
Sandia National Laboratories

Structural evolution in extreme
environments: real-time nanoscale
observations of radiation damage,

deformation, and fatigue
500 nm

U S DEPARTMENT OF //11I V left KO

ENERGY if

Daniel Bufford*

Sandia National Laboratories

Albuquerque, NM, USA

*and many collaborators!

Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin
Corporation, for the U.S. Department of Energys National Nuclear Security Administration under contract DE-AC04-94AL85000. SAND2016-10557 PE

6 March, 2017 •

SAND2018-2851PE



My Background

ar Olin College
W _AOPt of Engineering

TEXAS A&M
U N I V E R S I T Y

• -,••••••• • • ,". von.,.. •
t". - -• -••••-**011006....-- , - -7, _ • A.

•

• IlligihNor.

Sandia
National
Laboratories

ICS Sandia National Laboratories



The Heart of Materials

Science and Engineering

StrZure

Characterization

Process'in

roperties
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Microstructure-processing-property relationships define the field!
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At the grain
boundary level

o Slip transfer and
modification of boundaries

o Fatigue-induced grain
boundary migration and
coarsening

o Radiation-induced grain
boundary migration and
coarsening
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Gokhale, et al, Soft Mater, 2013.
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Disorientation angle (degrees)

• Other

• Sigrna 3
• 111 twist
• 100 twist
0 110 syrnrn tilt

111 symrn tilt
100 symrn tat

• Coherent twin
— MD zero

How do we quantify these processes in
nanocrystalline metals, and what do we learn

in doing so?
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Roadmap

r• Mechanical Loadingo Grain boundary - dislocation interactions

o Nanoscale Fatigue

• Irradiation
o Grain growth

ProcesSi g
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Slip transfer in
nanotwinned metals
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• Microstructures dominated by
twins spaced <100 nm

• High mechanical strength
• Considerable plasticity

What is ha • • enin • at the • rain boundar level?

• Minnesota Seminar • 7



Macro/Microindentation
• Apply a static load

• Measure residual indentation area

• Depths from tens of pm to mm
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• Hardness, H = Pn'A"
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Diamond Vickers Tip

R. Tanaka, via Wikimedia Commons.

fer bulk properties from local resistance to plastic deformation in "small" volumes.
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Nanoindentation

o

:V"

1.0nm

Nanoindentation

dP/dh

Displacement, h

2.0210 3 Oprn

J.
 P
ut

ho
ff

, 
vi
a 
W
i
k
i
m
e
d
i
a
 C
o
m
m
o
n
s
.
 

3.0

co 2.0

1.0

Sandia
National
Laboratories

• Ag(111)/Si(11'i)i
• Ag(110)/Si(110) 

f 

•
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Indentation Depth (nm)

Quantified mechanical response at the nanoscale.



TEM and In Situ Experiments
Electron Beam
Generation

Sample
Interaction

Magnification
1

ThermalL Effects of temperature on
microstructural evolution up to

800 °C
.__i

Sub-nm imaging
Electron diffraction
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Environmental

Effects of corrosion and gas loading
at the grain level

a

Electron Beam

Flowing Liquid

lknIbran,

1111111111.11.-)

kattere.O Electrons
Metal Filrn

Enables real-time visualization of samples under various stimuli



In Situ Nanoindentation

Hysitron P195 In Situ Nanoindentation TEM Holder

• Sub nanometer displacement resolution

• Quantitative force information with pN resolution
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Direct correlation of mechanical loading and de ec •ehaviors.



Plasticity in Al 41 Sandia
National
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• In situ nanoindentation of Al near a 13{112} twin boundary
, Initial cycle

Video playback x3

• Minnesota Seminar • 12



Plasticity in Al

• Grains initially contain threading dislocations and small
dislocation loops

• Movement of existing dislocations observed
• Deformation confined by twin boundaries to single grain

Sandia
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Confinement of dislocation activity suggests barrier (Hall-Petch) strengthening.
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Dislocation Transmission
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Laboratories

• In situ nanoindentation of Al near a 13{1 12} twin boundary
• Cycle #4, after 3 previous cycles to progressively higher loads

Video playback x3
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Dislocation Transmission
Sandia
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Bufford, et al., Nat Commun 2014.

• Boundary deformed by dislocation interactions in previous cycles
o But no obvious plastic deformation in adjacent grain

• First observable plasticity event in second grain captured
• Measured forces associated with the event

Known bicrystal geometry and quantitative force measurements provide bounds for
determining likely dislocation reactions and estimating associated local stresses.

• Minnesota Seminar • 15



Slip transfer in
nanotwinned metals
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• Grain boundary structure change resulting from dislocation
pile-up

• Dislocation transmission appears to be spatially correlated
with defects formed in the boundary

• Minnesota Seminar • 1 6



Fatigue-induced grain growth

Fatigue: Progressive
microstructural change with
cyclic loading

Padilla and Boyce, Exp Mech 2006.

• Minnesota Seminar
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Execcharter, 2011.

In nanocrystalline metals...
• Locations of grain growth and cracks

are correlated
• Substantial hurdle to practical adoption

of these materials

Which one comes first?

• 1 7



Tensile Testing

Monotonic tension

• Lots of information:
o E, o-y, aup elongation,

toughness, n, m

Stress relaxation

• More information:
o m, AV, creep

t
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Bulk Approach Lr 1

Collaborators: A. Mehta, D. Van Campen, T.A. Furnish, B.L. Boyce

loadinrSt;
direct'on

piezo
actuator

viewport for
tranmission xrd

Sandia
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fatigue sample

load cell

• Fatigue performed in situ during X-ray diffraction analysis

• Experiments performed at the Stanford Synchrotron Radiation
Lightsource (SSRL)

Which comes first, grain growth or crack initiation?

• Minnesota Seminar • 19



Bulk Approach
Collaborators: A. Mehta, D. Van Campen, T.A. Furnish, B.L. Boyce
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• Patterns processed and analyzed
for outliers

• Fatigue-induced grain growth
captured before failure

• Detection of abnormalities in only -0.00001% of the sampled volume!

• Analysis of fracture surface indicates that grain growth preceded crack initiation



Small-Scale Approach

• "Push-to-Pull" devices
o Commercial (Hysitron) microfabricated Si test frames

o Cu film (75 nm) floated onto device, then FIB milled

Collaborators: D. Adams, K. Hattar, W. Mook, C. Sobczak

5 111\lnIrn 1 5m0a0gx1 E1D mge 5irm

WD mag det mode HFW tilt
5.0 mm 20 000 x EID SE 12.8 m 0

III Sandia
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• Thin foil geometry not ideal for mechanics, but is electron-transparent
• Nearly pure tension, uniform cross sectional area, stable load frame

• Minnesota Seminar •21



Monotonic
500 nm

III Sandia
National
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*7

,

• Monotonic loading
o Negligible plasticity before failure

o Rapid crack propagation
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Depth (nm)
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Successful • uantitative tensile testin • of a micrometer-scale sample!
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Low Cycle Fatigue In Situ

Video playback x10

• Minnesota Seminar
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• Cyclic loading:
o Crack initiated in previous

monotonic test

o 9 cycles to -87.5% of that load

o 50 % unloading

o Slow crack propagation
400

300

100

o
o 50 100 150

Depth (nm)

• Direct measurements of crack growth

• Little structural evolution at the crack ti •

200

• 23



High Cycle Fatigue In Situ
Collaborators: S.A. Asif, D. Stauffer, B. Boyce, K. Hattar, W. Mook

Nanocrystalline Cu

In situ TEM:
dynamic mechanical loading

at 200 Hz

Playback at 3 x real time.

Video playback x3

as
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• Cyclic Ioading:
o 200 hz

• Structural change at crack
tip captured
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Crack Growth Quantified
(a) Quasi-static
255,960 prev. cycles

100 nm
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(b) Dynamic
263,400 cycles
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267,200 cycles
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275,960 cycles
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After

200 nm

Average crack growth rate measured at 6 x 10-12 m/cycle!

• Evidence of fatigue-induced grain growth.
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Fatigue-induced grain growth
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• Captured local fatigue-induced structural
changes as they occur

rd ngoing work to reveal orientation
ependencies at the grain boundary level

• Minnesota Seminar • 26



Roadmap

• Mechanical Loading
o Grain boundary - dislocation interactions

o Nanoscale Fatigue

Irradiation

L o Grain boundary migration
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National
Laboratories

Stream

Characterization4

,A4
PlocesSing

Properties

Performance
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Radiation-Induced Grain Growth
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Nanocrystalline metals:

• Exemplary mechanical
properties

• Abundant sinks for
structural and chemical
defects

• Ideal candidates for
radiation-tolerant
materials?
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What are the relationships among ion damage, grain boundary character, and grain growth?



Sandia's In situ Ion Irradiation
TEM (I3TEM)

Collaborators: D. Buller, K. Hattar, J. Scott

10 kV Colutron - 200 kV TEM - 6 MV Tandem
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lon species & energy introduced into the TEM

50

45

5

o

0 H Ni
• He Cu

B Ga
C Ge
O Nb
Ne
Al

X
o

Mo
Ag

- •

0

El
*
o

Si
Ti
Cr

*
o

Sn
W
Au

it A's"
181

*EMI X

® Fe

id0X o *

•
• 181

0 40 80 120 160 200

Atomic Mass

Direct real time observation of ion
irradiation, ion implantation, or both
with nanometer resolution.

Similar beams can be directed to
the TEM and end stations.

• 29
Hattar, et al, Nucl Instr Meth Phys Res B, 2014.



In Situ Irradiation: 3.6 MeV Au6+
Video speed x5.

• Au6+ at 2.1 x 108 ions cm-2 s-1 into Au foil

• Large defect clusters from cascades

• Minnesota Seminar
What happens near grain boundaries?
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• 30
Hattar, et al, Nucl Instr Meth Phys Res B, 2014.



Boundary Migration

• Au foil during
bombardment with
10 MeV Si3+

• -22 s of 4000s total
experiment time
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In situ ion irradiation

TEM: 10 MeV Si into

nanocrystalline Au.

Playback at 2 x real time.
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Structural evolution on the timescale of seconds after ion strikes. •31



Quantification: Overall

Orientation & Index After
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Before
485 Grains
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10
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Grain Diameter (nm)

Increasing Intensity

• Same area characterized before and after irradiation.
o Hundreds of grains counted in minute
o Grain size, orientation, boundary characters

Rapid quantification of statistically relevant numbers of grains and boundaries.

1

• Minnesota Seminar •32



Individual Boundaries

• The same grains
identified before and
after irradiation

• Individual grain
boundary misorientation
angles and axes
quantified

• Correlation of GB
properties and radiation-
induced changes

• Minnesota Seminar
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Chan • es in individual boundaries • uantified!
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Simulated Irradiation
and Annealing

Collaborators: F.F. Abdeljawad and S.M. Foiles

Sandia
National
Laboratories
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Exp. & Model Comparison
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• Overall scaling laws appear consistent

• Subtle deviations from homogenous grain growth
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= Anneal

— • — Avg. Thermal Events

5 
0 3 6 9

Time [x -r]
12

Stable boundaries suggest importance of non-thermally activated mobility.
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Irradiation Creep
Collaborators: B. Wang, A. Haque, K. Hattar

A primary secondary tertiary
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Summary

40

E
3 0

491)
5 2 0

ct 10
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Load

a
Ted Ma (s)

5 0 5 2 5 4 56

Test Time (s)

58 60

Revealed and quantified structural evolution at the grain boundary
level under mechanical loading and irradiation.

Coming full-circle to produce better materials.

• Minnesota Seminar • 37



The Future
Sandia
National
Laboratories

• Halting grain growth in nanocrystalline metals
• Connecting grain-level processes to bulk fracture
• Understanding and improving nanomaterials for energy
• 3D and multi-modal analysis
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Twins and other grain

boundaries
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• Twin boundaries are less disordered
than most other boundaries

• During simulated deformation:
o Existing dislocation cross slips at high stress
o Sessile dislocation left at the boundary
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Precession Electron Diffraction Microscopy
Collaborators: K.J. Ganesh, S. Rajasekhara, P.J. Ferreira

Scan

Specimen

De-scan Unprecessed

Sandia
National
Laboratories

• •

Precessed

Advantages: 

• < 10 nm spatial resolution

• Near kinematical electron
diffraction

• Symmetry ambiguities are
resolved

• Fast and automated
acquisition

• -200 grains in 15 min.

• Minnesota Seminar • 40
Slide courtesy of K.J. Ganesh



Approach: Experimental
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Experimental Theoretical
Pattern Template

• Automated diffraction
orientation mapping
o Point by point grid of

orientations mapped

• 5 nm resolution

• Analogous to EBSD

Template
Matched

/of( a

Point Mapped
To IPF
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Point diffraction data

• Minnesota Seminar •41



Approach: Modeling

• What is phase field modeling?
o Mathematical model for solving interfacial

problems, like solidification, growth, etc.

• Example grain growth model
o Thermodynamic free energy function

• dF = d(yA) = ydA (y: GB energy, A: GB area)

o Model for kinetics

• V = Myh (M: GB mobility, h: GB curvature)

o Solve at each pixel for a predetermined timestep

• See Abdeljawad and Foiles, Acta
Mater, 2015 for more information

Sandia
National
Laboratories
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Can directly use experimental maps as input structures, and then compare evolutions!

• Minnesota Seminar 42



Model Data Analysis

During simulated annealing
grain growth scales
approximately with 1112
o Expected for homogenous grain growth

• During simulated irradiation,
grain growth scales with Tun,
where n ,/,' 3
o Initially faster, but stagnates sooner

20

15

s
o 3 6 I

Time [x 1

Sandia
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Growth time scaling
Fraction of ion strikes that intersect grain
boundaries (thus contributing to grain growth):

• Incorporation of
this D term leads
to scaling
proportional to
t(113).

• Consistent with
experimental
observations.

III Sandia
National
Laboratories
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Irradiation Creep
• 1.4 MeV Zr

• 4.6 x 1013 and 1014 ions cm-2

• Nominally 0.26 and 2.6 dpa

• 4.2 x 101° ions cm-2 s-1 -0
0
0

• 2.5 x 10-4 dpa s-1
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Sandia
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Laboratories

25% UTS

50% UTS

75% UTS

4. High mag + beam

Š. High mag
2. Low mag + beam

1. Low mag
300 s holds

• 7.5 x 10-2 dpa cycle-1

Measuring overall changes and microstructural changes with and without irradiation.
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Elongation: 0.26 dpa

before 0.26 dpa
After

loading

Sandia
National
Laboratories

Minimal change with irradiation alone, but clear extension during loading.
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Structure: 0.26 dpa

before 0.26 dpa After loading

Sandia
National
Laboratories

Little change with irradiation, but deformation texture developed during loading. 7


