

Demonstration and Evaluation of Hybrid Microalgae Aqueous Conversion Systems for Biofuel Production

4 *Yalin Li^{†,‡}, Shijie Leow^{†,‡,§}, Tao Dong[¶], Nicholas J. Nagle[¶], Eric P. Knoshaug[¶], Lieve M. L.
5 Laurens[¶], Philip T. Pienkos[¶], Jeremy S. Guest[§], Timothy J. Strathmann^{*,†,‡,¶}*

6 †Colorado School of Mines, Department of Civil and Environmental Engineering, 1012 14th Street,
7 Golden, Colorado 80401, USA.

⁸ [†]Engineering Research Center for Re-inventing the Nation's Urban Water Infrastructure
⁹ (ReNUWIt), Colorado School of Mines, 1012 14th Street, Golden, Colorado 80401, USA.

10 \$University of Illinois at Urbana-Champaign, Department of Civil and Environmental
11 Engineering, 205 North Mathews Avenue, Urbana, Illinois 61801, USA.

12 "National Renewable Energy Laboratory, National Bioenergy Center, 15013 Denver West
13 Parkway, Golden, Colorado 80401, USA.

¹⁴ *Corresponding Author: T. Strathmann, E-mail: strthmn@mines.edu, Phone: +1 (303) 384-2226

15 Abstract

16 As an effort to develop affordable and sustainable energy sources, algae-derived biofuels have
17 attracted considerable interest. As use of individual conversion processes targeting a sub-set of
18 biochemical components (e.g., extraction and upgrading of lipids) have been shown to be
19 economically unfeasible, there is a recognized need for integrated conversion systems that can
20 valorize algal feedstocks with varying cell compositions. In this study, two hybrid systems (HBD-

1, HBD-2) are proposed to enable more efficient conversion of all biomass components (lipids, proteins, carbohydrates) by leveraging two complementary systems: direct hydrothermal liquefaction (DHTL) and combined algal processing (CAP). Demonstrative experiments with *Scenedesmus acutus* show a 12.2–34.3% increase in fuel yields relative to individual systems (DHTL, CAP). Subsequent modeling efforts reveal substantial improvements stemming from CAP valorization of carbohydrates and lipids and DHTL valorization of proteins and CAP residuals. The maximum biomass-to-fuel conversion efficiencies for lipids/proteins/carbohydrate cell components are 79%/34%/75% (HBD-2), and techno-economic analysis suggests a 3.2–62.1% reduction in minimum fuel selling prices (MFSPs). The increased fuel yields and reduced MFSPs highlight the flexibility of the hybrid systems for biofuel production, revealing advantages of these systems for broader ranges of feedstocks, including ones not traditionally considered for fuel production.

33 **Keywords**

34 Algal Biofuel, Hydrothermal Liquefaction (HTL), Combined Algal Processing (CAP),
35 Valorization, Techno-economic Analysis (TEA), Minimum Fuel Selling Price (MFSP)

36 **Introduction**

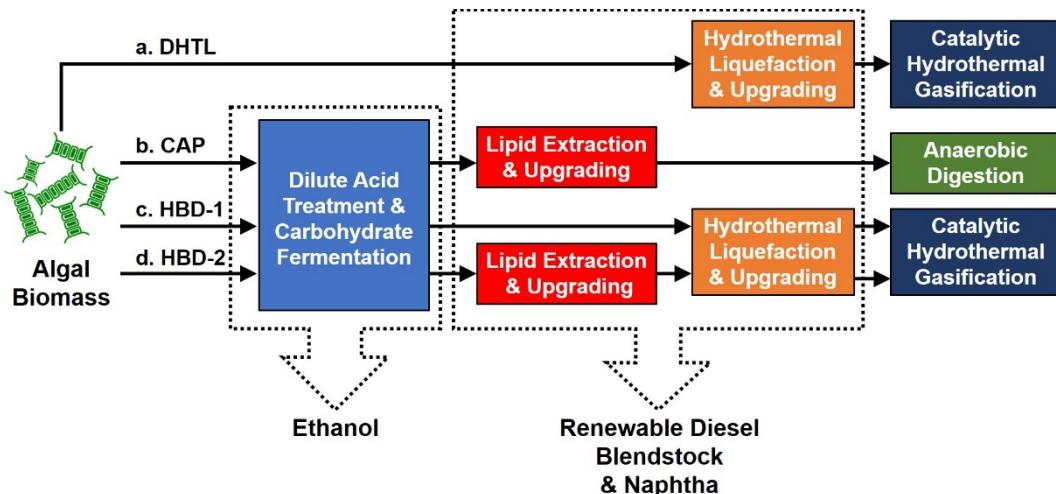
37 With advantages including high productivity, adaptability to various water streams, and potential
38 for being cultivated to a wide range of biochemical compositions,^{1–3} microalgae have attracted
39 strong interest as feedstocks for production of biofuels. Continuous governmental support has led
40 to the development of a portfolio of aqueous downstream processes for valorizing algal biomass.
41 These include, but are not limited to, anaerobic digestion (AD, a table of abbreviations was
42 included as Table S1 in the Supporting Information, SI),⁴ carbohydrate fermentation,^{5,6} lipid

43 extraction/hydrothermal liquefaction (HTL) followed by associated upgrading processes (e.g.,
44 catalytic hydrotreating).⁷⁻¹⁰ However, these individual processes were typically targeted at only a
45 sub-set of biochemical components (lipids, proteins, or carbohydrates only) of the feedstock and
46 neglected others, leading to limited fuel yields and the partial wastage of feedstock energy. For
47 example, carbohydrate fermentation targets only carbohydrates by converting hydrolyzed
48 monomeric sugars to ethanol as the fuel product,¹¹ and lipid extraction followed by upgrading
49 processes only targets the lipid fraction of biomass for the production of hydrocarbon fuels.
50 Admittedly, algal biomass can be engineered (e.g., by gene editing¹²) or cultivated (e.g., by nutrient
51 depletion¹) to promote accumulation of specific components, but this often comes at the expense
52 of slower growth rates, higher feedstock costs, and increased risk of strain contamination.¹³ It
53 follows that opportunities exist to improve fuel productivity by combining component-specific
54 unit processes for more efficient valorization of whole algal biomass and improved economic
55 performance.

56 To this end, two existing systems – direct HTL and upgrading (DHTL)^{14,15} and combined algal
57 processing (CAP)^{6,11} – have been designed to take advantage of complementary macromolecule
58 conversion efficiencies to achieve higher fuel yields. While DHTL produces renewable diesel
59 blendstock (RDB) and naphtha (paraffins primarily in the C₆–C₁₂ range^{11,13}) from direct whole-
60 cell HTL conversion and upgrading, CAP produces ethanol from carbohydrates via fermentation
61 and RDB and naphtha from lipids via extraction and upgrading. However, a recent modeling study
62 by our group¹³ evaluated performance of DHTL and CAP for algae cultivated to a wide range of
63 biochemical compositions, concluding that feedstock properties had a major influence over fuel
64 productivity and process economics of both systems.¹³ While DHTL was found to be more

65 favorable for biomass with high protein content (typically at the early stage of cultivation), CAP
66 could yield more biofuel at lower cost for mid- and late-harvest biomass that was characterized by
67 higher lipid and carbohydrate contents. On the other hand, during HTL, over 80% of the
68 carbohydrates were converted to gaseous (predominantly CO₂) and solid biochar products with
69 minimal fuel potential,^{16,17} while CAP routed the bulk of the protein fraction to AD⁵ that yielded
70 no additional liquid fuel (though this did reduce fuel production costs by providing an internal
71 source of combined heat and power and allows for nutrient recycling).^{4,13}

72 Thus, major improvements are required for both systems to be competitive for a broader range
73 of algal biomass. As DHTL has high to moderate fuel conversions for lipids and proteins, and CAP
74 is recognized as efficient for both lipid and carbohydrate conversion, it follows that hybrid systems
75 combining the two pathways may more efficiently capture the full energy embedded in algal
76 biomass, further reducing the cost of algal biofuel production. In this study, two hybrid systems
77 (HBD-1 and HBD-2; **Figure 1**) are proposed to leverage the complementary advantages of DHTL
78 and CAP to valorize each set of macromolecules. In HBD-1, most carbohydrates are first converted
79 to ethanol via dilute acid treatment and carbohydrate fermentation, and the resulting low-
80 carbohydrate residuals are processed by DHTL. In HBD-2, the low-carbohydrate residuals after
81 fermentation are subjected to lipid extraction and upgrading before subjecting the protein-rich
82 residual fraction to DHTL. Demonstrative experiments were conducted for all systems (DHTL,
83 CAP, HBD-1, and HBD-2) with one batch of *Scenedesmus acutus* biomass. Experimental results
84 were used to inform techno-economic analysis (TEA) and predict the minimum selling prices of
85 biofuels produced from the competing systems. TEA models for algal biofuel production that
86 incorporated biomass cultivation and downstream processing steps¹³ were modified and applied to


87 extend the TEA for algal biomass of varying biochemical composition. Finally, conclusions from
88 these analyses were synthesized to provide recommendations for algal biofuel production and
89 future research needs.

90 **Experimental Methods and Modeling Approaches**

91 **Downstream processes descriptions (Figure 1)**

92 **Pathway a. Direct hydrothermal liquefaction (DHTL)¹⁴**

93 Harvested and dewatered algae (20% algal biomass solids on an ash-free dry weight basis,
94 afdw%) as a pumpable slurry are directly sent to HTL (350°C with 15 min retention time, operating
95 parameters of unit processes were described in detail in Leow et al.¹³), and the resulting biocrude
96 oil (upgradable to liquid fuels), aqueous (rich in organics and nutrients), gaseous (predominantly
97 CO₂^{17,18}), and biochar (solid residuals) products are separated. Biocrude oils are further upgraded
98 to RDB and naphtha (403°C with liquid hourly space velocity at 0.5 hr⁻¹, CoMo/alumina as the
99 catalyst). Energy in aqueous products is reclaimed by catalytic hydrothermal gasification (350°C
100 with liquid hourly space velocity at 2 hr⁻¹, 7.8% Ru/C as the catalyst), which converts the aqueous
101 organics into gaseous products rich in CH₄ and H₂.^{15,18} All gaseous products (mainly CH₄, H₂,
102 CO₂, and other minor amounts of volatile hydrocarbons) from HTL, catalytic hydrothermal
103 gasification, and upgrading processes are collected and used to generate H₂ by steam reforming
104 through an on-site hydrogen plant. Fuel products from DHTL include RDB and naphtha produced
105 from upgraded biocrude oils.

106
107 **Figure 1.** Scheme of four systems compared in this study: (a) direct hydrothermal liquefaction
108 (b) combined algal processing (CAP), and the two hybrid systems HBD-1 and HBD-2
109 (c)–(d). Fuel products include ethanol, renewable diesel blendstock (RDB) and naphtha (C₆–C₁₂
110 paraffins^{11,13}).

111
112 **Pathway b. Combined algal processing (CAP)^{6,11}**

113 Harvested algae are pretreated by H₂SO₄ (2 wt% in demonstrative experiments, 1 wt% in model
114 simulations, 150°C with 5 min retention time) to hydrolyze carbohydrates to monomeric sugars,
115 followed by fermentation (37°C) of the sugars present in the algal hydrolysate to ethanol. The
116 fermented hydrolysate is distilled to recover ethanol and the residual wet biosolids (stillage) are
117 extracted with hexane to collect lipids (5.0 solvent/dry algae weight ratio), which are further
118 processed to RDB and naphtha via degumming by 0.19 wt% phosphoric acid at 110°C,
119 demetallization with 0.1 wt% silica, and bleaching with 0.2 wt% clay. Finally, the remaining
120 biosolids (extracted stillage) are combined and processed by AD (35°C with 25 d retention time)
121 to generate biogas (mostly CH₄ and CO₂). H₂ needed for the upgrading process is purchased from
122 an external source.¹¹ Fuel products from CAP include ethanol from fermentation, and RDB and
123 naphtha produced from upgrading of the extracted lipids.

124 **Pathway c. Hybrid system-1 (HBD-1)**

125 Harvested algae follow the same hydrolysis and fermentation steps as in CAP, but the stillage
126 following distillation is processed by DHTL (as described in Pathway a) instead of lipid extraction.
127 Fuel products from HBD-1 include ethanol from fermentation, and RDB and naphtha produced
128 from upgraded biocrude oils.

129 **Pathway d. Hybrid system-2 (HBD-2)**

130 Harvested algae are hydrolyzed, fermented, and lipids are extracted and upgraded in the same
131 manner as CAP, but extracted stillage is processed by DHTL (as described in Pathway a) in place
132 of AD. It should be noted that as extracted lipids and HTL biocrude oils are of different nature and
133 no experimental or literature data are available on the co-upgrading of lipids and biocrudes, and
134 therefore they are treated separately in this study. Fuel products from HBD-2 include ethanol from
135 fermentation, as well as RDB and naphtha produced from extracted lipids and HTL-derived
136 biocrude oils.

137 **Feedstock characterization and HTL experiments**

138 To evaluate performance of the proposed hybrid systems, one batch of high-lipid, high-
139 carbohydrate *S. acutus* biomass previously evaluated for CAP^{5,6} was first used for experimental
140 demonstration. The systems were later evaluated for algal biomass with varying biochemical
141 compositions using TEA models that incorporated the separate unit processes combined in the
142 hybrid systems. The biomass was cultivated in outdoor flat panel (650 L) photobioreactors in
143 nitrate deplete media. Additional details regarding the biomass can be found elsewhere.^{5,6} Raw *S.*
144 *acutus* biomass and residual biosolids after fermentation (stillage) and fermentation followed by
145 lipid extraction (extracted stillage) generated from the same batch were subjected to HTL. The

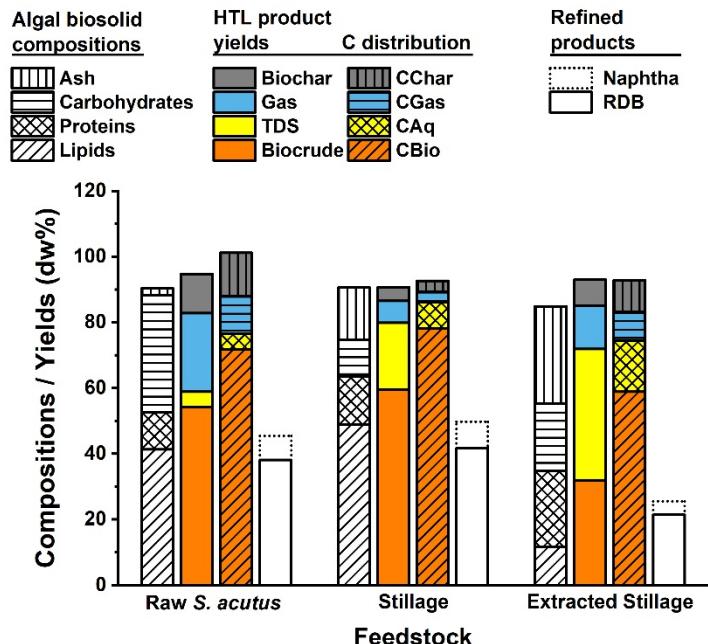
146 biomass was characterized for biochemical (extractable lipid, fatty acid, protein, carbohydrate, and
147 ash) and elemental (C, H, and N) compositions following established procedures,^{16,17} and
148 analytical details were provided in Section S1 in the SI.

149 HTL experiments of the raw *S. acutus* biomass, stillage, and extracted stillage were conducted
150 following an established protocol.¹⁷ Briefly, the reaction was carried out in stainless steel tube
151 reactors (5.93 mL working volume) with algae slurries (20 wt% solid loading, 4 g slurry was
152 loaded for each run) at 300°C for 30 min. After reaction, four products – including a biocrude oil
153 product, aqueous, gaseous, and biochar products – were generated. Aqueous product was poured
154 out of the reactor and dichloromethane was added into the reactor to recover biocrude oil. Both
155 biocrude (in dichloromethane) and aqueous products were filtered with 0.45 µm syringe filters to
156 separate out the biochar product. Biocrude (dichloromethane removed by evaporation) and biochar
157 products were analyzed for elemental (C, H, and N) composition and aqueous product was
158 analyzed for total organic carbon and total nitrogen contents. Additional details on product
159 recovery and analyses are provided in Section S1 in the SI.

160 **Techno-economic analysis (TEA) models for system evaluation**

161 The four different systems described in **Figure 1** were evaluated using models previously
162 developed for DHTL and CAP.¹³ For DHTL and CAP, previous models were directly used without
163 any modifications; for HBD-1, material flows after the fermentation process in CAP were used as
164 inputs for DHTL; for HBD-2, material flows after the lipid extraction and upgrading process were
165 used as inputs for DHTL. For HBD-1 and HBD-2, costs and fuel yields from relevant DHTL and
166 CAP processes were combined for final results. The models considered costs from all aspects
167 (capital, operating, financing, etc.) for a biorefinery facility (including the algal farm and

168 downstream processing) to calculate the minimum selling prices of the produced fuels in order to
169 achieve a net present value of zero. All costs and prices were expressed in 2011 U.S. dollars to be
170 consistent with previous reports and literature that this study was based upon,^{5,11,13,14} and can be
171 converted to other years as described in literature.¹³ Uncertainty and sensitivity analyses were
172 included in the previous study for the original DHTL and CAP models that this study were based
173 upon.¹³ All systems were evaluated for two scenarios: (a) *S. acutus*-demonstrated scenario where
174 experimental measurements of HTL conversion and CAP were used as inputs for fuel yields; and
175 (b) model-predicted scenario where predictive models were used to evaluate feedstocks with
176 varying biochemical compositions (lipids, proteins, carbohydrates). Predictions for fuel yields
177 were made for all possible combinations of lipid, protein, and carbohydrate contents (i.e., 0–100%
178 lipids, proteins, carbohydrates); but predictions for fuel prices were limited to combinations that
179 were practically achievable and feedstock costs of which could be predicted by a cultivation model
180 introduced previously.¹³ Additional details on the models can be found in Section S2 in the SI.


181 **Results and Discussion**

182 **Feedstock characteristics and experimental HTL yields**

183 Characterization of the raw *S. acutus*, stillage, and extracted stillage showed changes of the algal
184 biosolid properties at different stages of CAP, which resulted in changes in product yields and
185 characteristics, leading to changes in C distribution between products and ultimately different
186 refined fuel yields (**Figure 2**, Tables S2 and S3 in the SI). This supported the close relationship
187 between feedstock properties and HTL outcomes as proposed in previous literature.¹⁷ The raw *S.*
188 *acutus* biomass was characterized by high lipid (41.3 ± 0.3 dw%) and carbohydrate (35.6 ± 0.1 dw%)
189 contents with lower protein (11.4 ± 0.1 dw%) and ash (2.0 ± 0.02 dw%) contents. HTL processing

190 of the biomass resulted in a biocrude yield of 54.3 ± 0.7 dw%, along with 24.0 ± 2.1 dw% of gaseous,
191 11.9 ± 0.4 dw% of biochar, and only 4.6 ± 0.2 dw% of aqueous total dissolved solid products. These
192 findings showed that this particular batch of algae provided high yield of biocrude, though at the
193 same time nearly 40 dw% of the feedstock mass was diverted to gaseous (predominantly $\text{CO}_2^{17,18}$)
194 and biochar products with limited value, indicating a margin for further improvement in
195 conversion efficiency.

196 After fermentation, the majority (73.3%) of the carbohydrates in raw *S. acutus* was converted to
197 ethanol, leaving behind stillage biosolids with much lower carbohydrate content (11.3 ± 0.5 dw%)
198 and comparably higher lipid (48.9 ± 1.6 dw%) and protein (14.5 ± 0.1 dw%) contents. Ash content
199 also increased significantly due to the introduction of acids (H_2SO_4) and the subsequent pH
200 neutralizing step (with the addition of NaOH) before fermentation. As oxygen accounted for nearly
201 half of the carbohydrate ($\text{C}_6\text{H}_{11}\text{O}_5$) component, fermentation of the carbohydrates led to a
202 substantial reduction in feedstock volatile oxygen content (from 30.6 ± 0.1 dw% for raw *S. acutus*
203 to 14.9 ± 1.0 dw% for stillage, Table S2 in the SI), but very minor changes in other elements. This
204 led to a positive change in feedstock higher heating value (HHV), increasing from 26.2 ± 0.1 $\text{MJ}\cdot\text{kg}^{-1}$
205 ¹ for raw *S. acutus* to 29.8 ± 0.5 $\text{MJ}\cdot\text{kg}^{-1}$ for stillage (all HHVs expressed on a dry weight basis).

206

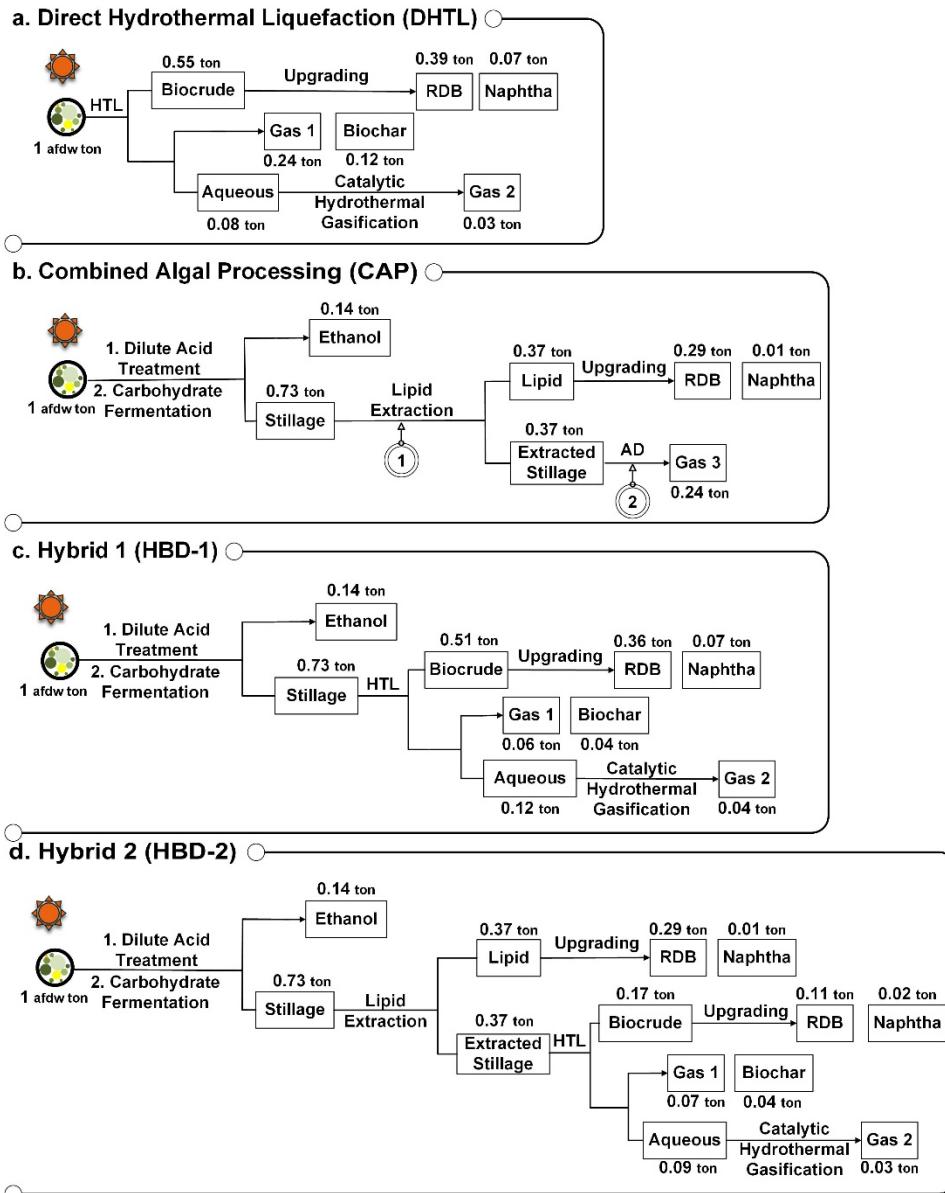
207 **Figure 2.** Biochemical composition of *S. acutus* biosolids (raw *S. acutus*, stillage, and extracted
208 stillage) generated from different stages of CAP (black and white hatched columns), their
209 experimental HTL product yields (colored columns), C distribution between HTL products
210 (colored and hatched columns), and expected refined fuel products (unfilled columns) based on
211 upgrading yields from previous literature.^{13,14} Refined products included renewable diesel
212 blendstock (RDB) and naphtha (C₆–C₁₂ paraffins^{11,13}) that were derived from HTL biocrude oils.
213 TDS referred to total dissolved solids in the aqueous product of HTL. Both compositions and
214 yields were expressed on a dry weight (dw%) basis, and detailed data with associated uncertainties
215 were provided in Tables S2 and S3 in the SI.

216
217 Notably, this carbohydrate conversion step not only transformed a majority of the carbohydrates
218 into fuel products, but also greatly increased the fraction of fatty acids (more amenable to be
219 upgraded to fuel products^{10,11}) in total extractable lipids. The raw *S. acutus* had a fatty acid-to-
220 extractable lipid ratio of 84.4%, and it increased to 96.1% in the carbohydrate-reduced stillage
221 (Table S2 in the SI), likely due to the hydrolysis of some polar fractions (e.g., phosphatidic acid
222 from phospholipids, carbohydrate groups in glycolipids¹⁹), or a reduction on non-lipid co-
223 extractives. As fatty acids are more stable in a hydrothermal environment^{20,21} and result in near-

224 complete conversion to biocrude oils in HTL,¹⁶ the increased fatty acid-to-extractable lipid ratio,
225 together with other changes in biochemical composition, such as increased protein content in the
226 stillage after removing the carbohydrate fraction, was shown to further improve the HTL
227 performance of stillage. Not only did the biocrude yield increase (from 54.3±0.7 dw% for raw *S.*
228 *acutus* to 59.6±0.8 dw% for stillage), but the generated biocrude oil was also of higher energy
229 content, as indicated by the increase in HHV from 38.5±0.1 MJ·kg⁻¹ to 40.9±0.2 MJ·kg⁻¹. Though
230 N content of the stillage biocrude oil (1.9±0.03%) increased from raw *S. acutus*' (1.7±0.03%), the
231 increase was minor and was not expected to greatly affect the upgrading process. Besides biocrude
232 oils, there were evident changes in other product yields. The reduction of carbohydrate content in
233 the stillage also led to considerable reductions in HTL gaseous and biochar product yields; gas
234 yield dropped substantially to 6.6±0.1 dw% and biochar yield dropped to 4.2±0.1 dw% (from
235 24.0±2.1 dw% and 11.9±0.4 dw% for raw *S. acutus*, respectively). In contrast, a much higher total
236 dissolved solid yield (20.3±2.6 dw% vs. 4.6±0.2 dw% for raw *S. acutus*) was observed, mostly
237 due to the introduction of salts during dilute acid treatment. In all, the added carbohydrate
238 conversion processes generated stillage biosolids of higher and improved lipid content, higher
239 protein content, and lower carbohydrate content, thereby yielding a more desirable HTL product
240 distribution.

241 Following lipid extraction in CAP, the extracted stillage biosolids were characterized by much
242 higher protein (23.1±0.7 dw%) and ash (29.6±0.2 dw%) contents due to the removal of a large
243 fraction of both carbohydrates (73.3% removed) and lipids (87.1% removed). This process also
244 led to lower feedstock carbon (40.8±0.1 dw% for extracted stillage vs. 57.9±0.9 dw% for stillage)
245 and hydrogen (5.4±0.01 dw% for extracted stillage vs. 9.0±0.2 dw% for stillage) contents,

246 resulting in a substantial reduction in feedstock HHV, dropping to $17.8 \pm 0.05 \text{ MJ}\cdot\text{kg}^{-1}$ from
247 stillage's $29.8 \pm 0.5 \text{ MJ}\cdot\text{kg}^{-1}$. The evident increase in biocrude N content ($4.6 \pm 0.3\%$) from raw *S.*
248 *acutus* and stillage's was a result of higher protein content of extracted stillage, and was anticipated
249 to decrease the yield of upgraded fuels. In addition, most fatty acids were removed in the solvent
250 extraction process,⁶ and the fatty acid-to-extractable lipid ratio decreased to 69.2%. Consequently,
251 HTL reaction of the extracted stillage yielded $31.9 \pm 0.6 \text{ dw\%}$ biocrude, $40.0 \pm 1.3 \text{ dw\%}$ total
252 dissolved solids (due to the high ash content), $13.2 \pm 0.9 \text{ dw\%}$ gaseous, and $7.9 \pm 0.1 \text{ dw\%}$ biochar
253 yields.


254 As HTL products had different energy values, C distribution between products could be used as
255 a surrogate to evaluate flows of feedstock energy to different products (**Figure 2**). Regardless of
256 the feedstock, majority of the C was transferred to biocrude oil products. This was expected for
257 raw *S. acutus* and stillage, where yields of biocrude oil exceeded 50 dw%, but was particularly
258 notable for extracted stillage. For extracted stillage, yield of biocrude oil was only 31.9 dw%, but
259 it nonetheless contained 58.9% of feedstock carbon. Another noteworthy point was that from raw
260 *S. acutus* to stillage, C distribution to gaseous and biochar products decreased from 11.5% and
261 13.1% to 3.1% and 3.3%, and C distribution to biocrude oil increased from 71.9% to 78.1%,
262 respectively. This again showed the advantage of carbohydrate diversion (to ethanol) prior to HTL
263 – where less energy was “wasted” as undesired products. In all, distribution of C between HTL
264 products confirmed the effectiveness of HTL in transferring majority of feedstock energy in
265 biocrude oil, which can be upgraded into RDB and naphtha using established catalytic
266 hydrotreating processes (**Figure 2**).^{14,15} Based on yields of RDB and naphtha from biocrude oils
267 of similar properties,^{14,15} stillage was expected to have a biomass-to-RDB and naphtha conversion

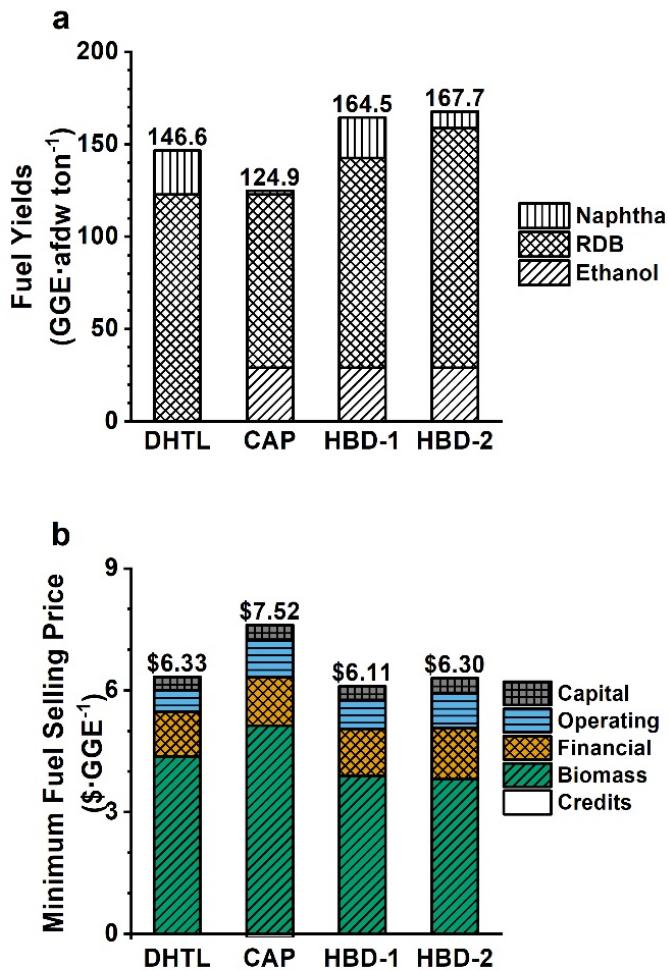
268 efficiency of 41.7 dw% and 8.0 dw%, respectively, resulting in a total HTL conversion efficiency
269 of 49.7 dw%, which was higher than the 45.4 dw% from raw *S. acutus* and the 25.2 dw% from
270 extracted stillage. Collectively, 83.7% of the biocrude oil derived from raw *S. acutus* is expected
271 to be converted into either RDB or naphtha,^{14,15} followed by stillage's 83.4% and extracted
272 stillage's 80.0%, reflecting the impacts of varying biocrude N contents on the final fuel yields. As
273 most of the N in biocrude oil is typically removed in the form of NH₃ during upgrading,^{14,15} the
274 higher biocrude N contents of stillage and extracted stillage (1.9% and 4.6%, respectively,
275 compared with raw *S. acutus*' 1.7%) resulted in the predicted lower biocrude-to-fuel conversion
276 efficiency. It should be noted that the lower biocrude-derived fuel yield of the extracted stillage
277 was due to diversion of lipids in the preceding extraction step, which could be offset by RDB and
278 naphtha generated from the extracted lipids.

279 Assuming a starting feed of 1 afdw ton (U.S. ton) of raw *S. acutus*, product yields were tracked
280 along each system (**Figure 3** and Table S4 in the SI), which were then used to estimate yields of
281 refined liquid fuel products. DHTL yielded 0.55 ton of biocrude oils, which could be upgraded to
282 0.39 ton of RDB and 0.08 ton of naphtha, whereas CAP yielded 0.14 ton of ethanol and 0.37 ton
283 of extracted lipids and could be upgraded to 0.29 ton of RDB and 0.01 ton of naphtha. In
284 comparison, more fuel products could be generated from the hybrid systems. For HBD-1, the
285 diversion of carbohydrates for ethanol production did not obstruct the HTL process. The biocrude
286 yield of 0.51 ton was very close to the 0.55 ton in DHTL, which resulted in similar biocrude-
287 derived fuel (RDB and naphtha) yields (0.43 ton for stillage vs. 0.46 ton for raw *S. acutus*).
288 Additionally, the comparison of CAP and HBD-2 revealed the advantage of applying HTL over
289 processing of the extracted stillage with AD. From the same 0.37 ton of extracted stillage, AD only

290 generated 0.24 ton of biogas (mainly CH₄ and CO₂) which could not be easily stored or transported
291 and was of low market value. In comparison, applying HTL to the same amount of extracted
292 stillage generated an additional 0.17 ton of biocrude oils, and ultimately 0.13 ton of liquid fuels
293 (0.11 ton of RDB and 0.02 ton of naphtha).

294 Overall, **Figure 3** revealed the system-specific product distribution patterns. With the same
295 amount of starting biomass, though CAP generated less RDB and naphtha than DHTL, an
296 additional ethanol product was generated. Therefore, DHTL and CAP were expected to produce
297 similar total fuel (RDB, naphtha, and ethanol) yields on a mass basis, with DHTL slightly higher
298 at 0.46 ton and CAP at 0.43 ton. Both HBD-1 and HBD-2 generated 0.43 ton of RDB and naphtha,
299 close to DHTL's 0.46 ton. However, the slight reduction in RDB and naphtha yields was offset by
300 production of 0.14 ton of ethanol product, resulting in significantly higher total liquid biofuel yield
301 of 0.57 ton for both HBD-1 and HBD-2.

302
303


304 **Figure 3.** Illustration of system and feedstock flows from 1 afdw ton of harvested *S. acutus* through
305 (a) DHTL, (b) CAP, and two systems that integrate DHTL at different stages of CAP (c)–(d).
306 Quantity of products were tracked and labeled in numbers along the process for the experimentally
307 demonstrated scenario, yields of stillage and extracted stillage were expressed on an afdw basis.
308 Mode 1 (before lipid extraction) and 2 (before AD) in (b) indicated the integration point of DHTL
309 and CAP for the two hybrid systems HBD-1 and HBD-2, respectively. RDB referred to renewable
310 diesel blendstock; Gas 1 was gaseous product from HTL (predominantly CO₂); Gas 2 was gaseous
311 product from catalytic hydrothermal gasification of HTL aqueous product (mainly CH₄ and H₂),
312 Gas 3 was gaseous product from anaerobic digestion (mainly CH₄ and CO₂).^{11,14} Detailed product
313 yields with associated uncertainties were provided in Tables S3 and S4 in the SI.

314 ***S. acutus*-demonstrated scenario**

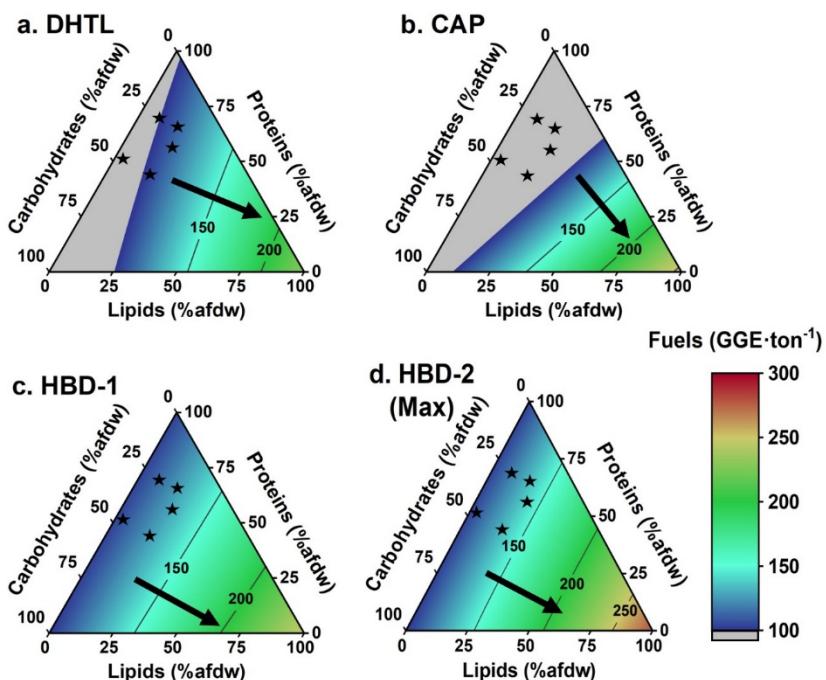
315 To provide a more systematic and practical comparison, experimental data were used as inputs
316 for TEA to obtain the total fuel yields and calculate the associated minimum selling prices of
317 produced biofuels (**Figure 4** and Table S4 in the SI). Similar to the observations in product yields
318 noted in the previous section, the hybrid systems were expected to produce more fuels from the
319 same *S. acutus* batch than DHTL or CAP alone, with HBD-1 generating 164.5 gasoline gallon
320 equivalent per afdw ton of raw *S. acutus* feed (GGE·ton⁻¹) and HBD-2 generating 167.7 GGE·ton⁻¹
321 ¹, which were 12.2% and 14.4% higher than DHTL's 146.6 GGE·ton⁻¹, respectively (**Figure 4a**).
322 Fuel yields for CAP for this particular *S. acutus* composition were lower with 124.9 GGE·ton⁻¹
323 due to the incomplete hydrolysis of carbohydrates and extraction of lipids (Table S4 in the SI), and
324 the complete diversion of extracted stillage to AD, which accounted for nearly 40% of the feed
325 material but would only generate a CH₄ and CO₂-rich biogas stream instead of liquid fuel products.
326 Notably, HBD-1 and HBD-2's fuel yields were 87.2% and 88.9% of the theoretical 188.6 GGE·ton⁻¹
327 ¹ of potential energy in the feed *S. acutus* (estimated by Dulong's equation¹⁷ using elemental
328 composition), which were increased from DHTL's 77.7% and CAP's 66.2%, showing promising
329 improvement for valorization of the *S. acutus* feedstock.

330 Minimum fuel selling prices (MFSPs) for each system were also calculated (**Figure 4b**) based
331 on feedstock cost (specific to each biochemical composition) from a previous study.¹³ HBD-1 had
332 the lowest fuel cost of \$6.11 GGE⁻¹, followed by HBD-2's \$6.30 GGE⁻¹. While DHTL close at
333 \$6.33 GGE⁻¹, CAP's MFSP was comparably higher at \$7.52 GGE⁻¹. Breakdown of the MFSPs
334 showed that for all systems the cost of feedstock biomass remained the largest contribution (>60%
335 of total cost), consistent with previous studies.^{11,13,14} As the total feedstock costs per year were the

336 same for all systems (i.e., the same amount of algal biomass was purchased at the same price for
337 all systems), the differences in $\$ \cdot \text{GGE}^{-1}$ values reflected the differences in total fuel yields. Hence
338 for CAP with lowest fuel yields, $\$5.13 \text{ GGE}^{-1}$ out of the total $\$7.52 \text{ GGE}^{-1}$ was for feedstock
339 acquisition, while only $\$3.82 \text{ GGE}^{-1}$ out of the total $\$6.30 \text{ GGE}^{-1}$ was required for HBD-2 with the
340 highest fuel yields. When considering the process-specific costs of operating and capital, the
341 relatively small contribution (<20% of overall MFSPs for all systems) suggested that while hybrid
342 systems included more unit processes that would have associated costs, these costs could be more
343 than offset by the higher total fuel yields obtained by these added processes. Therefore,
344 opportunities existed for the costlier (with regard to total investment and operating expenses)
345 hybrid systems to be more competitive than DHTL or CAP. In fact, the lowest MFSP of HBD-1
346 showed that though it raised the capital and operating costs by appending more processes, the costs
347 could actually be outweighed by the profits from the added fuel products. Comparing HBD-1 to
348 HBD-2, however, showed that the minor increase in fuel yields from the former ($3.2 \text{ GGE} \cdot \text{ton}^{-1}$)
349 did not offset the additional process costs of this integration strategy. These analyses illustrated
350 the tradeoffs between improved fuel yields and the associated higher capital and operating costs,
351 with the optimal solutions likely dependent on feedstock composition.

352

353 **Figure 4.** Modeled results for *S. acutus*-demonstrated scenario: (a) fuel product yields from 1 afdw
 354 ton of raw *S. acutus*, the total yields were labeled at the top of each column; (b) minimum fuel
 355 selling prices (MFSPs) breakdown for different systems, the overall MFSPs (in 2011 U.S. dollars,
 356 credits included) were labeled at the top of each column; financial costs included taxes and loan
 357 payments; excess electricity generated in CAP was sold to the grid and was counted as a credit
 358 (i.e., negative in value); biomass costs were separated from other operating costs as they were
 359 larger than any other costs. Note that the amount of naphtha produced in CAP in (a) and electricity
 360 credit of CAP in (b) were small and thus appeared to be obscure. Details on cost calculation can
 361 be found elsewhere.¹³

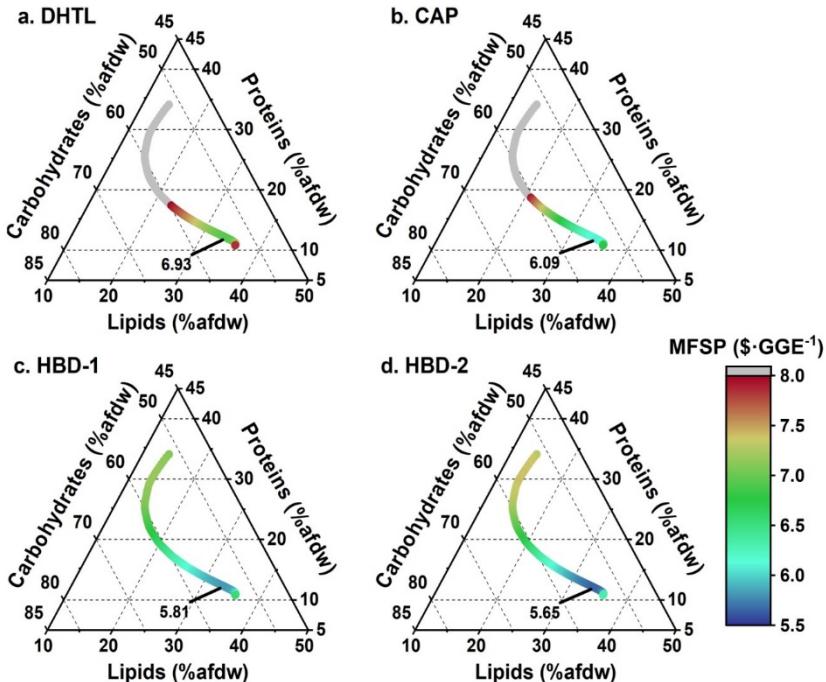

362 **Model-predicted fuel yields**

363 Using TEA models that comprises both cultivation and conversion processes,¹³ yields of the fuel
364 products from algae of varying composition were calculated (**Figure 5**). General trends for fuel
365 yields agreed with expectations where the total yields increased with feedstock lipid contents for
366 all systems, and the fuel productivity generally followed the order of HBD-2 > HBD-1 > DHTL
367 and CAP, except for nearly 100%-lipid feedstocks, where CAP generated slightly more fuels than
368 HBD-1. Both DHTL and CAP had gray areas where total fuel yields were considerably
369 compromised due to the inefficient coupling of feedstock and processes: DHTL was unfavorable
370 in high-carbohydrate regions (bottom left corner of the ternary plot) due to the substantial amount
371 energy diverted to gaseous and biochar products (DHTL only yielded 55.6 GGE·ton⁻¹ for 100%-
372 carbohydrate feedstock); and high-protein species (top corner of the ternary plot) were greatly
373 penalized in CAP due to the complete diversion of protein to AD (no liquid fuels would be
374 generated for 100%-protein feedstock). Comparing fuel yields of HBD-1 and HBD-2, it was shown
375 that fuel yields of the two systems were very close for low-lipid compositions; but the difference
376 increased when shifting to high-lipid compositions (right side of the ternary plot). While HBD-2
377 was predicted to yield a maximum of 279.2 GGE·ton⁻¹ for 100%-lipid feedstocks, HBD-1 only
378 yields 248.8 GGE·ton⁻¹. Though such an extreme feedstock was out of the practical range of
379 cultivation, this nevertheless suggested that HBD-2, which took a more granular fractionation
380 process into account, was more efficient in fuel production for high-lipid feedstocks. Predictions
381 in **Figure 5** also showed that the proposed hybrid systems could be effective strategies for
382 converting algal biomass from non-traditional sources like wastewater treatment facilities. Based
383 on biochemical compositions reported in literature,^{18,22-25} the typical high-protein, high-

384 carbohydrate, but low-lipid properties of wastewater algae resulted in low fuel yields for both
385 DHTL and CAP, where some or all of the predicted fuel yields were $<100 \text{ GGE}\cdot\text{ton}^{-1}$ (star symbols
386 in **Figure 5**). In comparison, for the hybrid systems, all wastewater algae were predicted to yield
387 $>100 \text{ GGE}\cdot\text{ton}^{-1}$ and even close to $150 \text{ GGE}\cdot\text{ton}^{-1}$ for HBD-2. This finding supported the
388 development of hybrid systems to process a broader range of algal feedstocks.

389 When analyzing these systems at the scale of individual unit operations, all above observations
390 could be explained by component-to-fuel conversions of individual processes. Based on the
391 models, HTL-upgrading could convert roughly 65%, 34%, and 16% of the feedstock lipids,
392 proteins, and carbohydrates, respectively, into fuel products, whereas lipids and carbohydrates
393 could be more efficiently converted via lipid extraction-upgrading and fermentation with
394 conversions of 74% and 72%, respectively. Hence, fuel yields for CAP (containing fermentation
395 and lipid extraction-upgrading) were less than DHTL (containing HTL-upgrading) for low-lipid,
396 high-protein feedstocks (left and top corners of the ternary plot), but higher than DHTL for
397 feedstocks with higher lipid contents (right corner of the ternary plot). The hybrid system HBD-1
398 took advantage of the fermentation process, thus marking a significant improvement in
399 carbohydrate conversion from HTL-upgrading's 16% to 72%; and HBD-2 took a step further by
400 adding the lipid extraction-upgrading step prior to HTL-upgrading to make better use of the lipids.
401 Moreover, as unextracted lipids could still be converted to fuels through HTL-upgrading, the lipid-
402 to-fuel conversion could be further improved from 74% (in lipid extraction-upgrading alone) to
403 79%. Therefore, the hybrid systems possessed much greater flexibility in terms of valorizing
404 feedstocks of widely varying composition due to the substantial improvement in component-to-
405 fuel conversions.

406 It should be noted that more work is needed to improve the TEA models for more robust
 407 prediction of conversion process yields based on properties of the algal feedstock, especially for
 408 CAP where fuel yield was over-predicted fuel yields by 16.5%. This deviation stemmed from the
 409 lower-than-expected fermentable carbohydrate hydrolysis ratio (73.3% experimental vs. 90%
 410 modeled) and fatty acid-to-extractable lipid ratio (84.4% experimental vs. 95% modeled). If
 411 experimental values (i.e., 73.3% and 84.4% instead of 90% and 95%, respectively) for these two
 412 parameters were used for process modeling, the difference between modeled and experimental
 413 values for total fuel yield could be narrowed to 5.4%. Therefore, the models should be calibrated
 414 and validated with more experimental results to better guide the development of these aqueous
 415 conversion systems. Nonetheless, the current models provided decent predictions for the other
 416 three systems (8.4%, 1.2%, and 5.7% deviation for DHTL, HBD-1, and HBD-2, respectively) and
 417 critical insights for future optimization.


418

419 **Figure 5.** Model-predicted fuel yields for 1 afdw ton of algal biomass for (a) DHTL, (b) CAP, (c)
420 HBD-1, and (d) HBD-2; gray areas indicated fuel yields $<100 \text{ GGE}\cdot\text{ton}^{-1}$. Predictions were not
421 species-specific and included all biochemical compositions. HBD-2 was projected to produce the
422 most fuel products for all compositions. Contour lines for 150, 200, and 250 $\text{GGE}\cdot\text{ton}^{-1}$ were
423 labeled for easy interpretation; black arrows perpendicular to contour lines indicated directions of
424 increasing fuel yields; black stars indicated biochemical compositions of wastewater algae
425 reported in literature.^{18,22-25}

426 **Model-predicted MFSPs**

427 When comparing the MFSPs, cultivation models need to be incorporated to account for changes
428 in costs associated with producing algae of varying compositions. As reported in a previous
429 study,¹³ compositions of the *S. acutus* species through the course of cultivation involved steadily
430 decreasing protein content due to nutrient depletion. At the same time, the lipid content kept
431 increasing, while the carbohydrate content initially increased to around 60 afdw% before
432 decreasing. Based on predictions from **Figure 5**, these changes in biochemical compositions led
433 to increases in fuel yields, which could generally be translated to lower MFSPs (**Figure 6**). With
434 costs of algal feedstocks calculated by a previously developed cultivation model,¹³ MFSPs were
435 predicted along the growth trajectory of *S. acutus* species, which started from the high-protein
436 composition (top corner) to the high-lipid composition (bottom right corner). Remarkably, MFSPs
437 for both HBD-1 and HBD-2 were lower than those for DHTL and CAP throughout the entire
438 trajectory. This was more evident for feedstocks with lower lipid contents, where DHTL and CAP
439 were predicted to have MFSPs $> \$8.0 \text{ GGE}^{-1}$, but MFSPs for both two hybrid systems were similar
440 at $\$7.0\text{--}7.5 \text{ GGE}^{-1}$. This suggested that for hybrid systems, benefits from the increased fuel yields
441 outweighed the higher capital and operating costs associated with the more complicated systems.
442 For all systems, the lowest MFSP occurred for feedstocks with compositions of ~ 35 afdw% lipids,
443 ~ 12 afdw% proteins, and ~ 53 afdw% carbohydrates. HBD-2 was predicted to be the most

444 economically competitive one with a minimum MFSP of \$5.65 GGE⁻¹, which was followed by
445 HBD-1 with a similar \$5.81 GGE⁻¹, CAP at \$6.09 GGE⁻¹ and DHTL at a much higher \$6.93 GGE⁻
446 ¹. For feedstocks with >35 afdw% lipids, further increases in lipid contents led to higher MFSPs,
447 which was a result of the increased feedstock costs (due to the longer cultivation time and lower
448 biomass productivity) not compensated by the limited increases in fuel yields (due to the minimal
449 changes in biochemical compositions). When lipid contents of the feedstocks reached the
450 maximum toward the lower right end of the growth trajectory, drastic increases in MFSPs were
451 observed for all systems, as further increase in cultivation time only contributed to higher feedstock
452 costs but not fuel yields. Finally, it should be noted that the differences between maximum and
453 minimum MFSPs for the modeled feedstocks were only \$1.77 GGE⁻¹ for HBD-1 and \$1.74 GGE⁻
454 ¹ for HBD-2, much lower than the variabilities experienced with DHTL (\$2.23 GGE⁻¹) and CAP
455 (\$5.60 GGE⁻¹) alone. The less variable MFSPs would allow more flexible selection of feedstocks
456 and reduce risks related to unexpected changes in supplies of specific feedstocks, further
457 supporting the hybrid systems to be promising strategies for production of algal biofuels.

458

459 **Figure 6.** Model-predicted MFSPs for feedstocks of varying biochemical compositions for (a)
460 DHTL, (b) CAP, (c) HBD-1, and (d) HBD-2. Predictions were made for the *S. acutus* species based
461 on feedstock costs predicted by the cultivation model in a previous study.¹³ The drastic increase in
462 MFSPs toward the lower right end for feedstocks with the highest lipid contents was due to
463 substantial increases in feedstock costs with minimal changes in feedstock biochemical
464 compositions and fuel yields. The lowest MFSP for each system was labeled in the respective plot;
465 gray areas indicated MFSP > \$8.0 GGE⁻¹.

466

467 **Implications and future research needs**

468 Microalgae have been identified as a promising feedstock for renewable liquid fuels, and various
469 processes have been promoted for the conversion of algal biomass into biofuels via an aqueous
470 route. However, individual processes are often limited to certain biochemical components of the
471 feedstock while neglecting others, leading to poor valorization of the whole algal biomass.¹³ To
472 further increase fuel production potential of algae and provide flexibility for various feedstock

473 compositions, innovations and optimizations in aqueous conversion system design are needed to
474 improve fuel conversion efficiencies for all feedstock lipid, protein, and carbohydrate components.

475 In this study, two hybrid systems were proposed to leverage advantages from existing systems
476 and mitigate impacts from their individual weaknesses, guaranteeing moderate- to high-efficiency
477 conversion of feedstocks across the entire biochemical composition regime. This is especially
478 beneficial for early-harvesting species with high protein contents and low lipid and carbohydrate
479 contents, whose biofuels are currently penalized by high MFSPs due to the lower fuel yields. A
480 combination of the fractionation strategy in CAP and whole-cell conversion strategy in DHTL in
481 hybrid systems leads to high conversion of carbohydrates and lipids, while the residual biomass
482 which is inconvertible in CAP can be more efficiently valorized through DHTL. This advantage
483 is particularly pertinent to algal wastewater treatment processes, where the primary goal is to
484 remove aqueous nutrients rather than cultivate the algal biomass to high-lipid content via nutrient
485 depletion. Therefore, the harvested wastewater algae often have high protein but low lipid content
486 due to the lack of a carbon accumulation stage.²⁶ In some cases, changes in the treatment operations
487 may be required in different seasons to meet regulatory discharge standards, leading to variations
488 in feedstock compositions and a necessity for flexible downstream systems. The adaptability of
489 hybrid systems to feedstocks of varying composition while managing to achieve low MFSPs for
490 optimized feedstocks enables the facilities to acquire biomass from different sources, which can
491 reduce feedstock costs (largest contributor to MFSPs). For example, costs for wastewater algae are
492 expected to be much lower than algae from cultivation farms due to the co-location with
493 wastewater treatment plants, the use of organic carbon and nutrients derived from wastewater
494 purification, and any credits from wastewater treatment.^{18,27-29} Additional work is needed to

495 determine costs of algal treatment of wastewater at various scales, and incorporate these costs into
496 the TEA models to evaluate the economic feasibility of such integrated systems. This broader
497 range of feedstocks, along strategies like storing biomass from higher productivity seasons for use
498 in lower productivity seasons can reduce the variability in feedstock flow and increase the size of
499 the facility to take advantage of economies of scale.^{11,14}

500 Further, MFSPs of the hybrid systems can be further reduced by streamlining the facilities and
501 processes. For example, for HBD-1, the hydrolysate after ethanol distillation is at an elevated
502 temperature, which can decrease the energy demand for reaching HTL process conditions; for
503 HBD-2, upgrading of the extracted lipids and generated biocrude oils can be combined to save
504 capital investment and labor expenses. Advancement in technologies can also increase fuel yields
505 thus contribute to lower MFSPs (e.g., by reducing evaporation of volatile fractions of biocrude
506 oils³⁰ and improving lipid extraction efficiency). Admittedly, more research is needed to further
507 improve the protein-to-fuel conversion, which is only 34% for both hybrid systems and much less
508 than that of lipids and carbohydrates (65–79%). This may be achieved by feedstock pretreatment
509 (e.g., sequential HTL³¹) to pre-extract proteins, which can be biologically converted to biofuels at
510 higher conversions.³² Moreover, higher valuable products (e.g., succinic acid from fermentation
511 of hydrolyzed carbohydrates³³) and non-fuel co-products (e.g., protein feed³⁴) can also be included
512 to boost system economics.

513 The hybrid systems also have the potential to further reduce the environmental impacts of algal
514 biofuels. For example, by enabling the use of wastewater algae as a potential feedstock source,
515 algae biomass can be cultivated with less nutrient inputs, which has been shown to be a main
516 contributor to several life cycle environmental impact categories (e.g., climate change, non-

517 renewable resources).^{35,36} However, it should be noted that though substitution of AD with HTL
518 is found to improve fuel productivity, recycling of nutrients (e.g., N and P) from HTL products
519 may involve more steps^{18,37} than required from AD aqueous product, and more work remained in
520 this area to study whether the hybrid systems is able to meet the sustainability targets for algal
521 biofuels. Particularly, life cycle assessment (LCA) of these systems should be conducted to assess
522 the environmental impacts of the proposed hybrid systems. Calculation of key indicators like
523 energy return on investment will also be valuable contribution to assess energy efficiency of the
524 hybrid systems and compare them to traditional fossil fuels and/or other renewable fuels. Further,
525 as LCA may favor different systems than TEA (e.g., one system may have larger environmental
526 impact but lower MFSP), results from both LCA and TEA should be considered for more
527 comprehensive conclusions.

528 Overall, as demonstrated by experiments and evaluated by TEA models, the proposed hybrid
529 systems HBD-1 and HBD-2 can produce more algal biofuels at lower cost than individual systems
530 DHTL and CAP. These results shed light upon industrially viable and economically feasible
531 solutions for biofuels comparable with traditional energy sources, therefore reducing the reliability
532 on fossil fuels and alleviating associated environmental impacts.

533 **Associated Content**

534 **Supporting Information.**

535 The following files are available free of charge: Experimental and modeling method details

536 and supplementary data on algae properties and process yields (PDF).

537 **Author Information**

538 **Corresponding Author**

539 Timothy J. Strathmann, E-mail: strthmnn@mines.edu, Phone: +1 (303) 384-2226

540 **ORCID**

541 Yalin Li: 0000-0002-8863-4758

542 Shijie Leow: 0000-0002-9276-0618

543 Tao Dong: 0000-0002-4961-7576

544 Nicholas J. Nagle: 0000-0002-7667-8622

545 Eric P. Knoshaug: 0000-0002-5709-914X

546 Lieve M. L. Laurens: 0000-0003-4930-3267

547 Philip T. Pienkos: 0000-0002-6284-7392

548 Jeremy S. Guest: 0000-0003-2489-2579

549 Timothy J. Strathmann: 0000-0002-7299-3115

550 **Notes**

551 The authors declare no competing financial interest.

552 **Acknowledgements**

553 Financial support for work carried out at CSM and UIUC was provided by National Science
554 Foundation (NSF) through the NSF Engineering Research Center for Reinventing the Nation's
555 Urban Water Infrastructure (ReNUWIt; EEC-1028968) and NSF awards CBET-1555549 and
556 CBET-1438667. Work at NREL was supported by the U.S. Department of Energy under Contract
557 No. DE-AC36-08-GO28308 with the National Renewable Energy Laboratory as part of the
558 BioEnergy Technology Office (BETO) task # 1.3.4.201. S. Leow is supported by the National
559 Research Foundation (NRF) Singapore under its NRF Environmental and Water Technologies
560 (EWT) PhD Scholarship Programme and administered by the Environment and Water Industry
561 Programme Office (EWI). Dr. J. McGowen at the Arizona State University is acknowledged for
562 providing algal biomass samples; Anna Fedders (UIUC, CEE), John Scott and Susan Barta (UIUC,
563 ISTC) are acknowledged for providing analytical support.

564 **References**

565 (1) Williams, P. J. le B.; Laurens, L. M. L. Microalgae as Biodiesel & Biomass Feedstocks: Review &
566 Analysis of the Biochemistry, Energetics & Economics. *Energy Environ. Sci.* **2010**, *3* (5), 554–590.
567 <https://doi.org/10.1039/B924978H>.

568 (2) Mata, T. M.; Martins, A. A.; Caetano, N. S. Microalgae for Biodiesel Production and Other
569 Applications: A Review. *Renew. Sustain. Energy Rev.* **2010**, *14* (1), 217–232.
570 <https://doi.org/10.1016/j.rser.2009.07.020>.

571 (3) Moody, J. W.; McGinty, C. M.; Quinn, J. C. Global Evaluation of Biofuel Potential from Microalgae.
572 *Proc. Natl. Acad. Sci.* **2014**, *111* (23), 8691–8696. <https://doi.org/10.1073/pnas.1321652111>.

573 (4) Zhao, B.; Ma, J.; Zhao, Q.; Laurens, L.; Jarvis, E.; Chen, S.; Frear, C. Efficient Anaerobic Digestion
574 of Whole Microalgae and Lipid-Extracted Microalgae Residues for Methane Energy Production.
575 *Bioresour. Technol.* **2014**, *161*, 423–430. <https://doi.org/10.1016/j.biortech.2014.03.079>.

576 (5) Laurens, L. M. L.; Nagle, N.; Davis, R.; Sweeney, N.; Wychen, S. V.; Lowell, A.; Pienkos, P. T. Acid-
577 Catalyzed Algal Biomass Pretreatment for Integrated Lipid and Carbohydrate-Based Biofuels
578 Production. *Green Chem.* **2015**, *17* (2), 1145–1158. <https://doi.org/10.1039/C4GC01612B>.

579 (6) Dong, T.; Knoshaug, E. P.; Davis, R.; Laurens, L. M. L.; Van Wychen, S.; Pienkos, P. T.; Nagle, N.
580 Combined Algal Processing: A Novel Integrated Biorefinery Process to Produce Algal Biofuels and
581 Bioproducts. *Algal Res.* **2016**, *19*, 316–323. <https://doi.org/10.1016/j.algal.2015.12.021>.

582 (7) Davis, R.; Fishman, D.; Frank, E. D.; Wigmosta, M. S.; Aden, A.; Coleman, A. M.; Pienkos, P. T.;
583 Skaggs, R. J.; Venteris, E. R.; Wang, M. Q. *Renewable Diesel from Algal Lipids: An Integrated
584 Baseline for Cost, Emissions, and Resource Potential from a Harmonized Model*; 2012.

585 (8) Peterson, A. A.; Vogel, F.; Lachance, R. P.; Fröling, M.; Antal Jr., M. J.; Tester, J. W. Thermochemical
586 Biofuel Production in Hydrothermal Media: A Review of Sub- and Supercritical Water Technologies.
587 *Energy Environ. Sci.* **2008**, *1* (1), 32–65. <https://doi.org/10.1039/b810100k>.

588 (9) Kumar, G.; Shobana, S.; Chen, W.-H.; Bach, Q.-V.; Kim, S.-H.; Atabani, A. E.; Chang, J.-S. A Review
589 of Thermochemical Conversion of Microalgal Biomass for Biofuels: Chemistry and Processes. *Green
590 Chem.* **2017**, *19* (1), 44–67. <https://doi.org/10.1039/C6GC01937D>.

591 (10) Kruger, J. S.; Christensen, E. D.; Dong, T.; Van Wychen, S.; Fioroni, G. M.; Pienkos, P. T.;
592 McCormick, R. L. Bleaching and Hydroprocessing of Algal Biomass-Derived Lipids to Produce
593 Renewable Diesel Fuel. *Energy Fuels* **2017**, *31* (10), 10946–10953.
594 <https://doi.org/10.1021/acs.energyfuels.7b01867>.

595 (11) Davis, R.; Kinchin, C.; Markham, J.; Tan, E.; Laurens, L. M. L.; Sexton, D.; Knorr, D.; Schoen, P.;
596 Lukas, J. *Process Design and Economics for the Conversion of Algal Biomass to Biofuels: Algal
597 Biomass Fractionation to Lipid- and Carbohydrate-Derived Fuel Products*; NREL/TP-5100-62368;
598 National Renewable Energy Laboratory (NREL), Golden, CO., 2014.

599 (12) Posewitz, M. C. Algal Oil Productivity Gets a Fat Bonus. *Nat. Biotechnol.* **2017**, *35* (7), 636–638.
600 <https://doi.org/10.1038/nbt.3920>.

601 (13) Leow, S.; Shoener, B. D.; Li, Y.; DeBellis, J. L.; Markham, J.; Davis, R.; Laurens, L. M. L.; Pienkos,
602 P. T.; Cook, S. M.; Strathmann, T. J.; Guest, J. S. A Unified Modeling Framework to Advance Biofuel
603 Production from Microalgae. *Environ. Sci. Technol.* **2018**, *52* (22), 13591–13599.
604 <https://doi.org/10.1021/acs.est.8b03663>.

605 (14) Jones, S. B.; Zhu, Y.; Anderson, D. B.; Hallen, R. T.; Elliott, D. C.; Schmidt, A. J.; Albrecht, K. O.;
606 Hart, T. R.; Butcher, M. G.; Drennan, C.; Snowden-Swan L.; Davis R.; Kinchin C. *Process Design
607 and Economics for the Conversion of Algal Biomass to Hydrocarbons: Whole Algae Hydrothermal
608 Liquefaction and Upgrading*; PNNL-23227; Pacific Northwest National Laboratory (PNNL),
609 Richland, WA (US), 2014.

610 (15) Elliott, D. C.; Hart, T. R.; Schmidt, A. J.; Neuenschwander, G. G.; Rotness, L. J.; Olarte, M. V.; Zacher,
611 A. H.; Albrecht, K. O.; Hallen, R. T.; Holladay, J. E. Process Development for Hydrothermal
612 Liquefaction of Algae Feedstocks in a Continuous-Flow Reactor. *Algal Res.* **2013**, *2* (4), 445–454.
613 <https://doi.org/10.1016/j.algal.2013.08.005>.

614 (16) Leow, S.; Witter, J. R.; Vardon, D. R.; Sharma, B. K.; Guest, J. S.; Strathmann, T. J. Prediction of
615 Microalgae Hydrothermal Liquefaction Products from Feedstock Biochemical Composition. *Green
616 Chem.* **2015**, *17* (6), 3584–3599. <https://doi.org/10.1039/C5GC00574D>.

617 (17) Li, Y.; Leow, S.; Fedders, A. C.; Sharma, B. K.; Guest, J. S.; Strathmann, T. J. Quantitative Multiphase
618 Model for Hydrothermal Liquefaction of Algal Biomass. *Green Chem.* **2017**, *19* (4), 1163–1174.
619 <https://doi.org/10.1039/C6GC03294J>.

620 (18) Li, Y.; Tarpeh, W. A.; Nelson, K. L.; Strathmann, T. J. Quantitative Evaluation of an Integrated System
621 for Valorization of Wastewater Algae as Bio-Oil, Fuel Gas, and Fertilizer Products. *Environ. Sci.
622 Technol.* **2018**, *52* (21), 12717–12727. <https://doi.org/10.1021/acs.est.8b04035>.

623 (19) Laurens, L. M. L.; Van Wychen, S.; McAllister, J. P.; Arrowsmith, S.; Dempster, T. A.; McGowen,
624 J.; Pienkos, P. T. Strain, Biochemistry, and Cultivation-Dependent Measurement Variability of Algal
625 Biomass Composition. *Anal. Biochem.* **2014**, *452*, 86–95. <https://doi.org/10.1016/j.ab.2014.02.009>.

626 (20) Kocsisová, T.; Juhasz, J.; Cvengroš, J. Hydrolysis of Fatty Acid Esters in Subcritical Water. *Eur. J.
627 Lipid Sci. Technol.* **2006**, *108* (8), 652–658. <https://doi.org/10.1002/ejlt.200600061>.

628 (21) Shin, H.-Y.; Ryu, J.-H.; Park, S.-Y.; Bae, S.-Y. Thermal Stability of Fatty Acids in Subcritical Water.
629 *J. Anal. Appl. Pyrolysis* **2012**, *98*, 250–253. <https://doi.org/10.1016/j.jaap.2012.08.003>.

630 (22) Zhou, Y.; Schideman, L.; Yu, G.; Zhang, Y. A Synergistic Combination of Algal Wastewater
631 Treatment and Hydrothermal Biofuel Production Maximized by Nutrient and Carbon Recycling.
632 *Energy Environ. Sci.* **2013**, *6* (12), 3765–3779. <https://doi.org/10.1039/C3EE24241B>.

633 (23) Chen, W.-T.; Zhang, Y.; Zhang, J.; Yu, G.; Schideman, L. C.; Zhang, P.; Minarick, M. Hydrothermal
634 Liquefaction of Mixed-Culture Algal Biomass from Wastewater Treatment System into Bio-Crude
635 Oil. *Bioresour. Technol.* **2014**, *152*, 130–139. <https://doi.org/10.1016/j.biortech.2013.10.111>.

636 (24) Mehrabadi, A.; Craggs, R.; Farid, M. M. Wastewater Treatment High Rate Algal Pond Biomass for
637 Bio-Crude Oil Production. *Bioresour. Technol.* **2017**, *224*, 255–264.
638 <https://doi.org/10.1016/j.biortech.2016.10.082>.

639 (25) Cheng, F.; Cui, Z.; Mallick, K.; Nirmalakhandan, N.; Brewer, C. E. Hydrothermal Liquefaction of
640 High- and Low-Lipid Algae: Mass and Energy Balances. *Bioresour. Technol.* **2018**, *258*, 158–167.
641 <https://doi.org/10.1016/j.biortech.2018.02.100>.

642 (26) Pittman, J. K.; Dean, A. P.; Osundeko, O. The Potential of Sustainable Algal Biofuel Production Using
643 Wastewater Resources. *Bioresour. Technol.* **2011**, *102* (1), 17–25.
644 <https://doi.org/10.1016/j.biortech.2010.06.035>.

645 (27) Cabanelas, I. T. D.; Ruiz, J.; Arribi, Z.; Chinalia, F. A.; Garrido-Pérez, C.; Rogalla, F.; Nascimento, I.
646 A.; Perales, J. A. Comparing the Use of Different Domestic Wastewaters for Coupling Microalgal
647 Production and Nutrient Removal. *Bioresour. Technol.* **2013**, *131* (Supplement C), 429–436.
648 <https://doi.org/10.1016/j.biortech.2012.12.152>.

649 (28) Chiu, S.-Y.; Kao, C.-Y.; Chen, T.-Y.; Chang, Y.-B.; Kuo, C.-M.; Lin, C.-S. Cultivation of Microalgal
650 Chlorella for Biomass and Lipid Production Using Wastewater as Nutrient Resource. *Bioresour.
651 Technol.* **2015**, *184* (Supplement C), 179–189. <https://doi.org/10.1016/j.biortech.2014.11.080>.

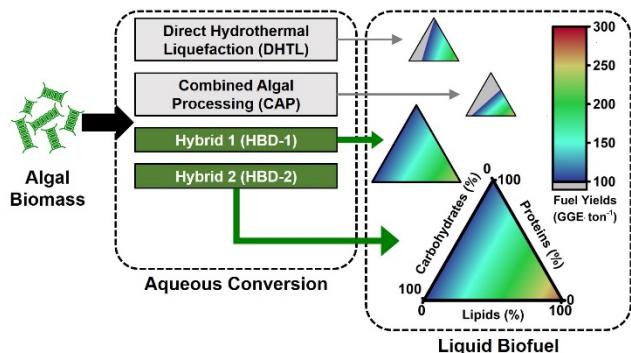
652 (29) Xin, C.; Addy, M. M.; Zhao, J.; Cheng, Y.; Cheng, S.; Mu, D.; Liu, Y.; Ding, R.; Chen, P.; Ruan, R.
653 Comprehensive Techno-Economic Analysis of Wastewater-Based Algal Biofuel Production: A Case
654 Study. *Bioresour. Technol.* **2016**, *211*, 584–593. <https://doi.org/10.1016/j.biortech.2016.03.102>.

655 (30) Dong, T.; Xiong, W.; Yu, J.; Pienkos, P. T. Co-Production of Fully Renewable Medium Chain α -
656 Olefins and Bio-Oil via Hydrothermal Liquefaction of Biomass Containing Polyhydroxyalkanoic
657 Acid. *RSC Adv.* **2018**, *8* (60), 34380–34387. <https://doi.org/10.1039/C8RA07359G>.

658 (31) Miao, C.; Chakraborty, M.; Dong, T.; Yu, X.; Chi, Z.; Chen, S. Sequential Hydrothermal Fractionation
659 of Yeast *Cryptococcus Curvatus* Biomass. *Bioresour. Technol.* **2014**, *164*, 106–112.
660 <https://doi.org/10.1016/j.biortech.2014.04.059>.

661 (32) Huo, Y.-X.; Cho, K. M.; Rivera, J. G. L.; Monte, E.; Shen, C. R.; Yan, Y.; Liao, J. C. Conversion of
662 Proteins into Biofuels by Engineering Nitrogen Flux. *Nat. Biotechnol.* **2011**, *29* (4), 346–351.
663 <https://doi.org/10.1038/nbt.1789>.

664 (33) Knoshaug, E. P.; Mohagheghi, A.; Nagle, N. J.; Stickel, J. J.; Dong, T.; Karp, E. M.; Kruger, J. S.;
665 Brandner, D. G.; Manker, L. P.; Rorrer, N. A.; Hyman, D. A.; Christensen, E. D.; Pienkos, P. T.
666 Demonstration of Parallel Algal Processing: Production of Renewable Diesel Blendstock and a High-
667 Value Chemical Intermediate. *Green Chem.* **2018**, *20* (2), 457–468.
668 <https://doi.org/10.1039/C7GC02295F>.


669 (34) Cruce, J. R.; Quinn, J. C. Economic Viability of Multiple Algal Biorefining Pathways and the Impact
670 of Public Policies. *Appl. Energy* **2019**, *233–234*, 735–746.
671 <https://doi.org/10.1016/j.apenergy.2018.10.046>.

672 (35) Beal, C. M.; Gerber, L. N.; Sills, D. L.; Huntley, M. E.; Machesky, S. C.; Walsh, M. J.; Tester, J. W.;
673 Archibald, I.; Granados, J.; Greene, C. H. Algal Biofuel Production for Fuels and Feed in a 100-Ha
674 Facility: A Comprehensive Techno-Economic Analysis and Life Cycle Assessment. *Algal Res.* **2015**,
675 *10*, 266–279. <https://doi.org/10.1016/j.algal.2015.04.017>.

676 (36) Tu, Q.; Eckelman, M.; Zimmerman, J. B. Harmonized Algal Biofuel Life Cycle Assessment Studies
677 Enable Direct Process Train Comparison. *Appl. Energy* **2018**, *224*, 494–509.
678 <https://doi.org/10.1016/j.apenergy.2018.04.066>.

679 (37) Edmundson, S.; Huesemann, M.; Kruk, R.; Lemmon, T.; Billing, J.; Schmidt, A.; Anderson, D.
680 Phosphorus and Nitrogen Recycle Following Algal Bio-Crude Production via Continuous
681 Hydrothermal Liquefaction. *Algal Res.* **2017**, *26*, 415–421.
682 <https://doi.org/10.1016/j.algal.2017.07.016>.

683 For Table of Contents Use Only

684
685

Synopsis

686 Experiments and model predictions show increased algal biofuel yields at lower prices via
687 proposed hybrid conversion systems.