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The Heart of Materials @ sandi
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Microstructure-processing-property relationships define the field!
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Microstructures

Stress
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Stannered, 2007, via
Wikimedia Commons.
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How does structure affect mechanical properties,

over time?
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and how do both change



Tilt Angles

00 . Sanidia
AT the grain w H @ [sovetores
boundary level

o Slip transfer and
modification of boundaries

o Fatigue-induced grain
boundary migration and
coarsening

o Radiation-induced grain
boundary migration and
coarsening

Twist Angle

I Gokhale, et al, Soft Mater, 2013.

Mobility + 1 [ (m/s)/GPa ]

How do we quantify these processes in

nanocrystalline metals, and what do we learn
in doing so?
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Olmstead, et al, Acta Mater, 2009.



Roadmap ) .

 Mechanical Loading

o Grain boundary — dislocation interactions
o Nanoscale Fatigue

e |rradiation

o Grain growth

Strﬁc'«tfu re

Rroperties

v
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True stress ( MPa)

Slip transfer in ) i
nanotwinned metals
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* Microstructures dominated by
twins spaced <100 nm

« High mechanical strength
« Considerable plasficity

What is happening at the grain boundary level?

o/




. . . Sandia
Macro/Microindentation @)=,
« Apply astafic load
« Measure residual indentation area

* Depths from tens of um to mm
Diamond Vickers Tip

Lokilech, via Wikimedia Commons.
A1, via Wikimedia Commons.

Brinell VleeI'S R. Tanaka, via Wikimedia Commons.

P
e Hardness, H = ’Z‘”‘

r

Infer bulk properties from local resistance to plastic deformation in “small” volumes.
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Nanoindentation el

J. Puthoff, via Wikimedia Commons.
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Displacement, h

Quantified mechanical response at the nanoscale.
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TEM and In Situ Experiments () e,
Electron Beam ®

Generation
Effects of corrosion and gas loading
at the grain level
Thermal
Effects of temperature on
S | microstructural evolution up to
amplie —— 800 °C

Interaction ‘

Election Beam

Magnification ,"*3 |

Sub-nm imaging
Electron diffraction

Enables real-time visualization of samples under various stimuli
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In Situ Nanoindentation @ o,

Load (uN)

Depth (nm)




Plasticity in Al () e

Laboratories

* In sifu nanoindentation of Al near a x3{112} twin boundary
« |nitial cycle

Video playback =3
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Plasticity in Al () e

Laboratories

« Grains initially contain threading dislocations and small
dislocation loops

« Movement of existing dislocations observed
« Deformation confined by twin boundaries to single grain

Confinement of dislocation activity suggests barrier (Hall-Petch) strengthening.
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Dislocation Transmission ('E po

* |nsitu nanoindentation of Al near a x3{112} twin boundary
« Cycle #4, after 3 previous cycles to progressively higher loads

Video playback =3
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Dislocation Transmission @ po

Bufford, et al., Nat Commun 2014.

 Boundary deformed by dislocation interactions in previous cycles
o But no obvious plastic deformation in adjacent grain

* First observable plasticity event in second grain captured
 Measured forces associated with the event

Known bicrystal geometry and quantitative force measurements provide bounds for

determining likely dislocation reactions and estimating associated local stresses.
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Slip transfer in () s
nanotwinned metals

Grain boundary structure change resulting from dislocation
pile-up

Dislocation transmission appears to be spatially correlated
with defects formed in the boundary

® Minnesota Seminar ®16
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Fatigue-induced grain growth @ Natons|

Laboratories

Fatigue: Progressive
microstructural change with
cyclic loading

Execcharter, 2011.

In nanocrystalline metals...

« Locations of grain growth and cracks
are correlated

« Substantial hurdle to practical adoption
of these materials

Which one comes first?

® Minnesota Seminar o1/

Padilla and Boyce, Exp Mech 2006.
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Tensile Testing () e

B 39
Monotonic tension 12 N
(=,
o * Lots of information: A UR Ry 1
o E, o,, oy elongation, 7 v
toughness, n, m

¢
w e G
s V\Vo

£

Stress relaxation

« More information:
o m,AV, creep
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Bulk Approach ()

Collaborators: A. Mehta, D. Van Campen, T.A. Furnish, B.L. Boyce

fatigue sample

Ioading\.

direction _ "

&

/

viewport for
tranmission xrd 144mm

x-ray beam

« Fatfigue performed in situ during X-ray diffraction analysis

« Experiments performed at the Stanford Synchrotron Radiation
Lightsource (SSRL)

Which comes first, grain growth or crack itiqiiorl?

® Minnesota Seminar
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Furnish, et al, ] Mater Sci 2017.
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Bulk Approach (M)

Collaborators: A. Mehta, D. Van Campen, T.A. Furnish, B.L. Boyce

crack 1n1t1at10n~

XU/

Before Fatigue

Furnish, et al, ] Mater Sci 2017.

L

After Fatigue

« Patterns processed and analyzed
for outliers

« Fatigue-induced grain growth
captured before failure

+ Detection of abnormalities in only ~0.00001% of the sampled volume!

« Analysis of fracture surface indicates that grain growth preceded crack initiation



Small-Scale Approach @ o

o "“Push-to-Pull” devices
o Commercial (Hysitron) microfabricated Si test frames
o Cufilm (75 nm) floated onto device, then FIB milled

Collaborators: D. Adams, K. Hattar, W. Mook, C. Sobczak

57| wbD manget mode‘ HFW ‘tllt}—zoopm—
“#|51 mm [500 x| ETD| SE [512um |0°

« Thin foil geometry not ideal for mechanics, but is electron-transparent
* Nearly pure tension, uniform cross sectional areq, stable load frame
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M On O t O ni C @ lﬁa%lﬁif?(ljries

500 nm

I ) )
* Monotonic loading
o Negligible plasticity before failure
o Rapid crack propagation
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Successful quantitative tensile testing of a micrometer-scale sample!
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Low Cycle Fatigue In Situ ()

« Cyclic loading:
o Crack initiated in previous
monotonic test
o 9 cyclesto~87.5% of that load
o 50 % unloading
o Slow crack propagation

400

300 -

200

100 | 4

0 50 100 150 200
Depth (nm)

Load (pN)

Video playback x10

« Direct measurements of crack growth

« Little structural evolution at the crack tip
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ngh Cycle Fatlgue In Situ ()

— e ; » T AP D a K Hattar W Mook
CO H( Orai \m,j” S x) J\. /’"“% .;‘»w , ) . o1Tdl ,J\ Jﬂ;ﬁ;‘ I, B . “% \f e, \. Aadarrar, vv. MoO J\

(wu) Jusawaoe|dsiq Jajuapu|

Nanocrystalline Cu
: 250 | 1%
In situ TEM: _ o
dynamic mechanical loading g 200
©
at 200 Hz 3 ol .
-
. t &
Playback at 3 x real time. 2 100l 20
o
©
£ 50 10
0 0

0 20 40 60 80 100 120

Test Time (s)

Video playback =3




Crack Growth Quantified (] sm

Laboratories

(a) Quasi-static | (b) Dynamic | (c) Dynamic | (d) Quasi-static
255,960 prev. cycles 263,400 cycles 267,200 cycles 275,960 cycles
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- Average crack growth rate measured at 6 x 10-'2 m/cycle!
Vnpammmms . Evidence of fatigue-induced grain growth.
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Fatigue-induced grain growth ) =

- Captured local fatigue-induced siructural
changes as they occur

« Ongoing work to reveal orientation
dependencies at the grain boundary level

® Minnesota Seminar @26



Roadmap () .

 Mechanical Loading

o Grain boundary — dislocation interactions
o Nanoscale Fatigue Characterization /

e |rradiation //‘,: Properties

o Grain boundary migration Processin 4

® Minnesota Seminar 2/
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Radiation-Induced Grain Growth @ Natorel

&"E*"B
0 iy

ﬁ s-v

Nanocrystalline metals:

 Exemplary mechanical
properties

« Abundant sinks for
structural and chemical
defects

ldeal candidates for
Ne —Q S radiation-tolerant

@@ materialse
Xe - ¢ %»

Kaoumi, et al, ] ASTM Intl, 2006.

Averback, ] Nucl Mater, 1994

What are the relationships among ion damage, grain boundary character, and grain growth?




[ ] ’ [ ] @ [ ] .
Sandia’s In situ Ion Irradiation @ Sandia
Collaborators: D. Buller, K. Hattar, J. Scoft lon species & energy introduced into the TEM
10 kV Colutron - 200 kV TEM - 6 MV Tandem wol.
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Direct real time observation of ion
irradiation, ion implantation, or both

with nanometer resolution.

Similar beams can be directed to
the TEM and end stations.

29

Hattar, et al, Nucl Instr Meth Phys Res B, 2014.



Sandia

In Situ Irradiation: 3.6 MeV Au®* @ Neional

Video speed x5.

-~ 4

e AUSt at 2.1 x 108 ions cm?s! into Au foll
« Large defect clusters from cascades

What happens near grain boundaries?

@ 30
Hattar, et al, Nucl Instr Meth Phys Res B, 2014.

® Minnesota Seminar



o o Sandia
Boundary Migration () e

In situ ion irradiation
TEM: 10 MeV Si into

nanocrystalline Au.

Playback at 2 x real time.

2x real time



Quantification: Overall

> N 7
ATE ﬁw

Bufford, et al, ] Appl Phys, 2015.

s

MBefore’

Orientation & Index Before

Orientation & Index After

o Hundreds of grains counted in minute
o Grain size, orientation, boundary characters

Frequency (%)

Frequency (%)
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Before
485 Grains
davg =428 +26.6 nm

5 largest grains
11% of total area

50 100 150 200 250 300

After Irradiation
368 Grains
davg =47.8 +32.6 nm

5 largest grains
16% of total area

0

Sandia
National
Laboratories

111

D ————————

Rapid quantification of statistically relevant numbers of grains and boundaries.
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Individual Boundaries [

* The same grains
idenftified before and
affter irradiation

+ Individual grain
boundary misorientation
angles and axes i . .
quantified PSR e VAtter | * Boundaties After

. Correlation of GB BS L y I
properties and radiation-
iInduced changes

[ 3°<p<15° |
| 15°< ¢ < 30° |

Bufford, et al, ] Appl Phys, 2015.

Changes in individual boundaries quantified!
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Simulated Irradiation &
and Anneahng

leljaowad and S.M. Foiles

National
Laboratories
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. Sandia
Exp. & Model Comparison ) .
L v & aBoundariesiBefore & O AR B fore. ' 2
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- —o— Anneal
—+— Avg. Thermal Events

L
12

Bufford, ef al, ] Appl Phys, 2015.

Time [X 7]

« Subtle deviations from homogenous grain growth

Stable boundaries suggest importance of non-thermally activated mobility.
® 35
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[rradiation Creep

Collaborators: B. Wang, A. Haque, K. Hattar

secondary

tertiary

0.0045

0.004

0.0035

e o

— tlme 0.003

0.0025

Strain

0.002

0.0015

0.001

0.0005
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0.26 dpa

50 100 150 200 250
Time (s)

—8—750beam —@—500beam —@—250beam

—&— 750 nobeam —&— 500 nobeam —&— 250 nobeam

300

Sandia
National
Laboratories

0.26 dpa

0.00003

0.000025

0.00002

0.000015 |§

Creep Rate (s*-1)

0.00001 %

0.000005

350

Time (s)

——750 beam —@—500beam —@—250 beam

—8— 750 nobeam —&— 500 nobeam —&— 250 nobeam
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Revealed and quantified structural evolution at the grain boundary
level under mechanical loading and irradiation.

Coming full-circle to produce better materials.
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The Future o

« Halting grain growth in nanocrystalline metals

« Connecting grain-level processes to bulk fracture

« Understanding and improving nanomaterials for energy
« 3D and multi-modal analysis

N
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Twins and other grain
boundaries

Sandia
National
Laboratories

HO[B0HY
Twin Q-Q-Q-Q-0-0Q
O-O-0-0-0-0-O

Imperial College Rock Library.

 Twin boundaries are less disordered
than most other boundaries &1

« During simulated deformation:
o Existing dislocation cross slips at high stress
o Sessile dislocation left at the boundary

Zhang, et al, Appl Phys Lett 2004.
® Minnesota Seminar ® 39
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Precession Electron Diffraction Microscopy @ e

~

(

ollaborators: K.J. Ganesh, S. Rajasekhara, P.J. Ferreira

Scan

Specimen X7

De-scan 000 000 Unprecessed Precessed

Advantages:

« <10 nm spatial resolution

Nca[ kinematical electron

IHru
Qy/ Aty I -
wma’mem ambiguities are
resolved
P ~nA AiftArfAta A
Fast and automated

acquisition

(Diffracted
amplitudes)

. ~200 grainsin 15 min.

~ ® Minnesota Seminar _ ® 40
Slide courtesy of K.J. Ganesh
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Approach: Experimental ()&=,

----
.....
.....
.....
......
......
......
.....

Experimental Theoretical Template  Point Mapped
Pattern Template Matched To IPF

« Automated diffraction

orientation mapping

o Point by point grid of
orientations mapped

o 5 nmresolution

 Analogous to EBSD

Point diffraction data

® Minnesota Seminar 0 4]
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Approach: Modeling @&,

 Whatis phase field modeling?

o Mathematical model for solving interfacial
problems, like solidification, growth, etc.

« Example grain growth model
o Thermodynamic free energy function
* dF=d(yA)=vydA (y: GB energy, A: GB area)
o Model for kinetics
* V=Myh (M: GB mobility, h: GB curvature)
o Solve at each pixel for a predetermined timestep
« See Abdeljowad and Foiles, Acta

Mater, 2015 for more information

E—

b
I -

Can directly use experimental maps as input structures, and then compare evolutions!
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Model Data Analysis ([,

20 | —o— Anneal

« During simulated annealing — «— Avg, Thermal Spikes
grain growth scales 657
approximately with T1/2
o Expected for homogenous grain growth

« During simulated irradiation,
grain growth scales with T/,
where n = 3 T S S —

o Initially faster, but stagnates sooner
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Growth time scaling @&=.

Ad i
2 “spike
Fraction of ion strikes that intersect grain D > 3d,
boundaries (thus contributing to grain growth):  fgg= T = BEI—,
el
6
, 8/3 ~5/3
dD . (I)X(S:;dcas 4yVaIN:1tV \ 5 ( )1‘ Q
. Inf:orporatmn of dt N, [D Dk 10 1TC§BKO Eﬁ.fﬂ
this D term leads
to scaling o
, Br(8Y15/3 A5/3
proportional to 5 Vary ,.-}F( )’t 0
t(1/3) D fZD = l‘zyalbplketl)xﬁ ”‘Hg 8/3 df.
- . 107mCy kg E,
» Consistent with
experimental - (s) ”
observations. II Var\sI(3 kg™ 0
D’ - D= | 36yd. . \..xO ~ — | Dy
0 lr Y spikesX IOWCG.-SKD EE.&

= KPr.

Kaoumi, et al, ] Appl Phys, 2008.
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Damage (dpa)

[rradiation Creep  @Ex.

1.4 MeV Ir

4.6 x 103 and 10 jons cm™
Nominally 0.26 and 2.6 dpa
4.2 x 100 jons cm2 5!

2.5%x 104 dpas’!

3.5

3.0 -
2.5

2.0 -

load

1.5 -
1.0

0.5 |-

0.0 -

(I) 'z'ol4lo'slo'slo'1$o
Depth (nm)

75% UTS
50% UTS

Sl

4. High mag + beam

3, High mag

v

2. Low mag + beam

4

LLowmag | 355 holds
e 7.5x 1072 dpa cycle‘]

Measuring overall changes and microstructural changes with and without irradiation.
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Elongation: 0.26 dpa @,

After

before 0.26 dpa loading

Minimal change with irradiation alone, but clear extension during loading.
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Structure: 0.26 dpa @&,

Aftr lg

Little change with irradiation, but deformation texture developed during loading.



