |             | Misc.                                                                                                                                        |                             |                      |
|                            |           |             | Same reaction rates in G0 and during the cell cycle                                                                                          |                             |                      |
|                            |           |             | G0/cell-cycle energy ratio                                                                                                                   | 20%                         | -7%                  |
|                            |           |             | G0/translation energy fraction                                                                                                               | Most                        | 51%                  |
|                            |           |             |                                                                                                                                              |                             |                      |
|                            |           |             | References                                                                                                                                   |                             |                      |
|                            |           |             | 1. Ingolia NT, Murray AW: <i>Current Biology</i> 2004 , 14:R771-R777.                                                                        |                             |                      |
|                            |           |             | 2. FuJi H, Dubitzky W, Downes CS, Kurth M: <i>Briefings in Bioinformatics</i> 2005 , 6:163-177.                                              |                             |                      |
|                            |           |             | 3. Csikasz-Nagy A: <i>Briefings in Bioinformatics</i> 2009 , 10:424-434.                                                                     |                             |                      |
|                            |           |             | 4. Iwamoto K, Tashima Y, Hamada H, Eguchi Y, Okamoto M: <i>BioSystems</i> 2008 , 94:109-117.                                                 |                             |                      |
|                            |           |             | 5. Chen KC, Calzone L, Csikasz-Nagy A, Cross FR, Novak B, Tyson JJ: <i>Mol Biol Cell</i> 2004 , 15:3841-3862.                                |                             |                      |
|                            |           |             | 6. Cross FR, Arambula B, Miller M, Klovstad M: <i>Mol Biol Cell</i> 2002 , 13:52-70.                                                         |                             |                      |
|                            |           |             | 7. Chen KC, Csikasz-Nagy A, Gyorffy B, Val J, Novak B, Tyson JJ: <i>Mol Biol Cell</i> 2000 , 11:369-391.                                     |                             |                      |
|                            |           |             | 8. Gauthier J.H. and Pohl, P.I.: <i>BMC SYSTEMS BIOLOGY</i> , V 5 Num: 3. Published: JAN 6 2011.                                             |                             |                      |
|                            |           |             | 9. Alberts B., Bray D., Lewis J., Raff M., Roberts K., Watson J.D., 1994. <i>Molecular Biology of the Cell</i> , 3rd Ed., Garland, New York. |                             |                      |
|                            |           |             | 10. O'Farrell P.H.: <i>Trends in Cell Biology</i> , 11(12), 512-519, December 2001.                                                          |                             |                      |
|                            |           |             | 11. Watanabe, N., H. Arai, Y. Nishihara, M. Taniguchi, T. Hunter, and H. Osada: <i>Proc Natl Acad Sci USA</i> , 101:4419-4424, 2004.         |                             |                      |

## Some Results