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ABSTRACT

Many applications rely on the use of BLAS/LAPACK routines on large
groups of very small matrices. For example, many PDE-based simu-
lations and machine learning applications require batched BLAS/LA-
PACK routines. While existing batched BLAS APIs provide meaning-
ful speedup over alternatives like OpenMP loops around traditional
BLAS/LAPACK kernels, there exists potential for significant speedup
by considering a non-canonical data layout that allows for cross-
matrix vectorization in batched BLAS/LAPACK routines. In this paper
we propose a new compact data layout that interleaves matrices
in blocks according to the architectures SIMD vector length and
investigate its benefits. Second, we combine the compact data lay-
out with a new compact batched layer/interface to BLAS/LAPACK
routines that can be used within a hierarchical parallel application.
We demonstrate significant benefits provided by this layer due to
increased locality and reduced synchronization costs. Third, we
discuss the compact batched BLAS/LAPACK implementations and
APIs in two libraries, an open-source reference implementation
(KokkosKernels) and a high-performance vendor implementation
(The Intel® Math Kernel Library° ) and present performance re-
sults for both libraries. In our experiments, the compact batched
data layout provides up to 4.5x, 16.5x and 21.6x speedup against
OpenMP loops around dgemm, dt rsm and dgetrf kernels, respec-
tively, with block size 5 on the Intel Knights Landing architecture.
Finally, we demonstrate the benefits of the compact batched rou-
tines in a line solver for coupled PDEs by comparing it with the
original line solver implementation in a computational fluid dynam-
ics code. The compact batched routines provide 2x-6x speedup for
problem sizes of interest.
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1 INTRODUCTION

Dense linear algebra subroutines have a long history of standard-
ization [5, 9, 15], performance optimization [10, 11] and use in
applications. While these standards have been foundational in mul-
tiple generations of high performance computing, application and
architectural changes today require new designs [2, 8]. Several ap-
plications, such as PDE based simulations and machine learning,
are starting to rely on a large number of linear algebra operations
(BLAS/LAPACK) applied to very small matrices. Also, the evolution
of hardware to allow massive parallelism and increasing vector
lengths impact the implementation of foundational linear algebra
subroutines.

For groups of small matrix problems the community has devel-
oped batched BLAS approaches, which enhance performance by
introducing parallelism over the individual BLAS/LAPACK operations.
However, existing batched BLAS/LAPACK implementations based on
column or row major data layouts have limited performance for
small matrix sizes. For very small sizes there is simply too little
data to take full advantage of the SIMD vector length in modern
processors. In this work we consider a SIMD-friendly data layout
which can take full advantage of the long SIMD length in modern
processors for groups of small BLAS/LAPACK operations through
cross-matrix vectorization. Performance optimization of such ker-
nels, especially for a large number of small problems, depends on
a number of design choices. The key performance optimizations
that we explore in this work are data layouts, vectorization, and
cache-friendly interface design. To motivate the methods developed
in this paper, we approach the problem from the perspective of an
entire application: a line solver for coupled PDEs. The impact on the
application greatly influences our design choices. Specifically, while
the community focus on batched kernels has been around fixed
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or variable sized interfaces for batched kernels [8, 17], GPU imple-
mentations [1, 3, 4], or group based interfaces [27], we introduce a
two-level interface that results in better cache-locality when com-
posing multiple linear algebra kernels. The result is a set of highly
efficient, vector-friendly BLAS/LAPACK kernels for small matrices
typical in applications. The proposed data layout, two-level inter-
face and implementation is called compact batched BLAS/LAPACK
throughout the paper for brevity.

Contributions. The primary contribution of this paper is the intro-
duction of new BLAS/LAPACK kernels based on the compact data lay-
out. The proposed compact BLAS/LAPACK kernels are implemented
in two libraries, a performance-portable open source implementa-
tion (Github1) and a vendor specific library targeting architecture
specific improvements. While the focus of batched BLAS/LAPACK to
date has been on DGEMM performance, we extend this to the more
complex routines DTRSM and DGETRF. On Intel Knights Landing
architecture, our implementations of DGEMM, DTRSM and DGETRF
result in up to 14x, 45x, and 27x speedup against OpenMP loops
around highly optimized DGEMM, DTRSM and DGETRF kernels, re-
spectively. Finally, we demonstrate the efficacy of the compact
batched BLAS/LAPACK subroutines by using them in a line solver
for coupled PDEs. The compact batched routines provide 2x-6x
speedup for problem sizes of interest. Detailed performance anal-
ysis for vector utilization and arithmetic intensity of the kernels
based on a custom PIN tool APEX [12].
The rest of the paper is organized as follows. The motivating

applications are described first in Section 2. The compact layout,
interface, and implementation are described in Section 3. We then
demonstrate the strengths of our design with performance results
of the compact batched kernels (Section 4.1) and the line solver
application (Section 4.2). Vector utilization and arithmetic intensity
measures are used to analyze the performance using a roofline
model (Section 4.3).

2 MOTIVATING APPLICATIONS

A fundamental distributed data structure in HPC is a block sparse
matrix, implemented in either compressed row storage (CSR) or
compressed column storage (CSC) formats. A CSR or CSC graph
encodes dependencies between blocks, i.e., the graph. Blocks may
be one fixed size throughout the matrix, or have variable size. In
this paper we consider one fixed block size b x b. A higher-level data
structure can be used to build matrices having variable block sizes
from matrices having fixed block size [7]. Each block is typically
dense.

PDE-based simulations form one class of HPC application using
block matrices. The discretization is over a mesh. A block is associ-
ated with a mesh entity, such as a node, edge, face, or cell center.
The block size is the number of degrees of freedom associated with
the mesh entity. For example, a 3D compressible fluid dynamics
model using the ideal gas model and with all degrees of freedom
at the cell center has 5 x 5 blocks. As another example, a 3D solid
mechanics nodal finite element model using the linear elasticity
material model has 3 x 3 blocks. In simulation codes modeling
complicated physical phenomena, b can be several tens [20].

1https://github.com/kokkos/kokkos-kemels

Compared with a point sparse matrix, where a point can be
understood as corresponding to a 1 x 1 block or, in other words, a
scalar, a block sparse matrix uses b2 fewer ordinals to encode the
graph. In addition, computations within and between a block and a
vector do not require indexing except to compute the offsets to the
block quantities.

Computations within a block sparse matrix (e.g., an incomplete
factorization), between two matrices (e.g., a matrix-matrix multipli-
cation), and between a matrix and a multivector (e.g., matrix-vector
product, triangular solve) use many small BLAS 1, 2, and 3 subrou-
tine calls. The structure of the computation determines the extent
to which these calls may occur in parallel.

In a typical PDE-based application, a block sparse matrix is
filled with discretization coefficient values. Then a preconditioner is
formed as a function of the matrix. Finally, an iterative linear solver
performs a sequence of matrix-vector products and preconditioner
applications.
One commonly used preconditioner is the line smoother or solver.

It arises in a simulation in two or more dimensions in which in-
dependent equations are solved along one dimension, either as an
approximation within a preconditioner, because of decoupling of
time or space scales, or because of a mix of implicit and explicit time
integration. For example, Tuminaro et al. [22] solve independent
equations in the vertical direction of an ice sheet as the smoother
in an algebraic multigrid preconditioner. U. of Minnesota's US3D
[6], NASA's DPLR [26], and Sandia National Laboratories' SPARC
use a line smoother in a fixed-point iteration [26] to solve the
Navier-Stokes equations for compressible and reacting flow. Lines
are formed with the intention that they be approximately orthog-
onal to the shocks that form in the simulation. Nonhydrostatic
atmosphere solvers use the horizontally explicit, vertically implicit
(HEVI) time integration method to remove the vertical acoustic
wave speed from the time step restriction [24]. Segall et al. [19]
solve for pressure and temperature orthogonal to a fault, with no
coupling along fault.

In each of these applications, a large number of independent
block-tridiagonal matrices are formed. Operations on and with the
block-tridiagonal matrices may be performed in parallel. We refer
to this kind of parallel work as batch parallelism. Because of the
typical topologies of the meshes, the block-tridiagonal matrices
often have the same size.

There are a number of divide-and-conquer methods to expose
parallelism within an operation on or with a single tridiagonal
matrix, such as cyclic reduction [21] and prefix product [18]. Each
method recursively forms independent smaller problems; the recur-
sion depth can be adjusted. Each method is slightly work inefficient.
Thus, if the number of block-tridiagonal matrices times the amount
of parallelism within a single block operation is at least a few times
greater than the available hardware parallelism, it is optimal to ex-
ploit only batch parallelism. If the number is less than the available
hardware parallelism, then algorithmic methods can be used with a
recursion depth that uses batch parallelism maximally. This paper
focuses only on batch parallelism.
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3 COMPACT BLAS/LAPACK

Traditional BLAS implementations based on the conventional data
layout (either column major or row major dense matrices) have
limited performance for small problem sizes. With small matrix
sizes there is too little data to take advantage of all of the vector
registers and the data is too small to fill the vector registers that are
used, resulting in limited benefit from vectorization. For a single
BLAS operation, performance can be improved through the use of
kernels specifically tuned for the problem size. For example, one
can use Just-in-Time (JIT) code-generation [13]. For general matrix
multiplication (GEn04) this can be very effective in improving per-
formance. It remains to be seen if this approach can be beneficial for
a broader set of more complicated BLAS or LAPACK functions. Ad-
ditionally, a JIT strategy for generating problem-size tuned kernels
still does not address the fundamental problem of vector register
fill for small problems.
When there are many matrix operations to be performed simul-

taneously we can consider alternative data layouts that allow the
application to benefit from kernel vectorization. The compact data
layout, which is the subject of this work, is a SIMD-friendly layout
with considerable advantages in performance for groups of many
small matrix operations.

In this section we first describe the compact data layout, identi-
fying its benefit in the context of BLAs/LAPACK kernel vectorization.
We then explore the key differences in optimized implementations
of GEmm and Titsm in the traditional layout and the compact layout.
Finally, we describe compact batched BIAS/LAP/xi( implementation
in two libraries: an open source implementation, Kokkos Kernels,
and a vendor library, Intel@ Math Kernel Library® (Intel MKL).

3.1 Compact Data Layout

To illustrate the compact layout, consider a collection of VT matri-
ces A, each having the same size, with which we need to perform
some BLAS operation. Flere P is a positive integer and V is the
SIMD vector length of the underlying hardware; e.g. for an AVX512
machine in double precision V = 8. We identify element (i, j) of
matrix m by A(m, i, j).
The compact layout is most easily understood as a modified 3D

tensor. First, consider a collection of V-13 matrices as a 3D tensor.
Organizing the data such that m is the fastest index makes vector-
ization natural even for a very small matrix size. We can replace a
scalar operation, e.g. a multiply and add operation,

C(m, i, j) += B(m, k, j) x A(m, i, k),

by a vector operation,

C(m:m+V-1, i, j) += B(m:m+V-1, k, j)

x A(m:m+V-1, i, k).

where C(m:m+V-1, i, j) refers to the (i,j)th element of V matrices
stored contiguously in memory. Here += and x are applied element-
wise. The vector registers can be filled completely if V is equal to
the vector register length (SIMD width).

Notice, however, that as P grows large the distance in memory
between elements of an individual matrix grows large, penalizing
spatial locality. To remedy this the compact layout organizes the
matrices in a packed data structure (packs) whose length is given
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Figure 1: Illustration of compact data layout: four 3x3 ma-
trices in packs of length two.

by the vector length V. Specifically, the packs

A(nV:(n+1)V-1, :), n E {0, . . . , P-1},

are each individually organized as 3D tensors, again with the matrix
number m as the fastest index. We illustrate the layout for four 3x3
matrices with V=2 in Figure 1. Pack n + 1 is stored subsequently
to pack n in memory, for each n. This layout fills SIMD vectors for
each instruction in our BLAs/LAPACK kernel while minimizing the
distance in memory between elements of the same matrix. In the
next section we will discuss the implementation of optimized GE/vim
and TRsivi kernels with the compact layout and compare these with
their standard implementations.

3.2 Implementation

To focus on the details related to the compact layout we will com-
pare kernels written for simplified GE/vim and TRstvi operations. In
particular we will ignore matrix strides and scaling operations, as
these do not affect the basic strategy of optimizing the inner kernel
for compact BLAs/LAPACK routines. For GENyvi we consider only the
non-transpose non-transpose case, and for TRsrvi we will isolate
the left, lower, non-transpose, non-unit diagonal case. To avoid
confusion, we separate notation for matrices A, B and C stored
in column major layout from a collection of matrices in compact
layout, Ac, Bc and Cc. A11 matrices have real, double precision. Let
M, N, and K be positive integers. A and Ac(m, :) have M rows and
K columns, where m {1, , Vx13}; for brevity, we write this size
as MxK. Similarly, B and Bc(m, :) are KxN, and C and Cc(m, :)
are MxN.
We begin by considering the GE/m/1 operation

C += A x B,

where here x denotes matrix-matrix multiplication. The simpli-
fied non-transpose non-transpose matrix multiplication is given in
Algorithm 1.

Methods for optimizing GErvim and other level 3 BLAS operations
for large matrix sizes are well understood [10], [11]. It is outside
the scope of this paper to review all of the techniques involved in
obtaining high performance for large GENms. Instead, we briefly
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Algorithm 1: Simplified non-transpose, non-transpose GEMM

1 for j in {0, • • • , N - 1} do
2 for i in {0, • • • , M - 1} do
3 for k in {0, • • • , K - 1} do
4 C(i,j) += A(i,k) * B(k,j)

•Elements of A

Elements of C

! !
Reg 1 Reg 2 Reg 3 Reg 4 Reg 7

• • •

Figure 2: AVX512 register use in 3x3x3 DGEMM.

Reg 32

review the design of a GEMM kernel for a 3x3x3 DGEMM on a KNL.
First we load columns of C and A into vector registers. For the
3x3x3 problem, the entire A and C matrices can be loaded into
registers. Figure 2 illustrates the resulting fill of the vector registers.
In a non-transpose non-transpose matrix multiplication, columns of
A are scaled by elements of B, and the results are added to columns
of C. So, we will not work with vectors of B, but rather we will
crawl over B, broadcast elements to vectors and then perform vector
FMAs. A nice feature of the FMA instruction on Intel's AVX512
architecture is the ability to take a memory address as an operand;
the FMA instruction performs an implicit broadcast. Thus we do
not need to explicitly broadcast elements of B into registers before
performing FMAs.

Notice in Figure 2 that every vector instruction will need to be
masked since the A and C registers are only partially filled with 3
out of 8 packed elements for an AVX512 machine in double precision
(or worse, 3 out of 16 packed elements in single precision). There
are two obvious performance limitations here. First, our theoretical
peak is limited to 3/8ths of the core's peak simply due to the low
vector fill. Second, masked FMAs have a higher latency than non-
masked FMAs. The figure illustrates that a fundamental problem
with very small BLAS operations is that we don't have enough data
to make full use of the CPU core.
We turn our attention now to the collection of matrices stored

in compact format and consider the reference compact GEMM al-
gorithm given in Algorithm 2, where we isolate a single pack of
V matrices for clarity of exposition. The key difference is that in
the inner-most loop we are performing the same operation on the
same indices of the Ac, Bc and Cc matrices, changing only the
matrix index. Since we have stored the matrices in packs of length
V within which the matrix number is the fastest index, we can use

Algorithm 2: Reference compact GEMM kernel

i for j in {0, • • • , N - 1} do
2 for i in {0, • • • , M - 1} do
3 for k in {0, • • • , K - 1} do
4 for p in {0, • • • , V - 1} do

Cc(p,i,j) += Ac(p,i,k) * Bc(p,k,j)

Algorithm 3: Simplified left, lower, non-transpose, non-unit
diagonal TRSM kernel

for j in {0, • • • , N - 1} do
2 for i in {0, • • • , M - 1} do
3 B(i,j) /= A(i,i) for ii in {i + 1, • • • ,M - 1) do
4 B(ii,j) -= B(i,j) " A(ii,i)

only vector instructions - loads, stores and FMAs - with no masks.
Additionally, the broadcast of B elements is replaced by simple loads
since we are performing abstractly scalar operations.
The story is even more dramatic for TRSM. Recall that our sim-

plified TRSM operation solves the equation

AX = B

for X, where A is a lower triangular MxM matrix and X and B are
MxN matrices. TRSM overwrites B with the solution X. For matrices
stored in standard column major format, this operation is given
in Algorithm 3. We see that there are two main components of
the TRSM operation: a divide step to solve for element B(i,j) at the
top of the i-loop, and then a forward substitution step. A typical
algorithmic strategy for optimizing this operation for large sizes is
to (i) thread over the j-index and (ii) block over the i and ii loops
so that the forward substitution can be written as a GEMM call. For
large sizes the cost of the i and ii blocked TRSM that occurs before the
ensuing GEMM call is relatively small compared to the performance
of the large GEMM, and an optimized library can obtain performance
that is within 80% of GEMM performance for the same sizes. The
blocking of the i and ii indexes can be sized to ensure the GEMM in the
substitution is properly aligned to memory boundaries. However,
for very small problems we cannot benefit from the performance of
a GEA4m-based forward substitution. To make matters worse there
is absolutely no opportunity for vectorization of the initial divides.
Further, the divides are followed by substitutions which cannot be
aligned properly to memory boundaries since the beginning of the
forward substitution increments with each i index increment.

If we work on our V•P matrices in compact format, we can
improve upon this situation dramatically. Consider the reference
compact TRSM algorithm presented in Algorithm 4, again isolating
a single pack for clarity of exposition.

Notice that we can again replace every operation with a vector
instruction, including the division. Also, memory boundaries are
determined by the location of the first element of a pack of matrices
and the pack length, resulting in aligned operations regardless of
the i or ii index.

3.2.1 Open Source lmpl. - Kokkos Kernels. KokkosKernels is a
new package built on top of Kokkos providing a collection of kernel
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Algorithm 4: Reference compact left, lower, non-transpose,
non-unit diagonal TRSM kernel

for j in {0, • • • , N — 1} do
2 for i in {0, • • • ,M — 1} do
3 for p in {0, • • • , V — 1} do
4 B(p,i,j) /= A(p,i,i)

5 for ii in {i + 1, • • • ,M — 1} do
6 for p in {0, • • • , V — 1} do
7 B(p,ii,j) -= B(p,i,j) * A(p,ii,i)

algorithms that are commonly used in scientific applications. It
operates within fine-grained parallelism on diverse architectures.
Following the parallel abstractions in Kokkos, our computational
kernels support the following interfaces:

• serial - a single thread is used in the kernel;
• team - a team of threads are cooperatively used in parallel
• procedure - the entire execution space is used in parallel.

In this work, we focus on the implementation of the serial interface
that is used in parallel f or, and we follow Kokkos' parallel loop
scheduling and thread mapping.
SIMD requires aligned data which is packed contiguously along

the vector length. Our compact data layout allows aligned memory
access, but this might lead our implementation to be hardware spe-
cific. To make our code portable, we use a template vector data type
encapsulating vector registers with arithmetic operator overload-
ing. This allows us to reuse scalar BLAS/LAPACK algorithms with the
vector data type, which also means that a good scalar code is more
likely to be a good vectorized code. We follow the practice described
in [14, 23]. Their core idea is to use a highly optimized architecture
specific micro kernel around the loop packing and blocking data
for the kernel according to the architecture cache hierarchy. In our
work, we use a 4x 4 rank-4 update as our inner kernel. Implemented
using the vector data type, the inner kernel fully exploits SIMD
instructions. In the case of the AVX512 architecture, the update
becomes a 4 x 4 x 8 vectorized rank-4 update. As we target small
matrices, loop unrolling in this kernel is enough to achieve high
performance.

3.2.2 Vendor Library - lntel Math Kernel Library. Intel MKL 2018
introduces compact batched GEMM, TRSM, and non-pivoting, incom-
plete LU. Intel MKL's initial implementation uses the compact lay-
out and techniques described earlier in this section, loop unrolling,
and compiler intrinsics to achieve performant kernels.

4 PERFORMANCE

We present performance results on the second generation Intel
Xeon Phi 7250, code-named Knights Landing. The processor con-
sists of 34 tiles interconnected by a two-dimensional mesh. Each tile
comprises two four-way threaded cores running at 1.40GHz with
1MB of shared L2 cache. The processor core of Knights Landing
has a private 32KB L1 data cache and two AVX512 vector units
per core. The processor is equipped with 16GB of MCDRAM that
provides approximately 480 GB/s of STREAM Triad bandwidth.
All benchmark codes used in this section are compiled using the
Intel compiler 17.0.1 with -03 -g options. First we evaluate the

performance of the compact data layout and implementations in
synthetic benchmarks against OpenMP loops around BLAS/LA-
PACK kernels, the standard batched BLAS/LAPACK, and libxsmm.
We then consider a line preconditioner application.

4.1 Batched BLAS/LAPACK

In this section we evaluate the performance of the compact batched
BLAS/LAPACK implementations for dgemm, dtrsm and dgetrf by
comparing the performance to the standard batched BLAS imple-
mentation (where available) as well as the use of a parallel f or
around the respective BLAS function. This section provides a view
into the performance of the individual BLAS/LAPACK functions
that will be evaluated in concert in the context of block tridiagonal
factorization in the next section.

For each function, we evaluate the performance for square ma-
trices with sizes 3, 5, 10, and 15, with a batch size of 16384. These
sizes were chosen in collaboration with domain experts for our
motivating application, but also provide a window into a variety of
small sizes with wide applicability in high-performance computing.

Figures 3 and 6 evaluate the performance of the compact lay-
out for dgemm. In Figure 3 we compare the Intel MKL (MKL Com-
pact) and KokkosKernels (KokkosKernels) compact implementa-
tions with the standard Intel MKL Batched dgemm (MKL Batch), an
OpenMP loop around Intel MKL dgemm (MKL OpenMP) calls, and to
an OpenMP loop around libxsmm (libxsmm) library calls for small
matrix multiplications. For sizes 3, 5, and 10 we see considerable
performance improvement from both compact implementations
over the other methods. For size 15, the performance of libxsmm
is comparable, although we note no such library exists for BLAS
functions other than dgemm, and libxsmm shows much weaker per-
formance than the batched compact functions for smaller sizes. In
Figure 6 we present a heatmap showing the speedups of libxsmm,
the Intel MKL Batched dgemm, and the Intel MKL compact dgemm
routines over an OpenMP loop around Intel MKL dgemm calls with
68 threads. We see that while the standard batched dgemm approach
provides 1.1-2.2x improvements and the libxsmm approach pro-
vides 1.4-3.6x improvements the compact implementation provides
up to 13.8x improvements over the OpenMP loop strategy.

Figures 4 and 7 evaluate the performance of the compact lay-
out for dt rsm. In Figure 4 we compare the Intel MKL (MKL Com-
pact) and KokkosKernels (KokkosKernels) compact implementa-
tions with the standard Intel MKL Batched dt rsm (MKL Batch) and
an OpenMP loop around Intel MKL dtrsm (MKL OpenMP) calls. In
this case we see very large improvements for the compact imple-
mentations for all sizes and all core counts. In Figure 7 we present
a heatmap showing the speedups of the Intel MKL Batched dtrsm
and the Intel MKL compact dtrsm routines over an OpenMP loop
around Intel MKL dt rsm calls with 68 threads. We see that while the
standard batched dt rsm approach provides 1.2-1.6x improvements
over the OpenMP strategy, we see up to 45.2x improvements with
the compact layout.

Finally, Figures 5 and 8 evaluates the performance of the compact
layout for dget r f with no pivoting. In Figure 5 we compare the Intel
MKL (MKL Compact) and KokkosKernels (KokkosKernels) compact
implementations with an OpenMP loop around Intel MKL dget rf
(MKL OpenMP) calls. In this case we do not compare against a
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standard batched implementation for dget rf as this function is not
available in a batched implementation in the Intel MKL. Similar
to the dtrsm case we see extremely large speedups for all sizes
and core counts for compact dgetrf. In Figure 8 we present a
heatmap showing the speedup of the Intel MKL compact dgetrf
implementation over an OpenMP loop around Intel MKL dgetrf
calls with 68 threads. We see that the compact layout provides 1.7-
27.4x improvements for the dgetrf function depending on matrix
and batch sizes.

4.2 Line Pre conditioner

We consider a block sparse system of equations Ax = b arising from
coupled PDEs. The problem is discretized on a domain depicted in
Fig. 9 and lines are extracted along the k dimension. The standard
stationary iterative procedure is applied for preconditioning the

problem by splitting A = M - N, where M consists of block tridiag-
onal matrices corresponding to the extracted lines of elements. At
the solution, Ax = b; hence

Mx = b + Nx

x = M-1 (b + Nx)

x = x + M-1 (b - Ax) .

The final line suggests the iteration

xk+l = xk (b Axk)

Alternatively, M may be used as a preconditioner in a Krylov sub-
space method, such as GMRES or CG. In either approach, M is
factorized once per solution of Ax = b, and its factorization is ap-
plied once per iteration of the stationary or Krylov subspace method.
There are algorithmic variants for parallel tridiagonal solvers mostly
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Algorithm 5: Block tridiagonal LU factorization

for T in {To,Ti, • • • ,Tmxn-i} do in parallel
2 for r 0 to k - 2 do
3 Ar := LtgAr);

4 Br :=

er := êru-1;

fir+1 := Ar+1 67-fir;

5

6

7 Ak-1 := LNAk-l);

based on the divide-and-conquer methods [21]. In this study, we do
not consider the parallel tridiagonal factorization but use a sequen-
tial algorithm solving many tridiagonal systems within parallel
f o r.

Block tridiagonal matrices are extracted and packed in the com-
pact data layout from the block sparse matrix A as illustrated in
Fig. 10. Then, an LU factorization is applied to those block tridi-
agonal matrices according to Alg. 5 in a parallel batch. There are
two important aspects of this batched tridiagonal factorization. As
the blocks are dense, the performance of this setup phase largely
depends on efficient use of level 3 BLAS/LAPACK functions. In
particular, we evaluate the code on the small block sizes nb = 3,
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Figure 9: Left: discretization on a cubic domain. Right: lines
of elements extracted in the k dimension.

5, 10 and 15. These small block sizes are typical in scientific ap-
plications, as we previously described. Additionally, the batched
block tridiagonal factorization requires application of a sequence
of BLAS/LAPACK operations along a block tridiagonal matrix. The
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Figure 10: Left: block tridiagonal matrices. Right: illustra-
tion of compact data layout with a vector length 2.

standard batched BLAS/LAPACK interface significantly limits the
performance as it loses data locality after a single batched opera-
tion sweeps over blocks. In our proposed APIs, we expose the short
and packed batch interface aligned to the hardware vector length.
This provides building blocks for us to efficiently compose a new
batched functions that can be used in parallel f or.

Fig. 11 shows the performance of our implementation using the
compact layout compared against the hand-tuned reference imple-
mentation on the Intel KNL. As gemv and trsv are not available
from our industry partner, we do not evaluate the vendor library
version for the solve phase. It is worth noting that we use the MC-
DRAM on the KNL as cache. In modern software design, application
codes use modules to improve software productivity and our line
preconditioner is also provided as a part of a solver module. In
this context, relatively small HBM memory is shared with other
components and using MCDRAM as cache is the most plausible
testing environment. We also assume that applications decompose
the problem domain so that each computing node can hold a block
sparse matrix that fits into the HBM. Thus, we use the 128 X 128 X 128
mesh for blocks nb = 3, 5 and 64 x 64 x 128 mesh is used for blocks
nb = 10, 15. This setup generates problems ranging between 5.2
million and 10.5 million unknowns on each node.
We compare our vectorized implementation of the precondi-

tioner based on the compact data layout against SPARC - a mas-
sively parallel Computational Fluid Dynamics (CFD) code. This
code is developed and maintained by Sandia National Laboratories.
SPARC has a straightforward implementation of the line smoother.
It does not use a compact layout, and it relies on the compiler to
vectorize loops. It uses a template specialization for block sizes of
primary interest. In this reference study, we have used specializa-
tions for nb = 5, 15 but not for nb = 3,10.
As shown in the figure, substantial performance improvements

- 6.03x, 2.23x, 11.42x and 5.8x speed-up for block sizes 3, 5, 10
and 15 respectively in the factor step - are obtained by vectorizing
the code with the compact data layout compared to hand-tuned
version of the code with the conventional data layout. In particu-
lar, our code shows significant speed-up for small block matrices,
which are considered difficult to solve efficiently using conventional
optimization techniques.

4.3 Performance Analysis
In order to better understand the performance of the various BLAS
kernel implementations on the Knights Landing we use the recently

developed APEX application characterization tool described in [12].
APEX is a customized Intel PIN [16] tool which performs dynamic
instruction, memory operation, arithmetic, control flow and logical
operation analysis on executing multi-threaded binaries in order to
extract low-level performance characteristics and operation counts.
Several aspects of the Knights Landing core and the AVX512 vector
units make instruction analysis of executing applications particu-
larly challenging. These include: (1) the ability of the vector units
to mask out lanes when performing memory, arithmetic and logical
operations, thus affecting operation counting; (2) the significant
increase in the capabilities of the AVX512 vector units in terms of
operations and datatype support; (3) memory gather/scatter oper-
ations and, finally, (4) the increased parallelism available, placing
pressure on any analysis tool to scale to significantly higher thread
counts than previous Xeon-based processor designs. It is worth
noting for the reader that the publicly exposed performance coun-
ters available on Knights Landing cores cannot provide the level
of detail exposed in APEX or the level of detail required for the
analysis described here.
The APEX toolkit is optimized in several ways to provide ac-

curate operation counting at high speed to permit scaling to long
duration executions and the size of application binaries used in the
production computing environment at Sandia (typically hundreds
of megabytes to gigabytes in size). The instrumentation of appli-
cation instructions is performed in two potential modes - the first
performs analysis of basic blocks within the application counting
instructions which have no masking properties. We call these static
operation counts as they will always execute the same number of
operations when the instruction is executed. Each basic block is
instrumented so that on entry it atomically increments the number
of times it has been executed permitting tallies to be maintained
quickly and across threads. The second class of instruction presents
a greater challenge - these are instructions for which masking op-
erations are used. For these operations an additional handler is
installed prior to each instruction execution which traps the mask-
ing register/value being used and then performs a population count
over the mask to count the number of active entries. We call these
dynamic operations as the number of operations is a data dependent
property and can change on each execution of the instruction. Com-
plex arithmetic operations such as fused-multiply-adds/subtracts
etc. are associated with multipliers to ensure the final operation
tallies match the expectation of the application programmers. APEX
can be considered to provide an optimistic approach to operation
counting as there are possible uses of vector operations that can
provide mask-equivalent operations that are not as easily tracked,
but, in practice, we have found good correlation to algorithmic and
hardware counters (where comparison is application) for a num-
ber of test cases that we have used from practical and contrived
code examples during the tool's development. For the purposes
of this analysis we provide a clear distinction between arithmetic
floating-point operations from those which still utilize the vector
units but do not perform mathematical operations (such as vector
comparisons, logical operations and load/store operations), instead,
we count each of these classes separately to ensure a more accurate
representation of application behavior. An important aspect to the
operation counts supplied here is that they are as instrumented and
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Table 1: Average Double Precision Vector Utilization for different kernels with 68 threads and N = 16384 on Intel KNL 7250

(Maximum is 16 resulting from a 8-wide vector unit with FMA capabilities).

DGEMM Methods DGETRF Methods DTRSM Methods

Blk MKL Kokkos MKL MKL LIBXSMM MKL Kokkos MKL MKL Kokkos MKL MKL

Size Compact Kernels Batch OpenMP Compact Kernels OpenMP Compact Kernels Batch OpenMP

3 15.87 12.96 10.30 10.30 9.99 12.28 12.80 1.00 15.68

5 15.97 14.34 12.40 12.40 11.99 13.42 13.42 2.18 13.64

10 15.99 15.14 14.43 14.43 15.01 14.70 14.72 3.65 14.65

15 15.99 15.41 14.94 14.94 15.87 15.15 15.17 4.94 15.05

perceived by the executing processor and are the subject of code

generation and optimization, thus, differences between programmer

estimates and final profile-based operation and instruction tallies

are not uncommon once inlining, unrolling and vectorization (or

the lack of vectorization) take place.

13.13

15.39

15.93

15.98

6.44

8.89

10.66

12.44

6.24

8.74

10.61

12.42

Using the APEX Knights Landing analysis tool, we have been

able to capture a broad range of low-level application behavior

metrics. By using a subset of these, we have been able to capture

the average vector utilization of different kernels and formulate

Roofline Model [25] diagrams of kernel behavior (see Figure 12) to
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show how the various kernel implementations utilize the hardware
resources of the Knights Landing processor.

Table 1 gives the average vector lane utilization per floating-point
arithmetic instruction for the various implementations of DGEMM,
DTRSM, and DGETRF. For the purposes of this analysis we define
the vector utilization metric as the summation of all floating point
arithmetic operations (including those which execute as scalar (i.e.
they execute in the Oth lane of the vector unit, as well as with and
without masking applied) divided by the number of instructions
which execute floating point arithmetic. While we include legacy
X87-based instructions in this count, these are virtually never gen-
erated by modern Intel compilers and so can be considered to be
either zero or an insignificant part of the operation count. Each
kernel can have a maximum utilization of at most 16 double pre-
cision floating point operations per arithmetic instruction which
would result from 8 double-precision vector lanes and the ability
to perform a fused-multiply-add on each lane (giving 2 operations
per vector lane per instruction). MKL Compact and KokkosKernels
achieve the best vector utilization overall. The vector utilization
of all methods is higher with increasing block size as there is an
increase in operands available to pack into each vector instruction.
While all methods achieve decent vector utilization for DGEMM,
the compact kernels achieve close to 16 for all sizes, beating the
other methods. However, utilization for the non-compact methods
is much lower for DTRSM and DGETRF, consistent with our earlier
analysis, while the compact layout allows the use of full vector
operations for these more complicated functions. As a result, the
performance difference for DTRSM and DGETRF is larger, as shown in
Figure 4 and Figure 5. These results mostly correlate with the perfor-
mance achieved, with the exception of the LIBXSMM performance
which is able to provide strong performance at relatively lower
levels of vector intensity. Although it has lower vector utilization,
it has higher arithmetic intensity (indicating reduced load/store
operations and higher register use) as described by the kernel's
roofline model analysis.

The Roofline performance model diagrams of the three kernels
are shown in Figure 12 when using 68 threads and N = 16384. In
order to generate the arithmetic intensity used for these plots we
profile all floating-point arithmetic operations/instructions (also
required for the vector utilization metric above), as well as all load-
/store/gather/scatter operations. Although APEX tracks data move-
ment between registers, we explicitly exclude this in our arithmetic
intensity calculation since we are interested in the bandwidth re-
quirements and data movement across the processor. Movements
between vector registers are exceptionally fast versus loads/stores
even from local data caches to the point that we regard them as free
in the context of investigating broader hardware performance and
bottlenecks. The first conclusion to note is the strong correlation
with MCDRAM performance for most smaller kernel executions
which cluster either at or close to the MCDRAM bandwidth limit.
Increasing block sizes help to push the kernel performance over the
MCDRAM bandwidth line and closer to the L2 bandwidth limit as
the increased number of operands permits higher vector utilization
(permitting more efficient load/stores), and, allows the compiler and
processor to keep a greater number of loaded values in registers or
cache, thereby reducing cache/memory accesses and access times

for each block, increasing achieved performance. For all kernels
shown, the use of compact memory layouts (MKL compact and
KokkosKernels) provides the highest performance which we at-
tribute to the greater levels of efficiency resulting from full vector
utilization, as well as, operation independence (since each func-
tion is performed on independent operands in each vector lane),
reducing the overheads of managing kernel execution and allow-
ing for very efficient load/stores of operands at full vector-widths.
We argue that these effects combine to reduce the total number
of instructions required to compute the kernels over all operands
and provide the processor with a much more efficient instruction
stream that presents itself as higher achieved performance.

Although we have gone to considerable lengths in our code de-
sign and the discussion in this paper to convince the reader of our
increased use of SIMD operations (as reflecting in Table 1), the
Roofline models may be interpreted as counter to this discussion.
The reality is that the roofline limits (shown as blue lines/labels
in our plots) show the peak the hardware is capable of in terms
of instructions per second and clock rates in the absence of other
micro-architectural bottlenecks or instruction mixes which contain
non-floating point arithmetic operations or register/operand de-
pendencies. The result of such effects is shown in our roofline plots
and is routinely felt by application developers on modern hard-
ware systems — that even well optimized, vectorized algorithms
rarely achieve high fractions of computational peak because use-
ful instruction sequences will almost always require dependencies
between operands or a great deal of book-keeping and memory
operations. The strong correlation of performance to MCDRAM
bandwidth points to hope that future high-performance processors
will continue to provide increases in both bandwidths and capacity
so that our kernels will execute faster and that we will be able to
increase the maximum problem size for which our approaches are
profitable.

5 CONCLUSION

Small matrix problems suffer from reduced performance on modern
hardware due to limited available parallelism and vectorization. In
part this comes from these problems having a small number of
operands that do not fill wide vector units. Data layout can also
contribute significantly to lower performance, as unoptimized lay-
outs for dense matrices can create high overhead when load/store
operations only utilize fractions of a cache line or require gath-
er/scatter operations to load operands. By batching together many
small matrix operations, the community has addressed the lim-
ited available parallelism through batched BLAS/LAPACK. However,
batched BLAS/LAPACK does not address the limited vectorization
potential observed in small matrix problems, leading to limited core
utilization in these routines.

In this paper we introduce a SIMD-friendly data layout for groups
of small matrices, which packs matrices together to enable cross-
matrix vectorization while maximizing spatial locality in BLAS/LA-
PACK kernels. We call the resulting methods the compact BLAS/LA-
PACK and focus in this paper on compact general matrix multi-
plication, triangular matrix solvers, and LU factorization with no
pivoting. We describe the process of designing efficient compact
BLAS/LAPACK kernels, while examining how the compact layout
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benefits performance for small matrices, focusing on GEMM and
TRSM.

To motivate the method we consider a line solver for coupled par-
tial differential equations. We demonstrate the performance of com-
pact BLAS/LAPACK routines in an open-source reference (KokkosKer-
nels) and a high-performance vendor implementation (Intel MKL)
on the Intel Knights Landing architecture by first considering syn-
thetic problems with sizes inspired by our application of interest.
In these tests we see up to 14x, 45x and 27x speedup for compact
DGEMM, DTRSM and DGETRF(nO pivoting), respectively over OpenMP
loops around hightly optimized DGEMM, DTRSM and DGETRF. We
then demonstrate the performance of the compact BLAS/LAPACK
through use in the line solver application. We compare full batch v
inner kernels. Compared to a hand-tuned version of the line solver,
we observe 2x-6x performance improvement. Finally, we perform
a detailed analysis and comparison of processor core utilization in
the compact BLAS/LAPACK implementation using the APEX analysis
suite. This analysis shows significant increase in vector lane uti-
lization for arithmetic operations (up to 30%) when using compact
BLAS/LAPACK functions. The generation of Roofline Performance
models using our analysis data shows the strong correlation of
benchmark performance with high-bandwidth memory available
on the Knights Landing as well as the higher arithmtic intensity of
the compact kernels compared to batch and standard function calls.
We conclude that the compact implementation of BLAS/LAPACK ker-
nels makes much more efficient use of the computational resources
of the processor cores available on leading high-performance pro-
cessors.

Compact BLAS/LAPACK shows impressive performance potential
for an important class of problems in HPC, machine learning, and
elsewhere. As the community continues to push towards ever more
aggressive processor designs to reach Exascale within an efficient
energy budget, mathematics libraries, such as BLAS/LAPACK, will
need to be rewritten to maximize their use of compute resources.
In this paper we have demonstrated a high-performance path to
providing BLAS/LAPACK functions for small matrices — a set of op-
erations which have typically been challenging to optimize and
which traditionally have performed considerably slower than their
large-matrix kin.

Further statement about the importance of considering architec-
ture in obtaining performance.
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A ARTIFACT DESCRIPTION: [DESIGNING
VECTOR-FRIENDLY COMPACT BATCHED
BLAS AND LAPACK KERNELS]

A.1 Abstract

We describe the artifacts associated with the compact batched
BLAS/LAPACKin this appendix. We describe the computational envi-
ronment, software and testing methodology used in the experiments
in detail. With the right hardware environment and software li-
braries listed here it should be straightforward for a user to replicate
the results in this paper.

A.2 Description

A.2.1 Check-list (artifact meta information). Fill in whatever is
applicable with some informal keywords and remove the rest

• Algorithm: DGEMM, DTRSM, DGETRF, and BCRS

• Compilation: Intel C++ compiler icpc version 17.0.1, Intel

MKL 2018

• Binary:

• Data set: Generated within the tests.

• Run-time environment: Intel MKL, Kokkos, Memkind, Libxsmm

• Hardware: Intel Knights Landing processors

• Execution: Scripts provided to repeat the runs in this paper

• Output: Block sizes, time, average and maximum floating

point operations

• Experiment workflow: Script based workflow to run differ-

ent kernels and the preconditioner

• Experiment customization: Parameters in scripts can be mod-

ified to adjust the block sizes, number of threads, workset

sizes.

• Publicly available: Yes

A.2.2 How software can be obtained (i f available). We described
a reference implementation and a vendor implementation of com-
pact batched BLAS/LAPACK. The reference implementation is open
source and publicly available2. The specific version of our code used
in the experiments can be accessed with the SHA-id 8a8bb3547d . . .
in the git repository. The vendor version of our code is freely avail-
able to download as a library. The specific improvements described
in this paper will be made publicly available in Intel MKL 2018.

A.2.3 Hardware dependencies. A11 the tests were run on Intel
Knights Landing processors. The kernel test results used the pro-
cessors in the "quad-flat" memory mode, which allows all the data
to be stored in the 16GB high bandwidth memory with coherency
directory lookups performed in the closest quadrant of the proces-
sor mesh. The preconditioner test results used the processors in the
4̀ quad-cache mode where the data resides in the DDR memory and
high bandwidth memory is used as a large direct-mapped cache.
The "quad-cache' mode was used to accommodate the increased
memory requirements in the preconditioner.

A.2.4 Software dependencies. The reference implementation de-
pends on the open source Kokkos library3. The version of the
Kokkos library we used can be accessed using the git SHA-id
b8bce49f 5f 7c . . .. The reference implementation also depends on
memkind (version 20160811) and Intel compilers (version 17.1.132).

2https://github.com/kokkos/kokkos-kernels
3https://github.com/kokkos/kokkos
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The tests can also use the vendor version of the compact BLAS/LA-
PACK, libxsmm (version xxx.xxx) and Intel MKL 2017 for comparison
purposes. The test scripts in the github repository can be used to
test just the reference implementation without other comparisons.

A.2.5 Datasets. Our tests generate small block matrices of dif-
ferent block sizes and work set sizes. These matrices are used in
the testing of our kernels. Our preconditioner tests generate block-
diagonal matrices where block-diagonal is a tridiagonal matrix with
small blocks for each entry in it. We use this matrix to evaluate the
preconditioner creation and application. Data layout is an impor-
tant factor in tests such as these. As our applications can switch to
compact layouts with a small change (a template parameter) it is
customary for them to store the data in a format that is best suitable
for performance. Our tests store the input in the compact layout.
Even if there was an application where it is not possible to store the
data in compact layouts, the cost of allocation and copying into the
compact data layout can be amortized over several preconditioner
creation and solves. We avoid such expensive reformatting and
store the data in compact layouts.

A.3 Installation

Installation of the reference implementation of compact batched
BLAS/LAPACK uses a simple Makefile system. Users can provide the
path to Kokkos installation and get the batched BrAs/LAPAcKlibraries
built. We build the Kokkos library with the configuration options
"-with-openmp -with-serial -arch=KNL -with-options= aggres-
sive_vectorization". All our code is compiled with -03 -g options
to the Intel C++ compiler. The vendor library is provided in binary
form and linked to our tests.

A.4 Evaluation and expected result

The tests output the average and maximum GFLOPS/sec for XX
iterations of the kernel. The preconditioner test output.

A.5 Experiment customization

All the experiments in the paper uses a technique called "cold
cache". In each run, we flush the small matrices out of the cache by
allocating and initializing a large dataset that flushes the cache. This
is very conservative estimate of the performance of our kernels. In
typical usage such as our line preconditioner the data resides in
cache for different kernels due to dependencies. The standard way
to run our tests still uses the cold cache mode. However, we provide
an option to evaluate the kernels in "hot cache mode. This options
demonstrates the improved performance that can be achieved if
the data is reused between different kernels. For example, DGEMM
kernel with 68 threads will result in XXX GFLOP/thread for block
size of BB and work set size of YY (See Figure 3). Users interested
in hot cache approach could run our tests with "-hot cache and
evaluate the improved performance. For example, DGEMM kernel
with 68 threads will result in XXX GFLOP/thread for block size of
BB and work set size of YY with hot cache.

A.6 Notes
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Figure 13: dgemm hot cache speedup heat map
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Figure 14: dgemm hot cache gflops heat map


