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Goal: investigate chemistries to degrade
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organophosphorous compounds in water free
environments

Methanolysis of organophosphates is accelerated by
La-based catalysts

Billion-fold Acceleration of the
Methanolysis of Paraoxon Promoted
by La3* complexes

La 3* catechol-functionalized POPs
show accelerated activity towards

methanolysis
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RE-DOBDC platform based on a building block akin to bty
prototypical Zr-hexanuclear cluster

Proof-of-concept prototype structure Single-crystal X-ray diffraction

Tetragonal, 3D framework
PANC

a=b=15.5567 A

c=21.334 A

a=p=y=90° = V= 5163.06 A3

¥ DMF/H,0/HNO;

115°C, 2 days

Octahedral cages of ~ 14 A diameter, C

accessible via triangular windows of ~ 5.5 A
M= Eu, Nd, Yb, Y, Tb 0




Simulants vs. CWAs: striking the balance between
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Increase in Correlation to Live Agent?
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 The molecular structure/reactivity of simulants vs. Chemical Warfare Agents (CWAs) is
different

* Tests performed on CWAs are not trivial and conducted only at authorized facilities

e Simulants allow screening of materials

This study aims to identify the most appropriate simulants that correlate
best with the methanolysis of GB




Materials downselection to probe the effect of

metal site and linker functional groups

EuDOBDC UiO-66

UiO-66-DOBDC
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Sample Surface area, m?/g
EuDOBDC UiO-66 700
UiO-66-DOBDC 550
YDOBDC 710
UiO-66 1667




Structural characteristics in UiO-66 vs.

REDOBDC

EuDOBDC

UiO-66
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Simulated IR spectra: very good
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agreement with experimental results
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Effect of ligand
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Simulated IR spectra: very good
agreement with experimental results
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Simulated IR spectra: very good ) e,
agreement with experimental results

Effect of metal
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Representative 3P NMR plot for DECP ) i
degradation in MeOH

Reactant

31p chemical Shift (ppm)




Room temperature DECP methanolysis: the )
highest activity is primarily dependent on the
metal identity
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DECP methanolysis occurs via a catalytic
process

Sandia
II'] National

Laboratories

/ DECP
e The breakdown product for DECP is

diethyl methyl phosphate, DEMP, formed
from the cleavage of the P—Cl bond of
DECP
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.  DEMP product identity confirmed by 'H-
DEMP coupled 3P NMR

| / * Octet multiplet shows seven different H-
I 31p interactions, associated with the
i nearest H atoms in the vicinity of the P

T T T - T - | . T - | atom




UiO-66 based degradation of DMNP, DFP and GB in 7
MeOH is significantly slower as compared to DECP
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* The reactivity of GB, DMNP and DFP runs in parallel, indicating related
conversion mechanisms

* The methanolysis of GB is faster than that of both DFP and DMNP at room
temperature

* DMNP and DFP are both feasible simulants to mimic the reactivity of GB
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Computational Methods i i,
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Gas Phase Cluster DFT:

*  Clusters generated from VASP optimized structure

e Clusters optimized with MOG6-L functional, def2-SVP basis set for all non-metal atoms and SDD ECP and
psuedopotential for metal atoms

*  Model ”idealized” ligands as formate ligands
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Structural defects increase the binding energy of
DECP, DFP, and GB 2-fold
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* Yisable to bind substrates at 8 (fully)
coordinated sites more favorably than
Zr, but when defects are introduced
the 2 metal atoms are roughly equal
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* The built-in ligand-twist defect of Y-
DOBDC (defect 2) is competitive with
the engineered missing linker defect
(defect 1)
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All substrates preferentially bind at the O(sp2)

atom
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O(sp3)

O(sp2)

Binding geometries on ideal Zr sites for (a) DECP, (b) DFP, and (¢) GB via the O(sp?)
atom (top) and the O(sp?) atom (bottom).
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Significant differences in the chemistry of chloro- vs. fluorophosphates

Zr (in UiO-66 and UiO-66-DOBDC) presents a higher catalytic activity towards
the methanolysis of DECP than Y and Eu DOBDC analogues

This appears to be directly correlated with metal identity and oxidation state

DFP and DMNP are appropriate choices to assess the reactivity of GB in MeOH.

* Ongoing studies investigate structural defects and constraints in the parameters
for molecular simulations, and their combined effect on guest binding
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