SAND2017-13017C

Performance-Portable Sparse Matrix-Matrix Multiplication for Many-Core
Architectures

Mehmet Deveci, Christian Trott, and Sivasankaran Rajamanickam
Sandia National Laboratories, Albuquerque, NM
{mndevec,crtrott,srajama’} @sandia.gov

We consider the problem of writing performance portable
sparse matrix-sparse matrix multiplication (SPGEMM) kernel
for many-core architectures. We approach the SPGEMM
kernel from the perspectives of algorithm design and im-
plementation, and its practical usage. First, we design a
hierarchical, memory-efficient SPGEMM algorithm. We then
design and implement thread scalable data structures that
enable us to develop a portable SPGEMM implementation.
We show that the method achieves performance portability
on massively threaded architectures, namely Intel’s Knights
Landing processors (KNLs) and NVIDIA’s Graphic Process-
ing Units (GPUs), by comparing its performance to special-
ized implementations. Second, we study an important aspect
of SPGEMM’s usage in practice by reusing the structure of
input matrices, and show speedups up to 3 compared to the
best specialized implementation on KNLs. We demonstrate
that the portable method outperforms 4 native methods on
2 different GPU architectures (up to 17x speedup), and it is
highly thread scalable on KNLs, in which it obtains 101X
speedup on 256 threads.

I. INTRODUCTION

Modern supercomputer architectures are following two
different paths using either the Intel’s Knights Landing pro-
cessors or NVIDIA’s Graphic Processing Units. As a result,
it is important to design algorithms that can perform well on
both platforms. The focus on this problem has been around
programming models to implement an algorithm on multiple
architectures [1], [2]. We consider this problem from an
algorithmic perspective to design a “performance-portable
algorithm”, an algorithm that can perform well on multiple
architectures with similar accuracy and robustness. Another
approach would be to consider different, architecture specific
(“native”) algorithms for every key kernel. This leads to
the question “How much performance will be sacrificed for
portability?”. We address this question by comparing the
implementation of our performance-portable algorithm to
several native implementations.

We choose the sparse matrix-matrix multiply (SPGEMM)
kernel as our benchmark for this study due to its importance
in several applications. SPGEMM is a fundamental kernel
that is used in various applications such as graph analytics
and scientific computing, especially in the setup phase of
multigrid solvers. The kernel has been studied extensively in
the contexts of sequential [3], shared memory parallel [4],

[5] and GPU [6], [7], [8], [9] implementations. There are
native kernels available in different architectures [5], [7],
[9], [10], [11] providing us with good comparison points.

This paper focuses on SPGEMM from the perspectives
of algorithm design and implementation for performance
portability and its practical usage. Specifically, we try to
address the following questions:

o What are the performance critical design choices and
data structures for a SPGEMM algorithm to map well
to different architectures (thousands vs hundreds of
threads, streaming multiprocessors vs lightweight cores,
shared memory vs MCDRAM) ?

o How will the kernel serve the needs of real applications,
when there is a reuse of the symbolic structure?

In addressing these questions we make the following
contributions in this paper.

o We design two thread scalable data structures (a mul-
tilevel hashmap and memory pool) to achieve perfor-
mance portability, and a graph compression technique
to speedup symbolic factorization phase of SPGEMM.

o We design a hierarchical, thread-scalable SPGEMM al-
gorithm and implement it using the Kokkos program-
ming model [1]. Our implementation is available at
https://github.com/trilinos/Trilinos.

o We evaluate the performance portability of our method
on various platforms, including traditional CPUs, KNLs,
and two different GPU architectures. We show that our
method outperforms 4 native methods on 2 different
GPU architectures, (up to 17x speedup). We also show
that it has better thread-scalablilty than native OpenMP
methods on KNLs, where it obtains 101x speedup on
256 threads w.r.t. its sequential run.

o We also present results for the practical case of matrix
structure reuse, where the method is up to 3x faster
than best native OpenMP method.

The rest of the paper is organized as follows: Section II
covers the background for SPGEMM. Our SPGEMM algorithm
and related data structures are described in Section IIL
Finally, the performance comparisons that demonstrate the
efficacy of our approach is given in Section I'V.

II. BACKGROUND

Given matrices A of size m x n and B of size n X k
SPGEMM finds the m x k matrix C's. t. C' = A x B. Multigrid
solvers use triple products in their setup phase, which is in

the form of Acoarse = B X Afine x P (R = PT if Afine is
symmetric), to coarsen the matrices. SPGEMM is also widely
used in the literature for various graph analytic problems.

In the literature, most parallel SPGEMM methods follow
Gustavson’s algorithm [3] (Algorithm 1). This algorithm
iterates over rows of A in a 1D fashion (line 1) to compute
all entries in the corresponding row of C'. Each iteration of
the second loop (line 2) accumulates the intermediate values
of multiple columns within the row using an accumulator.
The number of the necessary multiplications to perform
this matrix multiplication is referred as f,, (there are f,,
additions too) for the rest of the paper.

Algorithm 1 1D row-wise SPGEMM for C = A x B. We use matlab
notation, ie., C(4,:) and C(:,4) refer to i!” row and column of C,
respectively.

Require: Matrices A, B
1: fori«+ 0tom —1do
2 for j € A(i,:) do
3: //accumulate partial row results
4- (i C(i.:)+ A B

Design Choices: There are three design choices that can
be observed in Algorithm 1: (a) the partitioning needed
for the iteration, (b) how to determine the size of C as it
is not known ahead of time, and (c) the different choices
for the accumulators. The key differences in past work
are related to these three choices in addition to the target
parallel programming model (distributed memory vs shared
memory). This section gives a brief background of the
different choices and what is explored in the literature with
a summary of different methods listed in Table I.

Different partitioning schemes have been used in the past
for SPGEMM. A 1D method [12] partitions C' in single
dimension, and each row (or column) is computed by a
single execution unit. On the other hand, 2D [4], [13]
and 3D [9], [14] methods assign each nonzero of C or
each multiplication to a single execution unit, respectively.
Hypergraph model [15], [16] based partitioning schemes
have also been used in the past. 1D row-wise is the most
popular choice for the scientific computing applications.
Using other partitioning schemes just within SPGEMM will
require reordering and maintaining a copy of one or both of
the input matrices when used within a scientific computing
application. There are also hierarchical algorithms where
rows are assigned to first level of parallelism (blocks or
warps), and the calculations within the rows are done using
the second level parallelism [6], [10], [7]. In this work, we
use a hierarchical partitioning of the computation where the
first level will do 1D partitioning and the second level will
exploit further vector parallelism.

The next design choice is to determine the size of C.
Finding the structure of C' is usually as expensive as finding
C. There exists some work in the literature to estimate its
structure [17]. However, it does not provide a robust upper
bound. It also requires a generation of a random dense ma-
trix, and a sparse matrix-dense matrix multiplication which

is not significantly cheaper than calculating the exact size in
practice. As a result, one-phase or two-phase methods are
commonly used. One-phase methods rely either on finding
a loose upper bound for the size of C' or doing dynamic
reallocations when needed. The former could result in over-
allocation and the later is not feasible in GPUs. Two-phase
methods use the structure of A and B to determine/estimate
the structure of C' (symbolic phase), before computing C' in
the second phase (numeric phase). They either find the size
of the rows of C' or the exact non-zero pattern of C' [11],
[6], [18], and allow reusing of the structure for different
multiplies with the same structure. This is an important use
case in scientific computing, where matrix structure stays
the same with changing values. For example, Algorithm 2
presents an example of a nonlinear system solve. Given a
mesh, a nonlinear solve consists of solving series of linear
systems with the same non-zero pattern but different values.
The structure of A* remains the same, but the values are as-
sembled in each iteration of k£ (line 6) based on the solution
of the previous nonlinear system. Multigrid solvers usually
exploit this in their reuse case [19]. Given the matrix AF,
the solve method in Algorithm 2 constructs a multigrid
hierarchy of some number of levels (mazl). At each level
I (I = 1...maxl) the corresponding matrix is coarsened
using a triple matrix product Ay , = R} x AF x PF.
The structure of the prolongation (F}") and restriction (R})
operators as well as the linear system A; stays same over
all the nonlinear systems. Therefore, the symbolic phase of
a two-phase SPGEMM method can be executed only once
per level of the first linear system solve, and can be reused
for the rest of the linear systems. In this work, we use a
two-phase approach, and we aim to speedup the symbolic

phase using matrix compression.
Algorithm 2 Nonlinear system solve

Require: A representing the input mesh, b right handside vector
1: //time step
2: for timestep € [0,n] do

3: Xo <+ initial guess

4: //nonlinear solve

5. fork€[0,..] until Xy converges do

6: AF < assemble_matrix (A,Xy) //linear matrix
iz //calculate residual

8: rp — b— AF x X},

9: //solve problem - using multigrid

10: Ax, < solve(A*,ry)

11: //update the solution

12: Xk+1 <—Xk—|—AXk

The third design choice is the data structure to use
for the accumulators. Some algorithms use a dense data
structure of size k. However, such thread private arrays are
not scalable on massively threaded architectures. Therefore,
sparse accumulators such as heaps or hashmaps are usually
preferred in parallel implementations. In this work, we use
multi-level hashmaps as sparse accumulators.

Related Work: There are a number of distributed-
memory algorithms for SPGEMM [13], [15], [16], [14], [12].

Table I: Summary of the SPGEMM literature. HM, ESC, and MS denotes
Hashmap, Expand-Sort-Compress and Merge Sort, respectively.

Partition | Phases Parallelism Accumulator
Gustavson 1D 1 Sequential Dense
Trilinos [12] 1D 1 Dist. Dense
CombBLAS [13] 2D 1 Dist. Heap
Azad et. al. [14] 3D 1 Dist./Multicore Heap
MKL] [5] 1D 1 Multicore
mkl_sparse_spmm
MKL2 [5 :
mk l;d[c]srmultcsr 1D 2 Multicore
Patwary et. al. [4] 1D/2D 1 Multicore Dense
ViennaCL - OMP [10] 1D 2 Multicore MS
CUSP [9] 3D 1 GPU ESC
cuSPARSE [11] 2 GPU
AmgX [6] Hier. 2 GPU 2-level HM
ViennaCL-Cuda [10 .
Gremse et. al. [85] Hier: 2 GEI MS
bhSPARSE [7] Hier. hybrid GPU Heap/MS/ESC
KokkosKernels Hier. 2 Multicore/GPU HM

Table II: Kokkos Hierarchy mapping to GPUs and KNLs/CPUs
KK & Kokkos GPUs KNLs/CPUs
Team Thread Block Work assigned to group of hyperthreads
Kokkos Thread | (full, half, quarter...) Warp Work assigned to a single Thread
Vector Lane Threads within a warp Vectorization Units

Most of the multithreaded SPGEMM studies [4], [14], [10],
[8], [5] are based on Gustavson’s algorithm. They usually
differ in the data structure used for row accumulation.
Some use dense accumulators [4], others a heap with an
assumption of sorted columns in B rows [14], or a sorted list
with row merges [10], [8] or other sparse accumulators [5].

Most of the SPGEMM algorithms for GPUs are hierarchi-
cal. CUSP [9] uses a 3D algorithm where each multiplica-
tion is computed by a single thread and later accumulated
with a sort operation (ESC). Such global expansion results in
high memory requirements. AmgX [6] follows a hierarchical
Gustavson algorithm. Each row is calculated by a single
warp, and multiplications within a row are done by different
threads of the warp. It uses 2-level hash map accumulators,
and does not make any assumption on the order of the
column indices. On the other hand, row merge algorithm [8]
and its implementation in ViennaCL [10] use merge sorts for
accumulations of the sorted rows. bhSPARSE [7] exploits
this assumption on GPUs. It has methods to predict the size
of the result matrix. It performs binning based on the size
of the result rows and chooses different accumulators based
on the size of the row.

Table I lists the summary of the literature. The last line
of the table lists our method, KKMEM in KokkosKernels
package of Trilinos, and the choices we follow in this work.

Kokkos: Kokkos [1] is a C++ library that provides
an abstract thread parallel programming environment and
enables performance portability for common multi- and
many-core architectures. It provides a single programming
interface but enables different optimizations for backends
such as OpenMP and CUDA. We use Kokkos’ features such
as parallel_for, parallel_scan, atomics, and views (arrays),
and the Kokkos thread hierarchy for hierarchical parallelism.
Using Kokkos allows us to run the same code on the CPUs,
KNLs and GPUs just compiled differently.

The kokkos-parallel hierarchy consists of teams, threads
and vector lanes. Table II shows how these terms map to

execution units on GPUs, KNLs and CPUs. The mapping is
the same for KNLs and CPUs. A feam in Kokkos handles a
workset assigned to a group of threads sharing resources. On
GPUs, a team is mapped to a thread block, which has access
to a software managed L1 cache. A team on the KNLs can
be the threads sharing either the DDR memory, or the L2/L.1
cache. We use the hyperthreads that share an L1 cache as the
team. There is no one-to-one mapping from kokkos-teams
to number of execution units used. That is the number of
teams even on the CPUs is much higher than the number
of execution units. An execution unit is assigned various
number of teams. A kokkos-thread within a team maps to
a warp (half, quarter warp, etc.) on the GPUs and work on
a single thread on the KNLs. A kokkos-thread uses multiple
vector lanes. The vector lanes map to threads within a warp
in the GPUs and the vectorization units on the KNLs. We will
use the terms, kokkos-teams/teams, kokkos-threads/threads
and vector lanes in the rest of the paper.

The portability provided by Kokkos comes with some
overhead. For example, template meta-programming used
heavily in the Kokkos model results in some of the current
compilers failing to perform some optimizations. Typically,
portable data structures in Kokkos have some small over-
heads as well. Portable methods also avoid exploiting any
architecture-specific assumption or instructions. However,
all these overheads can be overcome by careful algorithm
design unless the problem sizes are very small.

ITII. ALGORITHM
Algorithm 3 Overall structure of KKMEM.

Requnre Input matrices A, Bst. C = A X B
//allocate row pointers of C

allocate Crowfpolnters

//symbolic phase

B. + compress_matrix(B)

C'rou_pointers <~ CORE_SPGEMM (‘symbolic’, A, B.)
//allocate columns and values of C
allocate Ccolumnsr Cralues

//numeric phase

C <+ CORE_SPGEMM (‘numeric’, A, B, Crou_pointers)

CRRDREINE

The overall structure of our SPGEMM method, KKMEM,
is given in Algorithm 3. It follows a two-phase approach,
in which the first (symbolic) phase computes the number
of nonzeros in each row (lines 4 — 5) of C, and second
(numeric) phase (line 9) computes C. Both phases use the
CORE_SPGEMM kernel with small changes to the input. The
amount of work is typically doubled in such two-phase
approaches. The main difference is that, the symbolic phase
does not use matrix values, it does not perform floating
point operations. We aim to improve this phase and reduce
memory usage by performing compression of B (Line 4).
A. Core SPGEMM Kernel

The core SPGEMM kernel used by both symbolic and
numeric phases follow a hierarchical, row-wise, algorithm.
This core SPGEMM kernel is given in Algorithm 4. A
simplified example of the kernel is shown in Figure 1. The

thread-1

thread-2

Figure 1: SPGEMM kokkos thread hierarchy. Team-1 consists of 2 kokkos-
threads, and each kokkos-thread has 4 vector lanes (v[1-4]).

Algorithm 4 CORE_SPGEMM Kernel for C = A x B. Colors show how
the hierarchical algorithm maps to Algorithm 1. Red shows the first level,
and green shows the second level of parallelism. Blue part is sequential
within the first level parallelism.

Require: Phase, Matrices A, B, C

1: // B is a compressed/standard matrix if Phase
2: // is symbolic/numeric. Crou_pointers/C

3: // allocated if Phase is symbolic/numeric.

4: for each thread € thread_team assigned to subset of rows C' do
5: i < GETMYROW(thread_team, thread)
6
T
8
9

allocate the first level accumulator £1
for j € A(i,:) do

(B))

10: if FULL =L .VECTORINSERT(col then

11: if L2_not_allocated then

12: allocate the second level accumulator Lo
13: L2_allocated <+ True

14: Lo . VECTORINSERT(¢ s.vals)

15: if PHASE 1S SYMBOLIC then

16: Crov_pointers (i) < total £1/L2 Acc sizes

17: else

18: C(i,:) < values from L1/L2 Acc

19: if L2_allocated then
20: release Lo

performance of KKMEM derives from the hierarchical par-
allelism and two thread-scalable data structures, a memory
pool and an accumulator. First, we focus on partitioning the
work for hierarchical parallelism. The kernel achieves the
first level of parallelism by assigning a set of rows of C' to
kokkos-teams (loop in Line 4). Each kokkos-thread within
the team is assigned a subset of these rows. For example, the
first two rows of C' is assigned to team-1 (shown in orange in
Figure 1). Each team has two threads in this example (high-
lighted in blue and green). Thread-1 of team-1 is assigned
to the first row (highlighted in blue). These two levels of
team and thread parallelism use a 1D (row-wise) distribution.
At the third level, each thread has four vector lanes in this
example. Vector lanes are assigned to the non-zeros in a
row of B. Thread-1 will use four vector lanes for each row
of B it accesses (highlighted in different shades of blue) in
succession. B is naturally laid out for this level of vector
parallelism as the non-zeros in a row are consecutive. Vector
parallelism is implemented using vectorized reads and mul-
tiplies on the corresponding rows of B. For example, thread-
1 first does a read of A(0,0), a VECTORREAD(B(0,:))
and the corresponding VECTORMULT followed by the read
of A(0,1), VECTORREAD(B(1,:)) and the corresponding
VECTORMULT (loop in Line 7).

Given the partitioning above, we can describe the accu-
mulator to accumulate the entries of C'. We use a two-level,
sparse, hashmap-based accumulator. Accumulators are used

to compute the row size of C' in the symbolic phase, and
the column indices and their values of C in the numeric
phase. Once kokkos-threads determine the row they work
on, they allocate some scratch memory (Line 6) for their
private level-1 (£1) accumulator (not to be confused with
the L1 cache). The scratch memory maps to the GPU shared
memory in GPUs and the default memory (i.e., DDR4 or
high bandwidth memory) on KNLs. If the £; accumulator
runs out of space, global memory is allocated (Line 12) in
a scalable way using memory pools (explained below) for
a thread private Lo accumulator. This Lo accumulator is
used for failed insertions from £;, and its size is chosen
to guarantee to hold all insertions. Upon the completion
of a row computation, any allocated Lo accumulator is
explicitly released. Scratch spaces used by £; accumulators
are automatically released by Kokkos when the threads
retire.

1) Implementation: This subsection focuses on two im-
plementation aspects - length of the vector lanes and size
of the accumulators. The length of vector lanes in each
kokkos-thread is a runtime parameter, and it is fixed for all
threads in a parallel kernel. We set it by rounding the average
number of nonzeroes in a row of B (dg) to the closest
power of 2 on GPUs (upper bound by the warp size). Kokkos
sets the length depending on the compiler and underlying
architecture specifications on the KNLs.

The size of £; accumulators depends on the available
shared memory on GPUSs. In the numeric phase, the size of
the Lo accumulator (in the global memory) is chosen to
equal the “maximum row size in C” (MAXRS) to guarantee
enough space for the work in any row of C'. MAXRS is not
known before symbolic so this phase uses an upper bound.
The upper bound is the maximum number of multiplies
(MAXRF) required by any row. This is found by summing up
the size of rows of B that contributes to a row. In contrast to
GPUSs, both £; and L5 accumulators are in the same memory
space on KNLS/CPUs (DDR or MCDRAM). Since there are
more resources per thread on the KNLs/CPUs, we choose
the size of £ accumulator big enough to hold MAXRF or
MAXRS depending on the phase. Even this is usually small
enough to fit into L1 or L2 caches of KNLs/CPUs.

B. Compression

This section addresses the problem of compressing the
graph of B in the symbolic phase. This method, based
on packing columns of B as bits, can reduce the size of
B up to 32x. The graph structure of B encodes binary
relations - existence of a nonzero in (¢, j) or not. This can
be represented using single bits. We compress the rows of
B such that 32 (64) columns of B are represented using a
single integer (long integer) similar to the color compression
idea [20]. In this scheme, the traditional column index array
in a compressed-row matrix is represented with 2 arrays
of smaller size: “column set” (CS) and “column set index”
(cs1). Set bits in the CS denote existing columns. That is, if

0o 1 2 3 4 5 6 7

Begins |—1|—1|1'—l|0|—1|—1|—1]
—}

wo FLEEE

el T

@ EEEDD

(b) Structure of the hashmap

rowl5|7|si9|1o|33[34|35|36|37|

. 31 Ids

(a) Compression
Figure 2: Compression and Hashmap examples

the 7*" bit in CS is 1, the row has a nonzero entry at the i*?
column. The CSI is used to represent more than 32 columns.
Figure 2a shows an example of the compression of a row
with 10 columns. The compression is more successful if the
column indices in each row are packed close to each other.

Each thread in Algorithm 4 performs C(i,:) = A(1,:) X B,
in which threads scan the rows A and C only once. However,
a nonzero value in B is read multiple times, and total
accesses to B are as many as f,,, i.e., B(4,:) is read as many
times as the size of A(:, 7). If we assume that the structure of
A is uniform, that is, there are § 4 nonzeroes in each column
and row of A, each row of B is accessed 0 4 times. Thus, f,,
becomes O(d4 X nnzpg), where nnzp denotes the number
of nonzeroes in B. When a compression method with linear
time complexity (O(nnzp)) like the one above reduces the
size of B by some ratio Comp, the amount of work in the
symbolic phase can be reduced by O(Comp x 64 X nnzg).

Compression reduces the problem size, allows faster row-
union operations using BITWISEOR, and makes the sym-
bolic phase more efficient. The reduction in row lengths
of B also reduces the calculated MAXRF, the upper bound
prediction for the required memory of accumulators in the
symbolic phase. There exist more complicated graph com-
pression methods in the literature. Some uses delta encoding
to compress the columns of a row [21], while others seek
for similarity of the rows (block structures) [22], [23], [24].
These expensive methods can be amortized on repetitive or
computationally intensive problems. We avoid using such
expensive methods, and show the effectiveness of our light-
weight compression method in Section I'V-C.

C. Memory Pool

Algorithm 4 requires a portable, thread-scalable memory
pool to allocate memory for Lo accumulators when a row
of C cannot be fit in a £, accumulator. The memory pool is
allocated and initialized before the kernel call and services
requests to allocate and release memory from thousands of
kokkos-threads. As a result, allocate and release has to be
thread scalable. Allocate function returns a memory chunk
to a thread and locks it. This lock is released when the
thread releases the chunk back to the pool. The memory pool
reserves NUMCHUNKS many memory chunks, where each
has fixed size (CHUNKSIZE). CHUNKSIZE is chosen based
on the MAXRF, and MAXRS in the symbolic and numeric
phases, respectively. The memory pool has two operational

modes: unique (non-unique) mapping of chunks to threads
(ONE20ONE and MANY2MANY).

The parameters of the memory pool are architecture
specific. NUMCHUNKS is chosen based on the available
concurrency in an architecture. It is an exact match to the
number of threads on the KNLs/CPUs. On GPUs, we over
estimate the concurrency to efficiently acquire memory. We
use an upper bound for the maximum allocated memory for
the pool (such as O(nnz¢)), and reduce the NUMCHUNKS
if the memory allocation becomes too expensive on GPUs.
CPUs/KNLs use ONE2ONE and GPUs use MANY2ZMANY.
The allocate function of the memory pool uses thread in-
dices. These indices assist the look up for a free chunk. Pool
returns the chunk with the given thread index on CPUs/KNLs
(ONE20ONE mode). This allows CPU/KNL threads to reuse
local NUMA memory regions. It starts a scan from the given
thread-index until an available chunk is found on GPUs. It
also helps the scan of GPU threads as they start their scan
from different indices.

D. HashMap Accumulator

This section describes the hashmap based accumulator
that supports parallel insertions/accumulations from multiple
vector lanes. It is thread-private within kokkos-threads, so
it needs to be highly scalable in terms of memory to fit
within a small scratch space. The hashmap accumulator here
extends the hashmap we used in [24] for parallel insertions.
It consists of 4 parallel arrays as shown in Figure 2b,
which shows an example of a hashmap that has a capacity
of 8 hash entries and 5 (key, value) pairs. Hashmap is
stored in a linked list structure. Ids and Values stores the
(key, value) pairs, which corresponds to column indices and
their numerical values in numeric phase, to CSI and CS in
symbolic phase. Begins holds the beginning indices of the
linked lists corresponding to the hash values, and Nexts
holds the indices of the next elements within the linked
list. For example, in the figure, the set of keys that have
hash value of 4 are stored with a linked list. The beginning
index of this linked list is stored at Begins[4]. We use this
index to retrieve (key, value) pairs (Ids[0], Values[0]). The
linked list is traversed using the Nexts arrays. An index
value —1 corresponds to the end of the linked list for the
hash value. We choose the size of Begins to be power of 2,
therefore hash values can be calculated using BITWISEAND,
instead of slow modular (%) operation. The insertions to the
hashmap are done via a vectorInsert operation. Each vector
lane calculates the hash values, and traverses the correspond-
ing linked list. If a key already exists in the hashmap, values
are accumulated with “add” and BITWISEOR in numeric
and symbolic phases, respectively. We exploit the fact that
vector insertions at a time are duplicate-free. That is, vector
lanes read a single row of B, and the columns (keys) in
a given row are unique. Thus, atomic operations are not
needed for accumulation. If the key does not exist in the
hashmap, vector lanes reserve the next available index in Ids

Table III: The specifications of the architectures used in the experiments.

Cluster Shepard Bowman Hansen White
CPU/GPU Haswell KNL K80 P100
5 v p gcc 4.8.4 gee 5.4.0
Compiler icc 17.0.098 icc 17.0.098 cuda 7.5 cuda 8.0
‘ 32 x 2.30 GHz | 68 x 1.40GHz Com. Cap. | Com. Cap.
Core specs | cores cores 37 60
2 hyperthreads 4 hyperthreads o)
- 16 GB MCDRAM
128 Gb 460 GB/s
Memory 2 NUMA 96 GB DDR4 12 GB 16 GB
102 GB/s

and Values with an atomic counter. They set the Begins of
the corresponding hash value to their insertion index with
atomic_compare_and_swap, and the Next of the inserted
index is set to the old beginning index. If hashmap runs out
of memory, it returns “FULL” and the failed vector lanes
insert their values to the second level hashmap.

IV. EXPERIMENTS

Setup: The configurations of the single nodes of the
four clusters we use are listed in Table III. KKMEM method
is implemented using the Kokkos library (Trilinos 12.8
release), and publicly available in Trilinos. Each run reported
in this paper is the average of 5 executions with double
precision arithmetic and 32 bit integers. We evaluate matrix
multiplications in the forms of PT x A x P and A x A
depending on the application domain of the corresponding
matrices. The experiments use 29 (20 on Haswell and KNL)
matrices from various multigrid problems and UF sparse
matrices [25] used in [7], [14] (for A x A). The problems
are listed in Table IV. The experiments are organized in
four parts. Section IV-A and Section IV-B evaluate the per-
formance of KKMEM on CPUs/KNLs and GPUs respectively.
Section I'V-C evaluates the effect of the compression method.
Overall results are summarized in Section I'V-D.
A. Experiments on CPUs and KNLs

In this subsection, we compare KKMEM against Vi-
ennaCL (OpenMP) and the two SPGEMM methods pro-
vided in Intel Math Kernel Library (MKL) on multicore
CPUs and KNLs. In the experiments, mk1_sparse_spmm
routine in MKL’s inspector-executor is referred as MKLI,
and mkl_dcsrmultcsr routine is referred as MKL2.
mkl_dcsrmultcsr is used with the option to sort the
output rows, as it does not return sorted outputs. However,
it requires sorted input rows. In the multigrid hierarchy
the output matrices in one level is the input for the next
level. This constrains us to set the outputs to be sorted.
Both MKL routines are 2 — 3x slower for the first call than
the following calls in any run. Even though an application
using MKL will observe this difference, we exclude the
first run, for these routines. Thus, the comparisons against
MKL are conservative. The test dataset includes 12 multigrid
multiplications from Table IV, and 8 A x A multiplications
for the largest matrices from our dataset.

Figure 3 shows the geometric mean of the speedup of
the four different SPGEMMs with respect to single threaded
KKMEM for all the 20 multiplications. The figure also differ-
entiates the NoReuse and Reuse cases. “Reuse” (“NoReuse”)

r]
S

B KKMEM
B MKLL
OmMKL2 J

OViennaCL g
m:h

32

BN ow B
5 8 8 8
3.78
6.41
29.87
29.87

Speedup w.r.t. Sequential KKMEM

°
1.00
1.90

b B8 I I
St [|
2 64

4 3.

1 4

-

NoReuse Reuse

Figure 3: Geometric mean of the speedups of algorithm w.r.t. sequential
KKMEM on Haswell CPUs. The numbers above the bars correspond the
speedups of KKMEM and MKLI1. The numbers below the bars are the
number of threads. We exclude intermediate thread numbers since the trend
of the speedups are similar.

refers to the case where the symbolic phase is reused
(recomputed) for every call to numeric phase. Two-phase
algorithms (KKMEM and MKL2) benefit from the reuse.
Although ViennaCL runs in two-phases, the public interface
does not support the 2-phase usage. Hence we do not reuse
the symbolic structure for ViennaCL.

In the NoReuse case MKL2 is up to 22% faster than
KKMEM on smaller number of threads. However, KKMEM
scales better and is the faster method after 16 threads (not
shown). It is 2x faster than MKL2 on 64 threads. Native
implementation in ViennaCL is typically slower than the
other three variants. MKL1 is the best method on traditional
CPUs. KKMEM is designed to be thread-scalable for mas-
sively threaded architectures. The introduced overhead costs
are usually not amortized on smaller number of threads.
However, it scales better than MKL1. It is 1.90x slower
than MKL1 on sequential run, however the performance
difference drops to 16% as the number of threads increase
to 64 threads. The traditional CPU results are shown for
demonstrating portability. It is not our target platform.

Two-phase methods take advantage of reusing the sym-
bolic structure in Reuse experiments. MKL2 and KKMEM
run up to 45% and 80% faster w.r.t. their NoReuse runs.
KKMEM achieves a 51x speed up on 64 threads (30x w.r.t.
seq. Reuse). It is slower than MKL1 only when the resources
are underutilized and become the fastest of the four methods
beyond four threads, where it is 1.53x faster than MKL1.

Figure 4 shows the speedups of the algorithms w.r.t.
sequential KKMEM (on DDR4) on KNL. It differentiates runs
using MCDRAM and DDR4 and the NoReuse/Reuse cases.
In these experiments, we use 64 of 68 cores with 2 and
4 hyperthreads on 128 and 256 threads. MKL1 does not
complete in 1000 seconds or fails for 7/20 instances with
256 threads, for which we proportionally scale the speedup

of the dataset that it runs so we can find a geometric mean
. Speedu Speedu, 5
(assumlng that p P(20,256) o 14 UP(13,256))
Spﬁedup(zo.ws) SPC@d“P(ls,mB)
We compare the performance of the algorithms on both

MCDRAM and DDR4. MCDRAM provides not only more
bandwidth, but also more parallelism for the memory con-
trollers compared to DDR4. When neither the bandwidth
nor the memory controllers are saturated, the performance
is expected to be similar on DDR and MCDRAM. As the

140

120 EKKMEM

94.48

100 BmKLL

OmkL2
80

66.75
66.46

52.19

BviennaCL

51.63
56.02
56.02

.19

60

37.26

40

20

Speedup w.r.t. Sequential KKMEM on DDR4

1.00
1.74
3.83
6.23
1.69
1.74
6.46
6.23
)
|
|

0 e il - SIS -
1 4 64 128 256 1 a 64 128
NoReuse Reuse
(a) DDR4
200
s n
S 180 EKKMEM L
a n
é 160 BMKLL =
b omKL2
g 3 2
* 920 BviennaCL - o
3 S g 3
§ 100
g 80 2
L 0
H
g -
§ 2038 82 Re 34
&] 5
01 il — B
1 4 64 128 256 ¢ 4 64 128
NoReuse Reuse

Figure 4: Strong scaling speedups on KNL’s DDR4 and MCDRAM W.r.t.
sequential KKMEM on DDR4. The results are geometric mean of 20
multiplications. cagel5’s result does not fit in MCDRAM due to the test
driver’s memory overhead, and it is excluded in MCDRAM results.

number of threads increase, the need for more bandwidth
increases. MCDRAM can clearly help in this case. Even when
the algorithm is not bandwidth bounded on DDR4, it may
saturate memory controllers, and may suffer from latency
due to the memory request queues. MCDRAM can help here
with more parallelism in the memory request queues.

Figure 4a and 4b show speedups on DDR4 and MCDRAM,
respectively. When using DDR4 (MCDRAM) KKMEM results
in 66x and 128 (101x and 186) speedup on 256 threads
for the NoReuse and Reuse cases (w.r.t. sequential KKMEM
on DDR4), respectively.

The DDR4 experiments (Figure 4a) demonstrate the
strength of a thread-scalable KKMEM algorithm. MKL1 is
initially 1.74x faster than KKMEM on single-thread runs,
however, the difference reduces to 8% on 64 threads.
KKMEM becomes 1.28x and 1.78x faster than MKL1 on
128 and 256 threads, respectively. MKL1 performance drops
on 128 and 256 threads suggesting that it is memory latency
bound on 128 threads. On the other hand, KKMEM scales up
to 128 threads, and its performance stays almost constant
on 256 threads, which suggests that it is memory bandwidth
bound on 256 threads. As in the multicore experiment, the
performance of ViennaCL and MKL2 is slightly lower than
MKL1 and KKMEM for NoReuse.

When the symbolic structure is reused, the performance of
MKL2 and KKMEM improves up to 1.48x and 1.93x w.r.t.
their “NoReuse” performance. KKMEM has similar perfor-
mance to MKL1 on smaller number of threads, however it
scales better beyond four threads. It is 2.47x (3.45x) faster
than MKL1 on 128 (256) threads. MKL2 is usually slower

than MKL1 even in Reuse case.

In general, storing matrices in MCDRAM improves the
performances of all the algorithms (Figure 4b). KKMEM
does not saturate the bandwidth or the memory controllers
on DDR4 up to 32 threads (not shown), therefore the
performance on MCDRAM is very close to its performance on
DDR4 (at most 6% difference). After this point the speedups
on MCDRAM are higher (up to 1.53x), and KKMEM scales
well up to 256 threads. It results in a 101x and 186x
speedup with 256 threads for NoReuse and Reuse case,
respectively. The respective performance of ViennaCL and
MKL2 improve up to 1.14x and 1.32x, w.r.t. their per-
formances on DDR4. However, they are still slower than
KKMEM and MKL2 for both “NoReuse” and “Reuse” cases.
More memory controllers provided in MCDRAM significantly
helps the latency-bound problem of MKL1 on 128 and 256
threads. MKL1 scales up to 128 threads on MCDRAM, after
which it hits the bandwidth bound. As a result, MKLI1
improves its performance up to 2.77x in MCDRAM. Al-
though more bandwidth provided by the hardware helps to
improve the scalability of MKL1, it still hits the memory
bound earlier than KKMEM. In general, storing matrices in
MCDRAM pays good dividends for larger thread counts as the
larger bandwidth can be effectively utilized. This is reflected
in the 101.70x speedup for MCDRAM as opposed to the
66.46x speedup for the DDR4 when using 256 threads.

B. Experiments on GPUs

We evaluate KKMEM against CUSP (0. 5. 1), bhSPARSE,
cuSPARSE, ViennaCL (1.7.1) on two GPUSs.

1) K80 Results: Table IV shows GFLOPS and execution
time of KKMEM, and its speedup w.r.t. other methods on
28 different matrix multiplications on K80 GPUs. KKMEM
and cuSPARSE are the most robust methods that can
multiply all the matrices (except cagel5, since the output
matrix does not fit into memory). However, cuSPARSE
is the slowest among the methods compared. ViennaCL,
bhSPARSE and CUSP run out of memory for 21, 11 and 5
multiplications, respectively (excluding cagel5). The bottom
row shows the geometric mean of the speedup of KKMEM
w.r.t. each algorithm for the set of matrices the method
works. In general, the fastest algorithm is KKMEM, which
is on average 3.80x, 1.59x, 1.47x and 3.19x faster than
cuSPARSE, ViennaCL, BhSPARSE, and CUSP, respectively.
KKMEM obtains the best performance on 22/30 multi-
plications. On Laplace_R_A and webbase multiplications,
KKMEM is slower than BASPARSE and CUSP. It is possible
to change the vector length and improve the performance
of KKMEM by 1.47x and 2.80x, so that KKMEM has
the best performance on these two matrices. However, we
only report the performance with the default auto-parameter
selection mechanism, and leave exploration of the better
parameterization as future work. Overall, KKMEM achieves
the best performance, without sacrificing robustness, mainly
due to the hierarchical algorithm that maps well to the GPUS

and the thread scalable data structures that can effectively
use the GPU hardware features.

2) AmgX comparisons: In Table V, we compare the
performance of KKMEM against the SPGEMM method in
AmgX library [6]. This method is neither open-source, nor
there exists a public interface for SPGEMM. Therefore, there
is no way for us to compare with this method. However, we
have been provided the performance numbers listed in the
table for K80 GPUs. The performance of AmgX is better than
other native methods, and more close to the performance of
KKMEM. Execution time of both methods are usually in the
orders of the milliseconds. We use Kokkos which is a wrap-
per around the CUDA library. It adds some overheads on the
execution time, which are more likely to be visible in such
tiny problems. KKMEM outperforms AmgX in the largest
two matrices. Moreover, KKMEM is better than AmgX on
webbase, since it is reported to be at least 3x slower than
CUSP [6]. In general, our portable method achieves similar
performances to native AmgX method without using any
architecture specific intrinsics functions as in AmgX.

3) PI100 results: Table VI shows GFLOPS and execution
time of KKMEM, and its speedup w.r.t. other methods
on 29 different matrix multiplications on P100 GPUs. In
general, performances of all methods improved w.r.t. K80
GPUs, and they run on larger set of matrices. KKMEM,
CUSP, bhSPARSE, ViennaCL, and cuSPARSE improved
their performances by 3.29x, 1.53x, 3.74x, 4.10x, and
5.26x, respectively (on the set of multiplications they run
on both GPUs). With a faster GPU, the difference in exe-
cution time narrowed. The difference in execution time is
negligible for the smaller matrices. Even in P100 KKMEM
is the most robust and the fastest method. It obtains the
best performance on 17 multiplications. In addition, the
KKMEM times on ldoor, dielFilterV3real and delaunay_n24
and cagel5 matrices are comparable to the times achieved
in the distributed-memory implementation in [14] using 512
to 4096 cores. For example, the performance of KKMEM on
delaunay_n24 on a single P100 GPU is comparable to using
2048 to 4096 Intel Ivy Bridge cores [14].

The effect of the memory pool: Kokkos-threads use
memory pool to allocate memory for their Lo accumulators
when their £, accumulator is full. In the numeric phase, the
size of each row of the result matrix is known beforehand.
It is possible to allocate 4 arrays in the size of result matrix
and allow threads to directly use them as accumulators to
avoid using memory pools. We implemented this idea in the
numeric phase to evaluate the performance of memory pool.
The new method increases the memory requirement, where
it runs out of memory on 3 multiplications on K80 GPUs
(audi, dielFilterV3real, Brick_R_A), and on 1 multiplication
on P100 (cagel5). However, on average, the new method
improves the results of numeric phase by 6% and 8% on
K80, and 2% and 6% on P100 over using the memory pool
(over all matrices). This demonstrates that memory pool

increases the robustness of the algorithm by reducing the
memory requirement, with a small increase on the runtime.
C. The effect of the compression

The compression technique is applied in the symbolic
phase of KKMEM. This is a critical process to reduce the
time and the memory requirements of the symbolic phase. At
the beginning of this phase, the sizes of the rows of C' are un-
known. KKMEM estimates the maximum row size as MAXRF
as used in the literature [10], [7]. The size of the accumu-
lators are fixed to these sizes, which might cause memory
problems on massively threaded architectures. By reducing
the size of B using the compression technique, we reduce
not only the number of insertions to hashmap accumulators
(originally as many as f,,), but also the estimated maximum
row size which in turn reduces the size of the accumulators
used. We list the calculated maximum row sizes and the
required size for accumulators with and without compression
in Table VII together with the reductions on the size of
B and the number of hashmap insertions. On average, the
compression reduces the size of B, the number of insertions
and the required memory by 57%, 59% and 53%. There are
cases where compression increases the required size of an
accumulator due to the additional array needed. However, in
most of these cases, the size of accumulators are already very
small. Therefore these cases are not likely to create memory
issues. The memory reductions are more significant where it
is more critical. Starting from Brick_ R_AP multiplication,
the required accumulator size per thread becomes more
than 16 K B, and gets as high as 2.18 M B on Empire_R_A
matrices. In these sets of matrices, compression reduces the
memory requirement on average by 74% and up to 96% on
certain matrices. Compression usually reduces the runtime of
the symbolic phase. When the reduction on insertions is low,
it might not amortize compression cost. It is more successful
when columns of the right hand side matrices are packed.
Compression achieves lower reductions when the columns
are spread out, which is the case for multigrid matrices (A
and AP).
D. Overall Results

From previous experiments it is clear that the best method
is different for different problems in different architectures.
However, we allow a meta-algorithm that can choose the
best method (excluding KKMEM) for a given problem in a
given architecture. We can then compare KKMEM to this
meta-algorithm that always chooses the best method for
very conservative speedup numbers. Table VIII gives the
geometric mean of the execution times of the meta-algorithm
(“best method”) for each instance (excluding KKMEM) on
19 matrices (excluding small matrices and cagel5) and
KKMEM on all architectures. These results also allows us
to compare different architectures. First, the fastest overall
multiplication times are obtained in P100 GPUs. Overall,
performance achieved by the portable kernel is better than
the best method by 17%, 4% and 54% on KNL-DDR4,

Table IV: The matrices and multiplications used throughout this paper. The (#rows, #cols, #nnz) of the input matrices and #multiplications performed are
given in the first four columns. The right side lists the execution time in seconds and GFLOPS of KKMEM on K80, and its speedup w.r.t other SPGEMM
methods. Blank spaces indicate the method failed. The matrices are sorted based the success of the algorithms, then by the #multiplications. The matrices
2cubes_sphere, cagel2, webbase, offshore, filter3D, cant, hood, pwtk, ldoor are used as they are repetitively used in the literature [6], [7]. We run these
matrices only on GPUs, and omit them on KNL experiments as their run times are negligible.

Table V: Comparison against the performance numbers of AmgX on K80
GPUs. Last column shows the difference in running time between the two

KKMEM KKMEM speedups w.r.t.

row A # cols A #nnz A # multiplications time | GFLOPS CUSP | bhSPARSE | ViennaCL | cuSPARSE
2cubes_sphere 101, 492 101, 492 1,647,264 27,450, 606 0.05 1.098 3.40 1.80 1.40 5.20
cagel2 130, 228 130,228 2,032,536 34,610, 826 0.08 0.865 2.75 1.25 1.50 4.50
webbase 1,000, 005 1,000, 005 3,105, 536 69, 524,195 0.57 0.244 0.72 0.65
offshore 259, 789 259, 789 4,242,673 71,342,515 0.12 1.189 3.58 1.42
filter3D 106,437 106,437 2,707,179 85,957, 185 0.13 1.322 ST 1.08
hugebubbles20 21,198,119 | 21,198,119 63, 580, 358 190, 713,076 0.33 1.156 3.85 2.33
cant 62,451 62,451 4,007, 383 269, 486,473 0.16 3.369 - 1.38
Empire_RA_P 8,800 2,160, 000 25,410,400 91, 604, 280 0.22 0.833 2.45
europe 50,912,018 | 50,912,018 | 108,109,320 241,277,568 0.63 0.766 2.40
Laplace_A_P 15,625,000 | 15,625,000 | 109,000,000 400, 324,972 0.52 1.540 1.56
Laplace_R_A 1,969,824 | 15,625,000 57,354,176 400, 324,972 1.18 0.679 0.70
Laplace_R_AP 1,969,824 | 15,625,000 57,354,176 517,542,942 0.69 1.500 2.19
Laplace_RA_P 1,969,824 | 15,625,000 | 142,929,956 517,542,942 1.47 0.704 1.76 ; :
hood 220,542 220, 542 10, 768,436 562,028,138 0.28 4.014 1.25 2.57 3.61
pwtk 217,918 217,918 11,634,424 626, 054,402 0.24 5.217 1.63 3.08 3.7
Empire_R_A 8,800 2,160, 000 8,572,251 | 1,286,511,829 1.39 1.851 1.42 1.80 1.15
1door 952,203 952,203 46,522,475 | 2,408,881,377 1.08 4.461 1.40 2.98 3.86
Empire_R_AP 8,800 2,160, 000 8,572,251 91, 604, 280 0.11 1.666 0.91 2.27
delaunay_n24 16,777,216 | 16,777,216 | 100,663,202 633,914,372 1.29 0.983 2.09 1.66
Brick_R_AP 592,704 | 15,625,000 71,991,296 763,551,944 0.85 1.797 1.73 4.04
Empire_A_P 2,160, 000 2,160,000 | 303,264,000 | 1,286,511,829 1.09 2.361 1.11 3.61
channel 4,802,000 4,802,000 85,362,744 | 1,522,677,096 1.56 1.952 2.03 4.06
Brick_AP 15,625,000 | 15,625,000 | 418,508,992 | 1,934,434,936 1.69 2.289 1.09
Brick_R_A 592,704 | 15,625,000 | 197,137,368 763,551,944 2.04 0.749
Brick_RA_P 592,704 | 15,625,000 71,991,296 | 1,934,434,936 1.70 2.276 231
bump 2,911,419 2,911,419 | 127,729,899 | 5,745,156,927 3.12 3.683 3.08
audi 943, 695 943, 695 77,651,847 | 8,089,734,897 4.76 3.399 2.68
dielFilterV3real 1,102, 824 1,102,824 89,306,020 | 8,705,461,058 6.68 2.606 3.04
cagel5 5,154, 859 5,154, 859 99,199,551 | 2,078,631,615

Geo.mean 3.19 1.47 1.59 3.80

Table VI: Execution time in seconds and GFLOPS of KKMEM speedup
numbers w.r.t other SPGEMM methods on P100 GPUs.

approaches. We use default parameters for KKMEM and compare against KKMEM Speedup w.r.t. \
the best numbers of AmgX provided to us. time gflops CUSP | bhSPARSE [ViennaCL [cuSPARSE |
2cubes_sphere 0.02 3.631 4.54 1.20 1.06 3.62
AmgX KKMEM i . cagel2 0.03 | 2396 | 3.3 0.75 122 274
GFLOPS | Time | GFLOPS | Time | Time Diff. webbase 0.27 | 0521 | 0.66 0.54 5.18 2.30
2cubes_sphere 2.388 | 0.023 1.013 | 0.054 0.031 offshore 0.03 4.304 5.25 | 1.33 121 i
cagel2 0.773 | 0.090 | 0.834 | 0.083 —0.007 fltet3D 0.03 | 4918 S J.83 Lav 230
offshore 2359 | 0.060 | 1.143 | 0.125 0.064 e A e - EEmE 224
filter3D 1.109 | 0.155 1.301 | 0.132 —0.023 cant 0.04 | 12.001 1.42 0.77
cant 4.532 | 0.119 3.436 | 0.157 0.038 hood 0.08 | 13.944 0.97 .77 1.72
pwik 0.07 | 17.717 1.13 2.06 153
hood 5.435 | 0.207 4.082 | 0.275 0.069 Empire AP o 31 s . e
pwtk 6.475 | 0.193 5.268 | 0.238 0.044 Empire_RA_P 0.08 T 2316 103 041 0.68
Idoor 4.074 | 1.183 4.477 | 1.076 —0.106 Laplace_R_A 0.39 | 2.041 0.68 0.73 2.71
audi 2112 | 7.661 | 3.396 | 4.765 —2.896 Laplace AP | 015 | 5398 2.57 .00 |
) Laplace R AP | 0.19 | 5.466 2.36 1.24 524
P100, and K80. The performance is as close as 1% on KNL- Laplace RA P | 047 | 2.203 L.67 0.65 3132
.. Brick_R_A 0.64 | 2.381 1.16 1.82 191
MCDRAM, and while it is 20% close the best method on Errrll;ire_R_A 0.43 5.034 1.09 1.06 1.11
2 Empirc_A_P 0.30 | 8.463 3.60 1.05 148
Haswell. Moreover, the performance of IFKMEM on P100 is T O e 5 T
the best methods among all the methods in all architectures. Idoor 0.32 | 14.910 .09 .88 1.76
. del 24 0.41 3.086 A 1.12
KKMEM obtains best performance on 13, 7, 5, 15 and 14 SRl D 531 531 . =
multiplications on KNL-DDR, KNL-MCDRAM, Haswell, channel 043 | 7.054 1A =0
. Brick_AP 049 | 7.954 0.95 154
Pascal, K80, respectively. cagels 156 | 2.660 1.86
Bump 0.88 | 13.126 1.58
audi 131 | 12345 154
V. CONCLUSION diclFilterV3real | 1.80 | 9.679 1.85
we thread-scalable Geomean: 5.25 1.36 1.22 2.43

described performance-portable,
SPGEMM kernel for highly threaded architectures. We
conclude by answering the primary question we started
with - “How much performance will be sacrificed for
portability?”. We conclude that we do not sacrifice much
in terms of performance on highly-threaded architectures.
This is demonstrated by the experiments comparing our

portable method against 5 native methods on GPUs, and 2
native methods on KNLs. Our SPGEMM kernel is also the
most robust among publicly available codes whereas we
see several failures with other kernels with the exception of
cuSPARSE. It is possible to adapt our algorithm in a native
method and improve it with architecture specific techniques.

Table VII: The effect of the compression on hash insertions and memory
requirements. Hashmaps would not need Values (Figure 2b) without
compression. The accumulator would require 3 parallel arrays, 2 of which
must be at least MAXRF. This number is rounded up to closest power of 2
for faster hash calculations for Begins.

Original Compressed Reduction
Max Acc. Max Acc.

row size size row size size nnzpg #ins. Mem.

hugebubbles20 9 34 9 43 0.83 [0.83 1.26
Laplace_A_P 36 136 36 172 0.93 | 0.93 1.26
Europe 44 152 35 169 0.63 0.64 1.11
Brick_AP 125 378 93 407 0.61 0.61 1.08
Laplace_R_A 252 760 184 808 0.72 | 0.72 1.06
delaunay_n24 280 1,072 194 838 0.48 [047 0.78
channel 324 1,160 240 976 0.52 [0.52 0.84
Laplace_RA_P 349 1,210 344 1,544 0.93 0.94 1.28
Laplace_R_AP 354 1,220 349 1,559 0.97 [0.98 1.28
2cubes_sphere 544 2,112 342 1,538 0.48 [0.48 0.73
offshore 562 2,148 380 1,652 0.61 0.61 0.77
cagel2 989 3,002 678 3,058 0.75 | 0.74 1.02
Empire_A_P 999 3,022 275 1,337 0.57 [0.55 0.44
Brick_R_AP 1,331 4,710 1,028 5,132 0.72 0.74 1.09
Brick_RA_P 1,331 4,710 907 3,745 0.61 | 0.65 0.80
cagel5 1,997 6,042 1,555 6,713 0.80 [0.80 111
filter3D 3,340 10,776 2,103 10, 405 0.56 0.54 0.97
Brick_R_A 3,375 10, 846 1,199 5,645 0.35 [0.35 0.52
hood 3,871 11,838 609 2,851 0.13 | 0.13 0.24
Idoor 4,165 16,522 686 3,082 0.12 0.12 0.19
cant 5,913 20,018 698 3,118 0.13 [0.12 0.16
pwtk 8,474 33,332 838 3,538 0.09 [0.09 0.11
Empire_RA_P 8, 800 33,984 275 1,337 0.57 0.59 0.04
Empire_R_AP 8,800 33,984 275 1,337 0.63 | 0.63 0.04
Bump 9,370 35,124 1,626 6, 926 0.17 | 0.17 0.20
dielFilterV3real 26,163 85,094 6,810 28,622 0.24 0.23 0.34
audi 32,985 | 131,506 4,764 22,484 0.15 [0.14 0.17
webbase 116,179 | 363,430 31,251 126, 521 0.77 0.25 0.35
Empire_R_A 155,460 | 573,064 26,158 | 111,242 0.15 [0.15 0.19
GEOMEAN: 0.43 | 0.41 | 047

Table VIII: Geometric mean of the execution times. Best method is
the geometric mean obtained by choosing the execution time of the best
algorithm (excluding KKMEM) for each instance on each architecture.

KNL-DDR4 | KNL-MCDRAM | Haswell | Pascal K80
Best Method 0.790 0.477 0.362 | 0.342 | 1.673
KKMEM 0.676 0.480 0.455 | 0.328 | 1.084

However, in our experience, there is only small room left
to improve the portable kernel in these two architectures.
We addressed the questions raised in Section I throughout
the paper. We summarize the conclusions here.

o The key to performance portability is to design an
algorithm that relies on thread scalable data structures,
uses memory efficiently and maps correctly to the
hierarchical parallelism. The data structures and com-
pression technique play a major role in performance
and robustness.

« Designing for application use cases such as the reuse
results in significantly better performance than past
methods.

Acknowledgements: We thank Grey Ballard, Erik Boman,
Karen Devine, Carter Edwards and Simon Hammond for
helpful discussions, and test bed program at Sandia National
Laboratories for supplying the hardware used in this paper.
Sandia National Laboratories is a multi-program laboratory
managed and operated by Sandia Corporation, a wholly
owned subsidiary of Lockheed Martin Corporation, for the
U.S. Dept. of Energy’s National Nuclear Security Adminis-
tration (NNSA) under contract DE-AC04-94AL85000.

REFERENCES

[1] H. C. Edwards, C. R. Trott, and D. Sunderland, “Kokkos: Enabling
manycore performance portability through polymorphic memory ac-
cess patterns,” JPDC vol. 74, no. 12, pp. 3202-3216, 2014.

[2]
(3]

(4]

(3]

(6]

(71

(8]

(9]
[10]
[11]
[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

J. Beyer and J. Larkin, “Targeting GPUs with OpenMP 4.5 device
directives,” in Proceedings of the GPU Technology Conference, 2016.
F. G. Gustavson, “Two fast algorithms for sparse matrices: Multiplica-
tion and permuted transposition,” ACM Transactions on Mathematical
Software (TOMS), vol. 4, no. 3, pp. 250-269, 1978.

M. M. A. Patwary, N. R. Satish, N. Sundaram, J. Park, M. J.
Anderson, S. G. Vadlamudi, D. Das, S. G. Pudov, V. O. Pirogov,
and P. Dubey, “Parallel efficient sparse matrix-matrix multiplication
on multicore platforms,” in High Performance Computing. Springer,
2015, pp. 48-57.

Intel, “Intel Math Kernel Library,” 2007.

J. Demouth, “Sparse matrix-matrix multiplication on the GPU,” in
Proceedings of the GPU Technology Conference, 2012.

W. Liu and B. Vinter, “An efficient GPU general sparse matrix-matrix
multiplication for irregular data,” in 2014 IEEE 28th IPDPS. 1EEE,
2014, pp. 370-381.

F. Gremse, A. Hofter, L. O. Schwen, F. Kiessling, and U. Naumann,
“GPU-accelerated sparse matrix-matrix multiplication by iterative
row merging,” SIAM Journal on Scientific Computing, vol. 37, no. 1,
pp. C54-C71, 2015.

S. Dalton, L. Olson, and N. Bell, “Optimizing sparse matrix-matrix
multiplication for the GPU,” ACM Transactions on Mathematical
Software (TOMS), vol. 41, no. 4, p. 25, 2015.

K. Rupp, F. Rudolf, and J. Weinbub, “ViennaCL - A High Level Lin-
ear Algebra Library for GPUs and Multi-Core CPUs,” in Intl. Work-
shop on GPUs and Scientific Applications, 2010, pp. 51-56.

M. Naumov, L. Chien, P. Vandermersch, and U. Kapasi, “Cusparse
library,” in GPU Technology Conference, 2010.

“The Trilinos project.” [Online]. Available: https://trilinos.org

A. Bulug¢ and J. R. Gilbert, “The Combinatorial BLAS: Design,
implementation, and applications,” International Journal of High
Performance Computing Applications, 2011.

A. Azad, G. Ballard, A. Buluc, J. Demmel, L. Grigori, O. Schwartz,
S. Toledo, and S. Williams, “Exploiting multiple levels of par-
allelism in sparse matrix-matrix multiplication,” arXiv preprint
arXiv:1510.00844.

K. Akbudak and C. Aykanat, “Simultaneous input and output matrix
partitioning for outer-product—parallel sparse matrix-matrix multipli-
cation,” SIAM Journal on Scientific Computing, vol. 36, no. 5, pp.
C568-C590, 2014.

G. Ballard, A. Druinsky, N. Knight, and O. Schwartz, “Hypergraph
partitioning for sparse matrix-matrix multiplication,” arXiv preprint
arXiv:1603.05627, 2016.

E. Cohen, “Structure prediction and computation of sparse matrix
products,” Journal of Combinatorial Optimization, vol. 2, no. 4, pp.
307-332, 1998.

M. Deveci, E. G. Boman, and S. Rajamanickam, “Sparse matrix-
matrix multiplication for modern architectures.” in SIAM Workshop
on Combinatorial Scientific Computing (CSC16). 1EEE, 2016.

J. Gaidamour, J. Hu, C. Siefert, and R. Tuminaro, “Design consid-
erations for a flexible multigrid preconditioning library,” Scientific
Programming, vol. 20, no. 3, pp. 223-239, 2012.

M. Deveci, E. G. Boman, K. D. Devine, and S. Rajamanickam,
“Parallel graph coloring for manycore architectures,” in 2016 30th
IEEE IPDPS, May 2016, pp. 892-901.

J. Willcock and A. Lumsdaine, “Accelerating sparse matrix com-
putations via data compression,” 20th international conference on
Supercomputing. ACM, 2006, pp. 307-316.

A. C. Gilbert and K. Levchenko, “Compressing network graphs,”
LinkKDD workshop at the 10th ACM Conf. on KDD, vol. 124, 2004.
K. Kourtis, V. Karakasis, G. Goumas, and N. Koziris, “CSX: an
extended compression format for SpMV on shared memory systems,”
in ACM SIGPLAN Notices, vol. 46, no. 8. ACM, 2011, pp. 247-256.
M. Deveci, K. Kaya, and U. V. Catalyurek, “Hypergraph sparsifica-
tion and its application to partitioning,” in 2013 42nd International
Conference on Parallel Processing. 1EEE, 2013, pp. 200-209.

T. A. Davis and Y. Hu, “The University of Florida sparse matrix
collection,” ACM Transactions on Mathematical Software (TOMS),
vol. 38, no. 1, p. 1, 2011.

