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Motivation: Hypersonic Reentry Simulation
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SPARC Compressible CFD Code ) .

= State-of-the-art hypersonic CFD on next-gen platforms
= Production: hybrid structured-unstructured finite volume methods
= R&D: high order unstructured discontinuous collocation element methods

= Perfect and thermo-chemical non-equilibrium gas models
= RANS and hybrid RANS-LES turbulence models

= Enabling technologies
= Scalable solvers

= Embedded geometry & meshing
= Embedded UQ and model calibration

= Credibility
= Validation against wind tunnel and flight test data
= Visibility and peer review by external hypersonics community

= Software quality
= Rigorous regression, V&V and performance testing
= Software design review and code review culture



Performance Portability - Kokkos — @&

m m Applications & Libraries m

Kokkos 2.0

performance portability for C++ applications

Multi-Core Many-Core APU CPU+GPU




Performance Portability UL

The problem on Heterogenous Architectures (e.g. ATS-2)
« C++ virtual functions (and function pointers) are not (easily) portable

* Answers?
1. Kokkos support for portable virtual functions
2. C++ standard support for portable virtual functions
3. Run-time->compile-time polymorphism

SPARC has taken the ‘run-time->compile-time polymorphism’ approach

With this approach, we needed a mechanism to dispatch functions
dynamically (run-time) or statically (compile-time)

Dynamic dispatch is possible on GPUs but requires the object be created
for each thread or team on the GPU




Performance Portability UL

template <bool is dyn, typename Type=MyClass>
struct Dispatcher {

static void my fune (const MyClasss obj)l |

gtatic cast<const Type*>(cbj)—>Typecs imy funcT () ;
i

Now we need a mechanism to convert run-time polymorphism to
compile-time polymorphism so we can dispatch functions statically

Enter the rt2ct chain...
A “Create” chain is used to piece together compile-time instantiations of classes
The end of the chain (which is all compile-time) is handed to a Kokkos kernel

In this way, we can arbitrarily handle combinations of physics models
(GasModels, FluxFunctions, BoundaryConditions) for (efficient) execution

on GPUs ]




Threaded Assembly/Solves ) i,

Threaded Assembly on Structured Grids: MeshTraverserKernel

MeshTraverserKernel allows a physics code (think flux/flux Jacobian
computation and assembly) to operate on a structured (i, j, k) block
- implements a multi-dimensional range policy for Kokkos: :parallel for
- provides i, 7, k line traversal (CPU/KNL) and ‘tile’ traversal (GPU)

class PhysicsKernel
public MeshTraverserKernel<PhysicsKernel>

I /% ..o %/ };

Array4D node-level multi-dimensional data for a structured block
- wraps a Kokkos: :DualView

Graph coloring (red-black) to avoid atomics during assembly

Threaded solves provided through Tpetra/Belos (point-implicit, GMRES)
- OpenMP used for SPARC's native point-implicit and line-implicit solvers

Net result of FY16 work: SPARC is running, end-to-end,

(equation assembly + solve) on the GPU ;




Performance Portability ) S

= SPARC is running on all testbed, capacity & capability platforms
available to SNL, notably:
Knights Landing (KNL) testbed

Power8+GPU testbed
Sandy Bridge & Broadwell CPU-based ‘commodity clusters’

ATS-1 — Trinity (both Haswell and KNL partitions)
ATS-2 — Power8+P100 ‘early access’ system




SPARC vs Sierra/Aero Performance @&,

For the Generic Reentry Vehicle use-case...

Investigation of CPU-only, MPIl-only performance

[ GCode | Grid/Noden | EA t/a o] | Spoedup | ES t/a |l | Speedup || T/5 | [ Spesdup |

Sierra/Aero 4M cells/l node | 115 1.00 x 1.00 x | 2.56 1.00 x
SPARC (Str) | 4M cells/Inode | 0585 | 1.96 x 157 x | 146 | 175 x
SPARC (Uns) | 4M cells/Inode | 0433 | 2.64 x 156 x | 138 | 1.85 x
Sierra/hero 1.00 x 1.00 x [ 2.77sec | 1.00 x
SPARC (Str) 2.44 % 1.66 x [ 1.44sec | 1.93 x
SPARC (Uns) 2.77 % 1.63 x [ 1.43sec | 1.93 x
Sierra/hero 100 x || 151sec | 100 x || 323 sec | L0O x
SPARC (Str) | 256M 2.63 x || 0.829sec | 1.82 x || 150 sec | 2.15 x
SPARC (Uns) 956M mﬂfﬂsfﬁ@ rmdeﬁ @«@ﬁﬁ:’w sec | 328 x || 0.849sec | 1.78 x | 1.46 sm 2.21 x

(EA t/s = Equation Assembly tlme/step ES t/s = Equation Solve time/step; T/S = Total Tlme/Step)

SPARC performing ~2x faster than Sierra/Aero

Parallel efficiency is better than Sierra/Aero

Even higher performance from SPARC for CPU-only systems will
come with continued investment in NGP performance optimization
Structured vs unstructured performance...




SPARC: Strong Scaling Analysis UL

For the heaviest kernel during equation assembly...

Compute Residual: Interior Faces
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SPARC: Strong Scaling Analysis ) .

For one critical MPI communication during equation assembly...

Halo Exchange
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SPARC: Strong Scaling Analysis UL

For the linear equation solve...

Linear Equation Solver
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SPARC: Weak Scaling Analysis UL

For the heaviest kernel during equation assembly...

Compute Residual: Interior Faces
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SPARC: Weak Scaling Analysis UL

For one critical MPI communication during equation assembly...

7 Halo Exchange

- Problematic MPI behavior on P8/P100 systems...
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SPARC: Weak Scaling Analysis UL

For the linear equation solve...

Linear Equation Solver
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Summary

= SPARC is being developed as a performance portable
compressible CFD code to address the challenges posed by
next-generation computing platforms

= ‘The good’ for performance portability and SPARC:
= CPU-only, MPI-only performance is ~2x faster than the reference code
= Linear solves are ~2x faster for threaded KNL than CPU
=  Most significant assembly kernels are ~2x faster for P100 than CPU

= Future work for performance portability and SPARC:

= Improve assembly performance for KNL -> vectorization
= Hope for the best for halo exchange on P9/Volta (and reduce our MPI comm)
= Work on solver performance for GPUs
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