SAND2017-8900C

Performance Portability in SPARC — Sandia’s
Hypersonic CFD Code for Next-Generation Platforms

23 Aug 2017 — DOE COE Performance Portability Meeting

Micah Howard, SNL, Aerosciences Department
& the SPARC Development Team

U.8. DEPARTMENT OF V VA =
E"ERGY .v" Sandia National Laboratories is a multimission laboratory managed and operated by National Technology and Engineering Solutions of Sandia, LLC., a wholly owned subsidiary
Natione! Nuciear Securliy Administration

of Honeywell International, Inc., for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-NA-0003525. SAND NO. 2017-5964 C

Motivation: Hypersonic Reentry Simulation

Mach

10
9
8
7
6
Unsteady, 5
turbulent g
flow 2
1
0
Flowfield
radiation Surface ablation & in-depth

decomposition

Gas-phase thermochemical
non-equilibrium

— Atmospheric
variations

Maneuvering RVs: Laminar/transitional/turbulent
Shock/shock & boundary layer Gas-surface
shock/boundary chemistry
layer interaction

Random vibrational loading

SPARC Compressible CFD Code) .

= State-of-the-art hypersonic CFD on next-gen platforms
= Production: hybrid structured-unstructured finite volume methods
= R&D: high order unstructured discontinuous collocation element methods

= Perfect and thermo-chemical non-equilibrium gas models
= RANS and hybrid RANS-LES turbulence models

= Enabling technologies
= Scalable solvers

= Embedded geometry & meshing
= Embedded UQ and model calibration

= Credibility
= Validation against wind tunnel and flight test data
= Visibility and peer review by external hypersonics community

= Software quality
= Rigorous regression, V&V and performance testing
= Software design review and code review culture

Performance Portability - Kokkos — @&

m m Applications & Libraries m

Kokkos 2.0

performance portability for C++ applications

Multi-Core Many-Core APU CPU+GPU

Performance Portability UL

The problem on Heterogenous Architectures (e.g. ATS-2)
« C++ virtual functions (and function pointers) are not (easily) portable

* Answers?
1. Kokkos support for portable virtual functions
2. C++ standard support for portable virtual functions
3. Run-time->compile-time polymorphism

SPARC has taken the ‘run-time->compile-time polymorphism’ approach

With this approach, we needed a mechanism to dispatch functions
dynamically (run-time) or statically (compile-time)

Dynamic dispatch is possible on GPUs but requires the object be created
for each thread or team on the GPU

Performance Portability UL

template <bool is dyn, typename Type=MyClass>
struct Dispatcher {

static void my fune (const MyClasss obj)l |

gtatic cast<const Type*>(cbj)—>Typecs imy funcT () ;
i

Now we need a mechanism to convert run-time polymorphism to
compile-time polymorphism so we can dispatch functions statically

Enter the rt2ct chain...
A “Create” chain is used to piece together compile-time instantiations of classes
The end of the chain (which is all compile-time) is handed to a Kokkos kernel

In this way, we can arbitrarily handle combinations of physics models
(GasModels, FluxFunctions, BoundaryConditions) for (efficient) execution

on GPUs]

Threaded Assembly/Solves) i,

Threaded Assembly on Structured Grids: MeshTraverserKernel

MeshTraverserKernel allows a physics code (think flux/flux Jacobian
computation and assembly) to operate on a structured (i, j, k) block
- implements a multi-dimensional range policy for Kokkos: :parallel for
- provides i, 7, k line traversal (CPU/KNL) and ‘tile’ traversal (GPU)

class PhysicsKernel
public MeshTraverserKernel<PhysicsKernel>

I /% ..o %/ };

Array4D node-level multi-dimensional data for a structured block
- wraps a Kokkos: :DualView

Graph coloring (red-black) to avoid atomics during assembly

Threaded solves provided through Tpetra/Belos (point-implicit, GMRES)
- OpenMP used for SPARC's native point-implicit and line-implicit solvers

Net result of FY16 work: SPARC is running, end-to-end,

(equation assembly + solve) on the GPU ;

Performance Portability) S

= SPARC is running on all testbed, capacity & capability platforms
available to SNL, notably:
Knights Landing (KNL) testbed

Power8+GPU testbed
Sandy Bridge & Broadwell CPU-based ‘commodity clusters’

ATS-1 — Trinity (both Haswell and KNL partitions)
ATS-2 — Power8+P100 ‘early access’ system

SPARC vs Sierra/Aero Performance @&,

For the Generic Reentry Vehicle use-case...

Investigation of CPU-only, MPIl-only performance

[GCode | Grid/Noden | EA t/a o] | Spoedup | ES t/a |l | Speedup || T/5 | [Spesdup |

Sierra/Aero 4M cells/l node | 115 1.00 x 1.00 x | 2.56 1.00 x
SPARC (Str) | 4M cells/Inode | 0585 | 1.96 x 157 x | 146 | 175 x
SPARC (Uns) | 4M cells/Inode | 0433 | 2.64 x 156 x | 138 | 1.85 x
Sierra/hero 1.00 x 1.00 x [2.77sec | 1.00 x
SPARC (Str) 2.44 % 1.66 x [1.44sec | 1.93 x
SPARC (Uns) 2.77 % 1.63 x [1.43sec | 1.93 x
Sierra/hero 100 x || 151sec | 100 x || 323 sec | L0O x
SPARC (Str) | 256M 2.63 x || 0.829sec | 1.82 x || 150 sec | 2.15 x
SPARC (Uns) 956M mﬂfﬂsfﬁ@ rmdeﬁ @«@ﬁﬁ:’w sec | 328 x || 0.849sec | 1.78 x | 1.46 sm 2.21 x

(EA t/s = Equation Assembly tlme/step ES t/s = Equation Solve time/step; T/S = Total Tlme/Step)

SPARC performing ~2x faster than Sierra/Aero

Parallel efficiency is better than Sierra/Aero

Even higher performance from SPARC for CPU-only systems will
come with continued investment in NGP performance optimization
Structured vs unstructured performance...

SPARC: Strong Scaling Analysis UL

For the heaviest kernel during equation assembly...

Compute Residual: Interior Faces

Al e e — p—— | ——— e [——— ——— I ——— pw——
: : : : 5 %% Broadwell 32x1 str

@® Haswell 32x1 str
EHE KNL 16x16 str
*—%& KNL 32x8 str
A—A KNL 64x1 str
*o
-V

‘n
-~ KNL 64x4 str
. Q P100 str
First... g ________________________________ ——— —— —|
lower = < - Threaded KNL >1.5x faster than MPI-only KNL
faster E . T - Threading on KNL is important
& .§ : : : |
= 5 : : NN\ : : - HSW/BDW 1.25-1.5x faster than
this is a s —2 - o A N . v threaded KNL
o § § § : AN ; - Higher KNL assembly performance
|092 scale GE) = | 5 05 s 135 o s 5 424 e 553308 o5 oh SR NG 4 s may come from SIMD vectorization
= : ' ' 5 : ~ - Vectorization a FY18 deliverable
AR S (0 SRS SO SO S S 2 RN]

- P100 GPUs 1.5-2x faster than HSW/BDW | & .

—6[| - Higher GPU performance still possible TR : *
v ™ ® o AV &> \/,ch ’f)b

Number of Compute Nodes or GPUs

10

SPARC: Strong Scaling Analysis) .

For one critical MPI communication during equation assembly...

Halo Exchange

! ! ! %;*ﬁlf' Broadvxllell 32xllstr
@® Haswell 32x1 str
—2F I KNL 16x16 str
*—k KNL 32x8 str

w A—A KNL 64x1 str

> 73 ®-@ KNL 64x4 str

o V¥ P100 str

GE) : x . ; :

ﬁ TAp - Something is amiss with GPU-GPU MPI on P8/P100 systems

S - Apparently this will be fixed with P9/Volta?

2 _sl..a N U T e e o o

=}

O

L

B =B TS OMANNG -

()

£

|_

E RS- | RS SRR PRSP SOOI . -
- Halo exchange for CPU good, KNL okay \\\ j/’/
- Higher performance for low rank/high thread count KNL | * :

- i i i i | | |
Vv ™ Co) ©) X So) ©
NS O

Number of Compute Nodes or GPUs

11

SPARC: Strong Scaling Analysis UL

For the linear equation solve...

Linear Equation Solver

Broadwell 32x1 str

Haswell 32x1 str

KNL 16x16 str

KNL 32x8 str

KNL 64x1 str i
KNL 64x4 str

s
oo
OO
*—k
A4
oo

1f- AN G o 22l 22 2 o -1 - Solves on threaded KNL ~2x faster than
5 5 ~ 5 5 - | HSW/BDW
- Higher performance on KNL still possible
with recent compact BLAS work by the
. . . PN, .| KokkosKernels team
1L LN | - Higher performance at scale for low
: : : \ ' | rank/high thread count KNL
- Superlinear behavior a DDR/HBM effect

log, Time per Equation Assembly [s]

—3 || - GPU-based solves not shown
- GPU-based solver performance analysis
and optimization investment needed

1V ™ ® '\«b ,,)’1/ >

Number of Compute Nodes or GPUs

12

SPARC: Weak Scaling Analysis UL

For the heaviest kernel during equation assembly...

Compute Residual: Interior Faces

0.0 i T
— Ah— —h— + —A
T 5 e oo swm s cmmom s s sl s s oman 500 s 135 s 53 o s 55 s 553 e .
5>‘ - Similar trend as S.S.: Threaded KNL >1.5x faster
Recall... £ - Again, threading on KNL is important
() ;
lower = 2 —10} . 9 |
faster S : : 5 - HSW/BDW 1.25-1.5x faster than threaded KNL
& '§ o— /. - Again, vectorization may help
L T 15 ;’_;_wmﬁ_.&_fiii’i’if ___________ A
this is a . ”““j’““ | |
Q Y% Broadwell 32x1 str
Iogz Scale QE) @@ Haswell 32x1 str
E —20L B KNL 16x16 str
4 a *—#* KNL 32x8 str
S A—A KNL 64x1 str
: : : @@ KNL 64x4 str
25l . . |V P100 str
- P100 GPUs 1. 5 2x faster than HSW/BDW ,
«, Qa v v
© <,>'\o

Number of Compute Nodes or GPUs

13
-

SPARC: Weak Scaling Analysis UL

For one critical MPI communication during equation assembly...

7 Halo Exchange

- Problematic MPI behavior on P8/P100 systems...

|
N

T

i

|
w

T

i

Broadwell 32x1 str
Haswell 32x1 str
KNL 16x16 str

[=
E-E
A %k KNL32x8str | ’
A—A KNL 64x1 str
: @@ KNL 64x4 str : —
5k V-V P100 str e
B s UNN ot i U ST PRI S]

log, Time per Equation Assembly [s]

: :) - Halo exchange for CPU good, KNL okay
7 & A - Strong scaling on KNL for halo exchange was okay

: : - Weak scaling on KNL for halo exchange needs investigation
i i ;]

N > & Vv
© <,3\/

Number of Compute Nodes or GPUs

14

SPARC: Weak Scaling Analysis UL

For the linear equation solve...

Linear Equation Solver

0.5 — -------------------------- - Solves on threaded KNL ~2x faster than HSW/BDW
: .| - Higher performance at scale for low rank/high thread count KNL

Broadwell 32x1 str

-1.0 —--¥/ ----------- P o = <2 s e | o e Haswell 32x1 str

KNL 16x16 str

logs Time per Equation Assembly [s]

[|

*—& KNL 32x8 str
A—A KNL 64x1 str
@@ KNL 64x4 str

] S RN R T —

Number of Compute Nodes or GPUs

15

Summary

= SPARC is being developed as a performance portable
compressible CFD code to address the challenges posed by
next-generation computing platforms

= ‘The good’ for performance portability and SPARC:
= CPU-only, MPI-only performance is ~2x faster than the reference code
= Linear solves are ~2x faster for threaded KNL than CPU
= Most significant assembly kernels are ~2x faster for P100 than CPU

= Future work for performance portability and SPARC:

= Improve assembly performance for KNL -> vectorization
= Hope for the best for halo exchange on P9/Volta (and reduce our MPI comm)
= Work on solver performance for GPUs

16

