
Access to External Resources Using Service-Node Proxies
Ron A. Oldfield, Andrew Wilson, George Davidson, and Craig Ulmer

Sandia National Laboratories∗

Todd Kordenbrock
Hewlett Packard

ABSTRACT: Partitioning massively parallel supercomputers into service nodes running a full-fledged OS
and compute nodes running a lightweight kernel has many well-known advantages but renders it difficult to
access externally located resources such as high-performance databases that may only communicate via TCP.
We describe an implementation of a proxy service that allows service nodes to act as a relay for SQL requests
issued by processes running on the compute nodes. This implementation allows us to move toward using HPC
systems for scalable informatics on large data sets that simply cannot be processed on smaller machines.

KEYWORDS: SQL, Proxy, Informatics, Cray, Application Services

1. Introduction

High-performance computing (HPC) systems, particularly
large-scale parallel supercomputers, have traditionally been
used to address complex scientific problems; however, the re-
cent interest in informatics, especially related to cyber security
and social networking, has motivated the informatics commu-
nity to consider these platforms as a viable solution for infor-
matics problems. Informatics applications that require sub-
stantial numerical operations, such as latent semantic analysis
(LSA) [5, 6] and eigenvalue decomposition, are particularly
well suited for HPC. On an HPC system, these applications
can take advantange of existing software like Sandia’s Trili-
nos numerical solvers [8] that were designed and tuned for
large-scale parallel systems. In addition to the algorithms re-
quirements, the data requirements for emerging informatics
problems are immense. While cluster solutions require sub-
stantial culling of the data before analysis, a supercomputer
can analyze much larger data sets, perhaps identifying global
data relationships among the data that could not be found at a
smaller scale.

While HPC platforms provide effective capability to ad-
dress numerical-computing requirements of informatics appli-
cations, they are severely lacking in other respects. For ex-
ample, informatics applications often require access to large
databases, but HPC systems only provide storage to a local
parallel file system. In addition, the HPC system architec-
ture, while great for computational physics, lacks functional-
ity provided by Linux clusters that enable remote access to
databases. In particular, proprietary network interfaces and
protocols do not support TCP which is required by ODBC
drivers for remote databases.

In this paper, we describe the design and implementation
of a proxy service that allows service nodes to act as a relay
for SQL requests issued by an application running on Sandia’s

∗Sandia is a multiprogram laboratory operated by Sandia Corporation,
a Lockheed Martin Company, for the United States Department of En-
ergy’s National Nuclear Security Administration under Contract DE-AC04-
94AL85000.

Figure 1: Compute nodes in a partitioned architecture use a
“lightweight” operating system with no support for threading, multi-
tasking, or memory management. Service, Network, and I/O nodes
use a more “heavyweight” operating system (e.g., Linux) to provide
shared services.

Cray XT3 system, Red Storm. This technology represents a
major step in the ability to leverage the elite class of HPC
systems for informatics applications and provides a valuable
template for how to access other remote resources from an
HPC system.

2. Background

This section describes the system architecture of the Cray
XT3 at Sandia and its limitations with respect to support for
informatics applications. We also describe application-level
services, and the Titan toolkit – two technologies that, when
combined, enable remote database access from a parallel ap-
plication.

2.2. HPC System Architecture

Figure 1 illustrates the partitioned architecture used by the
Cray XT3 Red Storm system at Sandia National Laborato-
ries. This type of architecture is typical for high-end parallel
supercomputers and is also the model for the IBM BlueGene
series as well as the rest of the Cray XT and XMT systems. A
partitioned architecture system [7] is comprised of compute

CUG 2009 Proceedings 1 of 7

SAND2009-2773C

nodes that use a lightweight kernel [11, 19] operating sys-
tem and service nodes running a full-fledged operating sys-
tem, typically some variant of Linux. By design, lightweight
kernels provide a very limited set of functionality to the ap-
plication. In the case of Catamount [9] and Compute Node
Kernel [19], the operating systems used by Cray and IBM,
there is no support for threading, multi-tasking, or memory
management. Compute Node Linux [20], the operating sys-
tem used by the Cray XT4 compute nodes, provides some of
these services, but is still somewhat restricted when compared
to standard Linux distributions.

In addition to the specialized operating systems, high-end
parallel supercomputers also use proprietary networks with
specialized protocols. For example, the Cray XT3 and XT4
use the SeaStar network interface [2] that provides extremely
high bandwidth, but is only accessible through the Portals pro-
gramming interface [3]. Since there is no support for TCP
on the compute nodes, there is also no support for ODBC,
the standard API used to access remote databases. Providing
ODBC for a Red Storm application requires an implemen-
tation of ODBC or TCP over Portals, an option that incites
memories of a bad burrito I once had in downtown El Paso.
Instead, we chose to create an application-level service that
provides database functionality through an extension of the
Titan vtkSQLDatabase class.

2.2. Application-Level Services on the XT3

Application-level services are jobs (either serial or parallel)
that process service requests from a parallel application. Un-
like a traditional shared service, an application-level service is
dedicated to the application and is typically instantiated with
the application as part of the launch task.

To enable application-level services, we use a remote-
procedure call (RPC) library developed for the lightweight file
system project [13, 14]. The LWFS-RPC is based on the Sun
RPC Interface [12, 18], but includes modifications specifically
designed for efficient data-movement on HPC platforms. For
example, in contrast to the Sun RPC, the LWFS RPC is com-
pletely asynchronous. This allows clients to overlap computa-
tion and I/O — a feature particularly important given that I/O
operations are remote for most MPP architectures.

Another key optimization for the LWFS RPC library is the
use of separate communication channels for control and data
messages. A control message is typically small. It identifies
the operation to perform, where to get arguments, the struc-
ture of the arguments, and so forth. In contrast, a data mes-
sage is typically large and consists of “raw” bytes that, in most
cases, do not need to be encoded/decoded by the server. The
LWFS-RPC client uses the RPC-like interface to push control
messages to the servers, but the server uses a different, one-
sided API to push or pull data to/from the client. This protocol
allows interactions with heterogeneous servers, but also ben-
efits from allowing the server to control the transport of bulk
data [10, 17]. The server can thus manage large volumes of
requests with minimal resource requirements.

On the Cray XT3 Red Storm system at Sandia National
Laboratories, the LWFS RPC is layered on top of the Portals

Message Passing Interface [1]. Portals is a particularly good
choice for for MPP systems because it is connectionless, it has
one-sided communication APIs that enable the exploitation of
remote direct-memory access (RDMA) and operating-system
bypass to avoid memory copies in the kernel-managed proto-
col stack, and it is designed for lightweight operating systems
such as the Catamount OS for the Cray XT3 [4].

When a remote service starts, before it can accept requests,
it allocates a buffer for incoming requests and creates all the
necessary Portals data structures required to direct an incom-
ing request to the right location in the buffer. The Portals data
structures, shown in Figure 2 include a memory descriptor to
describe the server’s buffer for incoming requests, a match list
used to identify appropriate messages, a Portal table to index
match lists in the Portals library, and an event queue that con-
tains a log of successfully matched messages.

To illustrate how the RPC protocols work, Figure 2 shows
the network protocol and Portals data structures used for the
lwfs_write() function. The client initiates the protocol
by encoding/marshaling an RPC request buffer and putting
the request on the server’s incoming-request buffer. The re-
quest buffer includes the memory descriptor of the source data
buffer, the memory descriptor of the result buffer, the opera-
tion code of the request, and the arguments required for that
operation. When the put() completes, the server gets a no-
tification (i.e., Portals event) that a new request has arrived.
The server then decodes the request, identifies the request as
a write, and calls the local write function with the decoded
arguments. The write function then begins a sequence of one-
sided get() calls to pull the data from the client into pre-
allocated buffers on the server. While the data is being pulled
from the client, the server is writing data from the data buffer
to the back-end storage, overlapping the I/O to disk with the
network I/O. When the server receives all the data from the
client, it puts a message on the client’s result buffer notifying
the client of completion.

It is important to note that lwfs_write() is an asyn-
chronous operation. The client does not have to sit idle wait-
ing for the remote operation to complete. When the client
is ready for the result, the lwfs_wait() function blocks
the client until the specified remote request is either com-
plete (possibly with an error) or has timed out. When the
lwfs_wait() function returns, the client may release or re-
use all buffers reserved for the remote operation.

2.2. Titan Components for Informatics

Our informatics applications are built using components from
Titan [21], a parallel informatics processing framework within
Kitware’s Visualization Toolkit (VTK) [16]. Titan and VTK
implement a pipeline architecture where data sets are drawn
from sources, processed by chains of filters, and then directed
to output sinks which can render to a display or write results
back to storage.

We target specifically the Titan classes that allow an appli-
cation to read from and write to a database. These classes are
structured according to Figure 3. The vtkSQLDatabase
class defines common functions such as opening and clos-

CUG 2009 Proceedings 2 of 7

Portals Library

data

results

match
entry

memory
descriptor

event Q

match
entry

memory
descriptor

event Q

portal table
request

data

result
buffer

request
buffer

A

data
buffers

result

B

match
entry

memory
descriptor

event Q

1

2

4
put()

put()

get()
A

C

D

B 3

request

Portals Library
Client Server

Storage

0

Figure 2: The figure illustrates the required Portals data structures and network protocol used by the lwfs_write() function.

vtkSQLDatabase

vtkSQLiteDatabase

vtkMySQLDatabase

vtkPostgreSQLDatabase

vtkODBCDatabase

vtkRowQuery vtkSQLQuery

vtkMySQLQuery

vtkODBCQuery

vtkPostgreSQLQuery

vtkSQLiteQuery

Figure 3: The Titan toolkit implements database connectivity
through two abstract classes (vtkSQLDatabase and vtkSQLQuery)
that define all operations and several concrete implementations that
adapt those operations to third-party, database-specific client li-
braries. These third-party libraries (and thus the Titan drivers) typi-
cally assume that the underlying OS supports POSIX I/O including
files and sockets.

ing a database connection. Operations such as specifying
and executing an SQL query, checking for error and re-
trieving results are defined in the abstract vtkRowQuery
and vtkSQLQuery classes. The implementation- and
vendor-specific details of executing these operations on
various databases are handled in concrete subclasses of
vtkSQLDatabase and vtkSQLQuery. As of May 2009
Titan supports MySQL, PostgreSQL, SQLite and the cross-
platform, database-agnostic ODBC protocol.

Titan components are designed primarily to run in a regular
desktop or cluster environment. That is, they assume that the
underlying operating system has a full set of POSIX I/O calls
and sockets and that third-party database interfaces (e.g. the

Netezza

LexisNexis

Other
DWA

ODBC

Data Warehouse
Appliances

SQL
Service

Red Storm
Compute Nodes Red Storm

Network Nodes
App

App

App

Portals

...

Figure 4: The SQL service is a proxy for SQL requests to a remote
database.

MySQL client library or an ODBC driver manager) can be
linked in as shared or static libraries. Our main challenge in
this work is to bridge from the compute nodes, where these
assumptions do not hold, to the service nodes where a full-
featured “heavyweight” operating system is available.

3. A Service for Remote Database Access

To enable compute-node informatics applications to access re-
mote databases, we implemented an SQL Service that runs on
the network nodes of Red Storm and acts as a proxy for SQL
requests from compute-node applications. The SQL service,
illustrated in Figure 4, uses the LWFS-RPC library to commu-
nicate with running applications through Portals, and it uses
the Titan database classes to access the remote database using
the ODBC API over TCP/IP.

CUG 2009 Proceedings 3 of 7

Listing 1: Example code that queries a remote database for all people under the age of 20.

/ / Open a N e t e z z a d a t a b a s e (r e q u i r e s a p p r o p r i a t e . odbc . i n i s e t u p)
vtkSQLDatabase ∗db = vtkRemoteSQLDatabase : : CreateFromURL (" odbc : / / a t w _ t e z z / ") ;
db−>Open (passwd) ;

/ / Query t h e d a t a b a s e
vtkSQLQuery∗ que ry = db−>G e t Q u e r y I n s t a n c e () ;
query−>SetQuery ("SELECT name , age , w e i gh t FROM p e o p l e WHERE age < 20 ") ;
query−>Execu te () ;

/ / Ou tpu t r e s u l t s
vtkVariantArray ∗va = vtkVariantArray : : New () ;
whi le (query−>NextRow (va)) {

f o r (i n t f i e l d =0; f i e l d <va−>GetNumberOfValues () ; f i e l d ++) {
i f (f i e l d > 0) c o u t << " , " ;
c o u t << va−>GetValue (f i e l d) . T o S t r i n g () . c _ s t r () ;

}
c o u t << e n d l ;

}

/ / Tear down v t k p i p e l i n e
va−>D e l e t e () ;
query−>D e l e t e () ;
db−>D e l e t e () ;

To understand how the SQL service works, consider the ex-
ample code shown in Listing 1 that queries a remote database
for all people equal to or under the age of 20. The only dif-
ference between the example and the equivalent non-remote
version is the use of vtkRemoteSQLDatabase instead
of vtkSQLDatabase for the the call to the static method
CreateFromURL(). The CreateFromURL method uses
the LWFS RPC API to send a “create” request to the SQL
service. The service then instantiates the appropriate sub-
class of vtkSQLDatabase on the network node (in this
case, it’s a vtkODBCDatabase class that connects to a
Netezza database), assigns it a unique identifier, and man-
ages the database object in a table of open databases. The
vtkRemoteDatabase, on the client side, uses id generated
by the SQL service when it forwards database requests.

Once connected to a remote database, the client
needs to get a query instance from the database
object. The GetQueryInstance() method re-
turns a vtkRemoteSQLQuery, which is a sub-
class of the vtkSQLQuery class. Like the
vtkRemoteSQLDatabase, the remote query object
uses the LWFS-RPC API to send requests to a “part-
ner” query class that exists on the SQL Service. List-
ings 2 and 3 show the client and server stubs for the
vtkSQLQuery->Execute() method.

The client-side code simply copies the method parameters
into data structures that the LWFS RPC API can serialize
and send to the SQL service. The parameters include the ID
of the remote query structure and the SQL code to be exe-
cuted by the remote query object. The asynchronous function
lwfs_call_rpc passes the handle to the remote LWFS
service, an op-code that identifies the Execute op, the function
arguments, and structures for result. It then returns a handle
to the pending request.

The server-side stub uses a standard set of parameters de-
fined for the LWFS RPC services. The parameters include
the process ID of the calling process, the argument structure
for the method, and two remote-memory addresses: one for
bulk data (not used in this example), and one for the result.
To properly execute the query, the server stub has to find the
right vtkSQLQuery object, referenced by the query ID, set
the query string, and call the Execute() method. The re-
sult, which signals success or failure is sent back with the
result structure when stub calls the lwfs_send_result
function.

Similar stubs exist for the remaining methods of the
vtkSQLQuery and vtkSQLDatabase classes. The de-
tails of encoding, decoding, and transferring application-
specific data structures are all handled by the LWFS RPC
library, making the task of developing proxy-based services
relatively straight forward.

4. A Statistics Code Demonstration

To demonstrate the functionality of the SQL service, we im-
plemented a sample parallel statistics code [15] using the re-
mote database classes. Given one or more data series, the
statistics code calculates mean, variance, skewness, kurtosis,
the covariance matrix and its Cholesky decomposition.

Our initial implementation uses the SQL service to pull the
data from a remote Netezza system to node 0 of the parallel
application using an SQL SELECT statement. The application
then uses MPI to evenly distribute the rows of the table to
the parallel nodes, calculates statistics on the data in parallel,
gathers the results on node 0, and finally uses the SQL service
to store the results in a new table back on the remote Netezza
system using SQL INSERT statements.

CUG 2009 Proceedings 4 of 7

Listing 2: Client-side stub for the vtkRemoteSQLQuery::Execute() method.

bool vtkRemoteSQLQuery : : Execu te ()
{

/ / ha nd l e t o t h e RPC r e q u e s t
l w f s _ r e q u e s t r e q ;

/ / XDR da ta s t r u c t u r e f o r args and r e s u l t s (t h e s e g e t s e r i a l i z e d by LWFS RPC)
v t k _ s q l _ q u e r y _ e x e c u t e _ a r g s a r g s ;
v t k _ s q l _ q u e r y _ e x e c u t e _ r e s r e s ;

/ / S e t t h e argument s f o r t h e remote E x e c u t e f u n c t i o n .
a r g s . q i d = t h i s −>GetRemoteQueryID () ;
a r g s . q s t r = t h i s −>GetQuery () ;

/ / Marshal and send t h e r e q u e s t t o t h e SQL S e r v i c e
l w f s _ c a l l _ r p c (t h i s −>GetRemoteServ ice () , VTK_SQL_QUERY_EXECUTE_OP,& args , NULL,0 ,& r e s ,& r e q) ;

/ / Wait f o r async r e q u e s t t o c o m p l e t e (no t i m e o u t used)
l w f s _ w a i t (& req , LWFS_INFINITY) ;

re turn r e s . s t a t u s ;
}

Listing 3: Server-side stub for the vtkRemoteSQLQuery::Execute() method.

i n t v t k _ s q l _ q u e r y _ e x e c u t e _ s t u b (
c o n s t lwfs_remote_pid ∗ c a l l e r ,
c o n s t v t k _ s q l _ q u e r y _ e x e c u t e _ a r g s ∗ a rgs ,
c o n s t lwfs_rma ∗ d a t a _ a d d r , / / n o t used
c o n s t lwfs_rma ∗ r e s _ a d d r)

{
/ / A da ta s t r u c t u r e f o r t h e r e s u l t
v t k _ s q l _ q u e r y _ e x e c u t e _ r e s r e s ;

/ / Lookup t h e p a r t n e r query o b j e c t (s t o r e d i n an STL map)
que ry = query_map [a rgs −>q i d] ;

/ / E x e c u t e t h e query
i f (que ry) {

query−>SetQuery (a rgs −> q s t r) ;
s t a t u s = query−>Execu te () ;

r e s . s t a t u s = s t a t u s ;
}

/ / Send t h e r e s u l t o f t h e E x e c u t e back t o t h e c l i e n t
re turn l w f s _ s e n d _ r e s u l t (VTK_SQL_QUERY_EXECUTE_OP, rc , &r e s , r e s _ a d d r) ;

}

We successfully ran the statistics code on 100 nodes of the
Red Storm system at Sandia National Laboratories. The input
query read a dataset of 100,000 rows and 4 columns (3.2 MB)
and dumped back approximately 8KB of results.

The focus of this first demonstration was functionality, not
performance. At the time, we were in a race to complete
the demonstration before the system switched to a mode that
no longer allowed unclassified research. To accelerate our
progress, we implemented the minimal set of functionality re-
quired to ensure success. In our haste, we skipped of a number
of methods and features (some discussed in Section 5) that
could have improved performance dramatically. In our next
version, we will address these issues and explore other means

to improve performance of remote access.

5. Conclusions and Future Work

This paper describes an early prototype of an application-level
SQL-proxy service that enables compute-node applications
running on a Cray XT3 to interface with a remote database.
Preliminary results demonstrate functionality, but would not
be acceptable in a production environment do to extremely
poor access rates. The poor performance stems from a combi-
nation of factors including no support for the bulk I/O features
in the ODBC API, minimal effort to optimize data movement
for the service, and poor connectivity between the network

CUG 2009 Proceedings 5 of 7

nodes and the remote database (in this case the Netezza sys-
tem).

Our first, and current, implementation of the
vtkSQLQuery class only fetches a single data value
at a time and does not take advantage of the bulk I/O features
of the LWFS RPC library. To address this, we plan to
implement the GetRow function, which for large rows,
could have a dramatic impact on performance. We are also
considering implementing a (non-standard) GetTable
function that reads and distributes an entire table to nodes in
a parallel application. For statistics and graph-analysis codes
that plan to analyze the entire result set, this type of func-
tionality could prove critical. Finally, we plan to implement
the Bind method that reduces database-server latency by
binding variables to previously generated execution plans. In
many cases, this optimization can significantly reduce query
latency, leading to an effective improvement in access rates.

Another critical issue for remote access to data-warehouse
appliances is networking. While both the Netezza and Red
Storm are designed for high throughput within their machine,
their external connectivity is often lacking. For example, since
all traffic from the Netezza has to go through a single head
node, we expect the limiting factor for remote access to large
datasets to be the network interface on that head node. In the
case of our Netezza system, we have a single 1 Gb/s interface
to rest of the network, and performance is substantially slower
when the systems are not co-located.

Although the SQL service still requires a fair amount of
work to be complete, it successfully demonstrated the utility
of application-level services. Over the next year, we plan to
develop a number of new services, including a service for in-
teractive remote visualization and control, a service for real-
time data analysis, a service for I/O caching in the compute-
node fabric, and a service for in-situ particle detection for a
shock physics code.

The SQL service also demonstrated the ability to interface
running applications with remote resources. This new capa-
bility represents a first-step toward expanding the usage model
and customer base for high-end capability systems and is par-

ticularly appealing for compute- and data-intensive informat-
ics and cyber-security applications. We now have a clear path
towards a usage model that includes integrated use of data-
warehouse appliances, interactive visualization and analytic
tools, and high-end computing resources.

6. About the Authors

Ron A. Oldfield is a senior member of the technical staff at
Sandia National Laboratories in Albuquerque, NM. He re-
ceived the B.Sc. in computer science from the University of
New Mexico in 1993. From 1993 to 1997, he worked in the
computational sciences department of Sandia National Lab-
oratories, where he specialized in seismic research and par-
allel I/O. From 1997 to 2003 he attended graduate school at
Dartmouth college and received his Ph.D. in June, 2003. In
September of 2003, he returned to Sandia to work in the Scal-
able Computing Systems and Scalable Architectures depart-
ments. He currently leads a number of I/O, resilience, and sys-
tems architecture projects. His research interests include par-
allel and distributed computing, parallel I/O, resilience, and
performance modeling. He can be reached at Sandia National
Laboratories, P.O. Box 5800, Albuquerque, NM 87185-1110.
Email: raoldfi@sandia.gov.

Andrew T. Wilson a senior member of the technical staff
at Sandia National Laboratories in Albuquerque, NM. He re-
ceived the B.Sc. in computer science from Northwestern Uni-
versity in 1993 and his Ph.D. in computer science in 2002
from the University of North Carolina where he specialized
in interactive rendering of large data sets. Since then he has
worked in the visualization and data analysis group at Sandia.
His research interests include informatics algorithms on novel
architectures, the visualization and manipulation of uncertain
data, and on-line algorithms for tracking trends in streaming
data. He can be reached at Sandia National Laboratories, P.O.
Box 5800, MS 1323, Albuquerque, NM 87185-1323, USA.
Email: atwilso@sandia.gov.

[1] Ron Brightwell, Tramm Hudson, Arthur B. Maccabe, and Rolf
Riesen. The Portals 3.0 message passing interface. Technical
Report SAND99-2959, Sandia National Laboratories, Novem-
ber 1999.

[2] Ron Brightwell, Kevin Pedretti, Keith Underwood, and Tram-
mell Hudson. SeaStar interconnect: Balanced bandwidth for
scalable performance. IEEE Micro, 26(3):41–57, 2006.

[3] Ron Brightwell, Rolf Riesen, Bill Lawry, and Arther B. Mac-
cabe. Portals 3.0: protocol building blocks for low overhead
communication. In Proceedings of the International Parallel
and Distributed Processing Symposium. IEEE Computer Soci-
ety Press, April 2002.

[4] William J. Camp and James L. Tomkins. The red storm com-
puter architecture and its implementation. In The Conference
on High-Speed Computing: LANL/LLNL/SNL, Salishan Lodge,
Glenedon Beach, Oregon, April 2003.

[5] Peter A. Chew, Brett W. Bader, and Ahmed Abdelali. Latent

Morpho-Semantic Analysis: Multilingual information retrieval
with character n-grams and mutual information. In Proceedings
of the 22nd International Conference on Computational Lin-
guistics (Coling 2008), pages 129–136, Manchester, UK, Au-
gust 2008.

[6] Scott C. Deerwester, Susan T. Dumais, Thomas K. Landauer,
George W. Furnas, and Richard A. Harshman. Indexing by
latent semantic analysis. Journal of the American Society for
Information Science, 41(6):391–407, 1990.

[7] David S. Greenberg, Ron Brightwell, Lee Ann Fisk, Arthur B.
Maccabe, and Rolf Riesen. A system software architecture for
high-end computing. In Proceedings of SC97: High Perfor-
mance Networking and Computing, pages 1–15, San Jose, Cal-
ifornia, November 1997. ACM Press.

[8] Michael Heroux, Roscoe Bartlett, Vicki Howle Robert Hoek-
stra, Jonathan Hu, Tamara Kolda, Richard Lehoucq, Kevin
Long, Roger Pawlowski, Eric Phipps, Andrew Salinger, Heidi

CUG 2009 Proceedings 6 of 7

Thornquist, Ray Tuminaro, James Willenbring, and Alan
Williams. An overview of trilinos. Technical Report
SAND2003-2927, Sandia National Laboratories, 2003.

[9] Suzanne M. Kelly and Ron Brightwell. Software architecture
of the Light Weight Kernel, Catamount. In Proceedings of the
Cray User Group Meeting, Albuquerque, NM, May 2005.

[10] David Kotz. Disk-directed I/O for MIMD multiprocessors. In
Hai Jin, Toni Cortes, and Rajkumar Buyya, editors, High Per-
formance Mass Storage and Parallel I/O: Technologies and Ap-
plications, chapter 35, pages 513–535. IEEE Computer Society
Press and John Wiley & Sons, 2001.

[11] Arthur B. Maccabe and Stephen R. Wheat. Message passing in
PUMA. Technical Report SAND-93-0935C, Sandia National
Labs, 1993.

[12] Sun Microsystems. RPC: remote procedure call protocol speci-
fication, version 2. Technical Report RFC 1057, Sun Microsys-
tems, Inc., June 1988.

[13] Ron A. Oldfield, Arthur B. Maccabe, Sarala Arunagiri, Todd
Kordenbrock, Rolf Riesen, Lee Ward, and Patrick Widener.
Lightweight I/O for scientific applications. In Proceedings
of the IEEE International Conference on Cluster Computing,
Barcelona, Spain, September 2006.

[14] Ron A. Oldfield, Patrick Widener, Arthur B. Maccabe, Lee
Ward, and Todd Kordenbrock. Efficient data-movement for
lightweight I/O. In Proceedings of the 2006 International Work-
shop on High Performance I/O Techniques and Deployment of
Very Large Scale I/O Systems, Barcelona, Spain, September
2006.

[15] Philippe Pebay and David Thompson. Scalable descriptive and
correlative statistics with Titan. Technical Report SAND2008-
8260, Sandia National abs, 2008.

[16] Will Schroeder, Ken Martin, and Bill Lorensen. The Visual-
ization Toolkit An Object-Oriented Approach To 3D Graphics.
Kitware, Inc., 4th edition, December 2006.

[17] K. E. Seamons, Y. Chen, P. Jones, J. Jozwiak, and M. Winslett.
Server-directed collective I/O in Panda. In Proceedings of
Supercomputing ’95, San Diego, CA, December 1995. IEEE
Computer Society Press.

[18] Robert J. Souza and Steven P. Miller. UNIX and remote proce-
dure calls: A peaceful coexistence? In In proceedings of the 6th
International Conference on Distributed Computing Systems,
pages 268–277, Cambridge, Massachusetts, May 1986.

[19] The BlueGene/L Team. An overview of the BlueGene/L su-
percomputer. In Proceedings of SC2003: High Performance
Networking and Computing, Baltimore, MD, November 2002.

[20] David Wallace. Compute Node Linux: Overview, progress to
date & roadmap. In Proceedings of the Cray User Group Meet-
ing, Helsinki Finland, May 2007.

[21] Brian Wylie and Jeffrey Baumes. A unified toolkit for informa-
tion and scientific visualization. In Katy Börner and Jinah Park,
editors, Proceedings of the SPIE Conference on Visualization
and Data Analysis, volume 7243, San Jose, CA, USA, January
2009. SPIE.

CUG 2009 Proceedings 7 of 7

	Introduction
	Background
	HPC System Architecture
	Application-Level Services on the XT3
	Titan Components for Informatics

	A Service for Remote Database Access
	A Statistics Code Demonstration
	Conclusions and Future Work
	About the Authors
	References

