SAND2014- 18749PE

An Overview of Trilinos

Mark Hoemmen
Sandia National Laboratories
30 June 2014

Sandia is a multiprogram laboratory managed and operated by Sandia Corporation, a wholly Sandla
owned subsidiary of Lockheed Martin Corporation, for the U. S. Department of Energy’s National
National Nuclear Security Administration under contract DE-AC04-94AL85000. Laboratories

_ '
} Schedule

Session 1: Trilinos overview

Session 2: Hands-on Trilinos tutorial

Session 3: Kokkos overview and tutorial
Session 4: Hands-on, audience-directed topics

Sandia
National
Laboratories

_ '
} Outline

= What can Trilinos do for you?
= Trilinos’ software organization

= Whirlwind tour of Trilinos packages

Getting started: “How do [...?"

= Preparation for hands-on tutorial

Sandia
National
Laboratories

Jig o

What can Trilinos do for you?

Sandia
National
Laboratories

*‘ What is Trilinos?

» Object-oriented software framework for...
= Solving big complex science & engineering problems
* More like LEGO™ bricks than Matlab™

' 6

Applications

= All kinds of physical simulations:
¢ Structural mechanics (statics and dynamics)
¢ Circuit simulations (physical models)
+ Electromagnetics, plasmas, and superconductors
¢+ Combustion and fluid flow (at macro- and nanoscales)

= Coupled / multiphysics models

» Data and graph analysis
¢+ Even gaming!

Sandia
National
Laboratories

Target platforms:
Any and all, current and future

= Laptops and workstations

» Clusters and supercomputers
¢ Multicore CPU nodes
+ Hybrid CPU / GPU nodes

» Parallel programming environments
+ MPI, OpenMP, Pthreads, Intel TBB
¢+ CUDA (for NVIDIA GPUs)
¢+ Combinations of the above
= User “skins”
¢ C++ (primary language)
¢ C, Fortran, Python
+ Web (Hands-on demo)

Sandia
National
Laboratories

_ '
% Unique features of Trilinos

= H
¢ Linear and nonlinear solvers, preconditioners, ...
+ Optimization, transients, sensitivities, uncertainty, ...

= Support for huge (> 2B unknowns) problems
= Support for mixed and arbitrary precisions

= G

uge library of algorithms

rowing support for hybrid (MPI+X) parallelism

¢ X: CPU threads (multicore or Intel Xeon Phi) or Nvidia GPU

*

Built on a unified shared-memory parallel programming
model: Kokkos (see Session 3)

Support currently limited, but growing fast.

Sandia
National
Laboratories

How Trilinos evolved

» Started as linear solvers and distributed objects

= Capabilities grew to satisfy application and
research needs

Discretizations in space and time
Optimization and sensitivities
Uncertainty quantification

From Forward Analysis, to Support
for High-Consequence Decisions

Optimization under Uncertainty

Quantify Uncertainties/Systems Margins

Optimization of Design/System

Accurate & Efficient Forward Analysis

Forward Analysis

Each stage requires greater performance and error control of prior stages:
Always will need: more accurate and scalable methods.
more sophisticated tools.

i
ol 'Trilinos strategic goals

= Algorithmic goals
¢ Scalable computations (at all levels of parallelism)
¢ Hardened computations
 Fail only if problem intractable
* Diagnose failures & inform the user
+ Full vertical coverage
» Problem construction, solution, analysis, & optimization

= Software goals

¢ Universal interoperability (within & outside Trilinos)

+ Universal accessibility
* Any hardware & operating system with a C++ compiler
* Including programming languages besides C++

+ “Self-sustaining” software
» Clean design & implementation
 Sufficient testing & documentation for confident refactoring @ Sandia

National
Laboratories

o

Trilinos’ software organization

Sandia

12

National
Laboratories

rilinos is made of packages

= Not a monolithic piece of software
¢+ Like LEGO™ bricks, not Matlab™

= Each package
+ Has its own development team and management
+ Makes its own decisions about algorithms, coding style, etc.
+ May or may not depend on other Trilinos packages
+ May even have a different license (most are BSD) or release status
+ Benefits from Trilinos build and test infrastructure
= Trilinos is not “indivisible”
+ You don’t need all of Trilinos to get things done
+ Don’t feel overwhelmed by large number (~55) of packages!
+ Any subset of packages can be combined and distributed

= Trilinos top layer framework (TriBITS)
+ Manages package dependencies

+ Runs packages’ tests nightly, and on every check-in
+ Useful: spun off from Trilinos into a separate project

@

13

Sandia
National
Laboratories

14

\

Why packages?

= Users decide how much of Trilinos they want to use
+ Only use and build the packages you need

+ Mix and match Trilinos components with your own, e.g.,
 Trilinos sparse matrices with your own linear solvers
* Your sparse matrices with Trilinos’ linear solvers
 Trilinos sparse matrices & linear solvers with your nonlinear solvers

= Popular packages keep their “brand”
+ Well-known packages like ML & Zoltan still stand alone
¢ But benefit from Trilinos build & test infrastructure

» Reflects organization of research / development teams
+ Easy to turn a research code into a new package

+ Keeps team sizes small for more productivity
+ “Multifrontal development” (minimizes interference)

Sandia
National
Laboratories

15

Interoperabillity vs. Dependence
(“Can Use”) (“Depends On”)

Packages have minimal required dependencies...

= But interoperability makes them useful:

¢+ NOX (nonlinear solver) needs linear solvers
« Can use any of {AztecOO, Belos, LAPACK, ...}

+ Belos (linear solver) needs preconditioners, matrices, and vectors
« Matrices and vectors: any of {Epetra, Tpetra, Thyra, ..., PETSc}
» Preconditioners: any of {IFPACK, ML, Ifpack2, MuelLu, Teko, ...}
Interoperability is enabled at configure time
+ Each package declares its list of interoperable packages
¢ Trilinos’ build system automatically hooks them together
+ You can ask to build only specific packages
« Trilinos will enable only those packages needed to make them build
= External compatible development
¢ DTK (https://github.com/CNERG/DataTransferKit) Sandia
+ Parallel distributed data transfer engine, Stuart Slattery @ National

Laboratories

https://github.com/CNERG/DataTransferKit
https://github.com/CNERG/DataTransferKit

Capability areas and leaders

= Capability areas:
+ Framework, Tools & Interfaces (Jim Willenbring)
+ Software Engineering Technologies and Integration (Ross Bartlett)
¢ Discretizations (Pavel Bochev)
¢+ Geometry, Meshing & Load Balancing (Karen Devine)
¢ Scalable Linear Algebra (Mike Heroux)
+ Linear & Eigen Solvers (Jonathan Hu)
+ Nonlinear, Transient & Optimization Solvers (Andy Salinger)
¢ Scalable I/O (Ron Oldfield)
+ User Experience (Bill Spotz)

» Each area includes one or more Trilinos packages
= Each leader provides strategic direction within area

Sandia
National
Laboratories

Jig o

Whirlwind Tour of Packages

Sandia

17

National
Laboratories

Full Vertical
Solver Coverage

A

Optimization . n c e . —_
Unconstrained: F.Iﬂd u € R" that minimizes g(u) 5
Constrained: Find z&eR™ and uwe&R" that S| MOOCHO
' minimizes g¢g(z,u) s.t. f(xz,u) =0 S
Given nonlinear operator F(z,u) € R*T™ | »
Bifurcation Analysi oOF c
pHreation AnalyEls For F(x,u) =0 findspace vecU>— { W S LOCA
oz 1@ =
Transient Problems Solve f(z(t),z(t),t) =0 ‘E ‘E
/
DAEs/ODEs: t€[0,7],2(0) = zg,2(0) = x = Rythmos
n v o
for x(t) e R",t € [0,T] c &
Nonlinear Problems Given nonlinear operator F(z) € R — R % O NOX
8]
Solve F(z)=0 xzeR" -ﬁ
Linear Problems Given Linear ODS (Matr|ce5) A, B € %mxn g AZBtzlcooso
Linear Equations: Solve Az =0b for zc®R" 5 Ifpack, ML, etc...
Distributed Linear Algebra Epetra
Matrix/Graph Equations| Compute y = Ax; A = A(G); A € R™*™, G € I™*" Tpetra
Vector Problems: Compute y = az + fw;a = (z,y);z,y € R" Kokkos

Trilinos Package Summary

Objective

Package(s)

Discretizations

Meshing & Discretizations

STKMesh, Intrepid, Pamgen, Sundance, Mesquite

Time Integration Rythmos
Automatic Differentiation Sacado
Methods
Mortar Methods Moertel
Linear algebra objects Epetra, Tpetra
Interfaces Xpetra, Thyra, Stratimikos, RTOp, FEI, Shards
Services Load Balancing Zoltan, Isorropia, Zoltan2
“Skins” PyTrilinos, WebTrilinos, ForTrilinos, Ctrilinos, Optika
Utilities, 1/0O, thread API Teuchos, EpetraExt, Kokkos, Triutils, ThreadPool, Phalanx
Iterative linear solvers AztecOO, Belos, Komplex
Direct sparse linear solvers | Amesos, Amesos2, ShyLU
Direct dense linear solvers | Epetra, Teuchos, Pliris
Iterative eigenvalue solvers | Anasazi
Incomplete factorizations AztecOO, IFPACK, Ifpack2
Solvers

Multilevel preconditioners

ML, CLAPS, MuelLu

Block preconditioners

Meros, Teko

Nonlinear solvers

NOX, LOCA

Optimization

MOOCHO, Aristos, TriKota, Globipack, Optipack

Stochastic PDEs

Stokhos

Two solver stacks:
Epetra & Tpetra

* Many packages built on Epetra linear algebra interface
+ Common “solver stack” for Epetra sparse matrices & vectors

» Users want features that break interfaces
¢ Support for solving huge problems (> 2B entities)
+ Arbitrary and mixed precision
¢ Hybrid (MPI+X) parallelism (< most radical interface changes)

» Users also value backwards compatibility

= We decided to build a (partly) new stack using Tpetra
+ MPI+X — friendly interfaces go into Tpetra stack
¢ Epetra got some support for huge problems (“Epetra64”)

¢+ Some packages can work with either Epetra or Tpetra

« lterative linear solvers & eigensolvers (Belos, Anasazi)
« Multilevel preconditioning (MueLu), sparse direct (Amesos2) @ Sandia

National
Laboratories

o

Whirlwind Tour of Packages

Discretizations Methods Core Solvers

Sandia

21

National
Laboratories

22

_ '
} Teuchos

= Portable utility package of commonly useful tools

ParameterList: nested (key, value) database (more later)

Generic LAPACK and BLAS wrappers

Local dense matrix and vector classes

Memory management classes (more later)

Scalable parallel timers and statistics

Support for generic algorithms (traits classes)

Help make Trilinos work on as many platforms as possible
+ Protect algorithm developers from platform differences
+ Not all compilers could build Boost in the mid-2000s

¢+ BLAS and LAPACK Fortran vs. C calling conventions
+ Different sizes of integers on different platforms

You'll see this package a lot

* & & o o o

Package lead: Roscoe Barlett (many developers) @ ﬁ:ﬁgﬁm
Laboratories

A
} Trilinos Common Language: Petra

Object model

¢ Describes basic user and support classes in UML,
independent of language/implementation

+ Describes objects and relationships to build and use
matrices, vectors and graphs

Petra' provides distributed matrix and vector services

Has 2 implementations under active development

1Petra is Greek for “foundation”.

“Common language” for distributed linear algebra objects
(operator, sparse matrix, dense vectors)

[

23

Sandia
National
Laboratories

' 24

Petra Implementations

= Epetra (Essential Petra):
¢ Earliest and most heavily used
¢ C++ circa 1998 (“C+/- compilers” OK)
+ Real, double-precision arithmetic
+ Interfaces accessible to C and Fortran users

» Tpetra (Templated Petra):
¢ C++ circa mid-2000s (no C++11)
+ Supports arbitrary scalar and index types via templates
 Arbitrary- and mixed-precision arithmetic
» 64-bit indices for solving problems with >2 billion unknowns
+ Hybrid MPI / shared-memory parallel
» Supports multicore CPU and hybrid CPU/GPU
» Built on Kokkos shared-memory parallel programming model

Sandia
Package leads: Mike Heroux, Mark Hoemmen (many developers) National

Laboratories

25

EpetrabExt: Extensions to Epetra

Library of useful classes not needed by everyone

Most classes are types of “transforms”.

Examples:
¢ Graph/matrix view extraction.
+ Epetra/Zoltan interface.
+ Explicit sparse transpose.
+ Singleton removal filter, static condensation filter.
+ Overlapped graph constructor, graph colorings.
¢ Permutations.
¢ Sparse matrix-matrix multiply.
+ Matlab, MatrixMarket 1/O functions.

Most classes are small, useful, but non-trivial to write.
Migrating to 64-bit ints

Developer: Robert Hoekstra, Alan Williams, Mike Heroux, @ ﬁ:ﬁgﬁm
Chetan Jhurani Laboratories

Zoltan(2) [1=

= Data Services for Dynamic Applications

Dynamic load balancing
Graph coloring
Data migration
Matrix ordering

= Partitioners:

= Geometric (coordinate-based) methods:
I » Recursive Coordinate Bisection (Berger, Bokhari)
» Recursive Inertial Bisection (Taylor, Nour-Omid)
» Space Filling Curves (Peano, Hilbert)
« Refinement-tree Partitioning (Mitchell)
Hypergraph and graph (connectivity-based) methods:
« Hypergraph Repartitioning PaToH (Catalyurek)
« Zoltan Hypergraph Partitioning
« ParMETIS (U. Minnesota)
« Jostle (U. Greenwich)

|sorropia package: interface to Epetra objects

*
*
*
*

Sandia
Developers: Karen Devine, Erik Boman, Siva Rajamanickam, Michael Wolf @ National
Laboratories

27

il '
b Thyra

= Abstract linear algebra interfaces

Offers flexibility through abstractions to algorithm developers
» Linear solvers (Direct, Iterative, Preconditioners)

¢ Use abstraction of basic matrix & vector operations

+ Can use any concrete linear algebra library (Epetra, Tpetra, ...)
Nonlinear solvers (Newton, etc.)

¢ Use abstraction of linear solve

+ Can use any concrete linear solver library and preconditioners
Transient/DAE solvers (implicit)

¢ Use abstraction of nonlinear solve
Thyra is how Stratimikos talks to data structures & solvers

Sandia
Developers: Roscoe Bartlett, Kevin Long @ National
Laboratories

28

“Skins”

PyTrilinos provides Python access to Trilinos packages

= Uses SWIG to generate bindings.
= Support for many packages

Developer: Bill Spotz

= CTrilinos: C wrapper (mostly to support ForTrilinos).
» ForTrilinos: OO Fortran interfaces.

Developers: Nicole Lemaster, Damian Rouson

= WebTrilinos: Web interface to Trilinos

= Generate test problems or read from file.

» Generate C++ or Python code fragments and click-run.
» Hand modify code fragments and re-run.

= Will use during hands-on.

Sandia
Developers: Ray Tuminaro, Jonathan Hu, Marzio Sala, Jim Willenbring @ National
Laboratories

o

Whirlwind Tour of Packages

Discretizations Methods Core Solvers

Sandia

29

National
Laboratories

\

= Manycore/Accelerator data structures & kernels

= Epetra is MPIl-only, Tpetra is MPI[+X[+Y]].

» Kokkos parallel dispatch and data structures
¢+ See Session 3 for details
+ Multi-dimensional arrays, hash table, sparse graph & matrix
+ Hide physical data layout & target it to the hardware

= “Pretty Good Kernels”
+ Computational kernels for sparse and dense matrices

+ Written generically to Kokkos, not to specific hardware
* “How | learned to stop worrying and love CSR”

+ Replaceable with vendor-optimized libraries

Developer: Carter Edwards, Mark Hoemmen, Dan Sunderland,
Christian Trott

Kokkos: Node-level Data Classes

[

30

Sandia
National
Laboratories

31

\

Amesos

» Interface to direct solvers for distributed sparse linear
systems (KLU, UMFPACK, SuperLU, MUMPS, ScalLAPACK)

= Challenges:
+ No single solver dominates
+ Different interfaces and data formats, serial and parallel
+ [nterface often changes between revisions

» Amesos offers:
+ A single, clear, consistent interface, to various packages
+ Common look-and-feel for all classes
+ Separation from specific solver details

+ Use serial and distributed solvers; Amesos takes care of data
redistribution

+ Native solvers: KLU and Paraklete

Sandia
Developers: Ken Stanley, Marzio Sala, Tim Davis @ National
Laboratories

32

g '
}‘# Amesos?2

= Second-generation sparse direct solvers package

» Unified interface to multiple solvers, just like Amesos
» Supports matrices of arbitrary scalar and index types
= Path to multicore CPU and hybrid CPU/GPU solvers

= Multiple solvers can coexist in the same MPI process

¢ Supports new “hybrid / hybrid” direct / iterative solver ShyLU
= Abstraction from specific sparse matrix representation

+ Accepts Epetra or Tpetra sparse matrices

+ Extensible to other matrix types

Sandia
Developers: Eric Bavier, Erik Boman, and Siva Rajamanickam @ National
Laboratories

33

\

AztecOO

» Krylov subspace solvers: CG, GMRES, BiCGSTAB,...
* |Incomplete factorization preconditioners

= Aztec was Sandia’s workhorse solver:
+ Extracted from the MPSalsa reacting flow code
+ Installed in dozens of Sandia apps
+ 1900+ external licenses

= AztecOO improves on Aztec by:
+ Using Epetra objects for defining matrix and vectors

+ Providing more preconditioners/scalings
+ Using C++ class design to enable more sophisticated use

= AztecOO interface allows:
+ Continued use of Aztec for functionality
+ Introduction of new solver capabilities outside of Aztec

Sandia
Developers: Mike Heroux, Alan Williams, Ray Tuminaro @ National
Laboratories

34

~ ’
Belos
= Next-generation linear iterative solvers

= Decouples algorithms from linear algebra objects
+ Linear algebra library has full control over data layout and kernels
+ |mprovement on “reverse communication” interface of Aztec
¢ Essential for hybrid (MP1+X) parallelism

» Solves problems that apps really want to solve, faster:
+ Multiple right-hand sides: AX=B
+ Sequences of related systems: (A + AA,) X, =B + AB,

» Many advanced methods for these types of systems

Block methods: Block GMRES and Block CG
Recycling solvers: GCRODR (GMRES) and CG
“Seed” solvers (hybrid GMRES)

Block orthogonalizations (TSQR)

» Supports arbitrary and mixed precision, and complex

*
*
*
*

Mike Parks, ... National
Laboratories

Developers: Heidi Thornquist, Mike Heroux, Mark Hoemmen, @ Sandia

\ o

Ifpack(2): Algebraic preconditioners

= Preconditioners:
¢ Overlapping domain decomposition
+ Incomplete factorizations (within an MPI process)
+ (Block) relaxations & Chebyshev

= Accepts user matrix via abstract matrix interface
= Uses Epetra for basic matrix/vector calculations
» Perturbation stabilizations & condition estimation
= Can be used by NOX, ML, AztecOO, Belos, ...

= [fpack2: Tpetra version of Ifpack

¢ Supports arbitrary precision & complex arithmetic
+ Path forward to hybrid-parallel factorizations

Marzio Sala, Alan Williams, etc.

Developers: Mike Heroux, Mark Hoemmen, Siva Rajamanickam, @

35

Sandia
National
Laboratories

36

: Multi-level Preconditioners

» Smoothed aggregation, multigrid and domain decomposition
preconditioning package

= Critical technology for scalable performance of many apps

= ML compatible with other Trilinos packages:

+ Accepts user data as Epetra_ RowMatrix object (abstract interface).
Any implementation of Epetra_ RowMatrix works.

+ Implements the Epetra_Operator interface. Allows ML preconditioners
to be used with AztecOO, Belos, Anasazi.
= Can also be used independent of other Trilinos packages
= Next-generation ML package: Muelu
+ Works with Epetra or Tpetra objects (via Xpetra interface)

Sandia
Developers: Ray Tuminaro, Jeremie Gaidamour, Jonathan Hu, Marzio Sala, Chris Siefert @ [daat}innal
oratories

37

uelLu: Next-gen algebraic multigrid

* Motivation for replacing ML
+ |Improve maintainability & ease development of new algorithms

+ Decouple computational kernels from algorithms
« ML mostly monolithic (& 50K lines of code)
* MueLu relies more on other Trilinos packages

+ Exploit Tpetra features
« MPI+X (Kokkos programming model mitigates risk)
» 64-bit global indices (to solve problems with >2B unknowns)
 Arbitrary Scalar types (Tramonto runs MuelLu w/ double-double)

= Works with Epetra or Tpetra (via Xpetra common interface)
» Facilitate algorithm development

¢ Energy minimization methods
+ Geometric or classic algebraic multigrid; mix methods together

= Better support for preconditioner reuse
+ Explore options between “blow it away” & reuse without change

Sandia
Developers: Andrey Prokopenko, Jonathan Hu, Chris Siefert, Ray Tuminaro, Tobias Wiesner @ National
Laboratories

\

Anasazi

= Next-generation iterative eigensolvers

= Decouples algorithms from linear algebra objects

*

Like Belos, except that Anasazi came first

= Block eigensolvers for accurate cluster resolution

= Can solve
¢ Standard (AX = AX) or generalized (AX = BXA)

*

Hermitian or not, real or complex

= Algorithms available

*

* & o o

Block Krylov-Schur (most like ARPACK’s IR Arnoldi)
Block Jacobi-Davidson; TraceMin in progress
Locally Optimal Block-Preconditioned CG (LOBPCG)
Implicit Riemannian Trust Region solvers

Scalable orthogonalizations (e.g., TSQR, SVQB)

Developers: Heidi Thornquist, Mike Heroux, Chris Baker,

Rich Lehoucq, Ulrich Hetmaniuk, Mark Hoemmen

[

38

Sandia
National
Laboratories

' 39

NOX: Nonlinear Solvers

= Suite of nonlinear solution methods

Tensor Method
Broyden’'s Method Newton’s Method B]
il Mt = f(x,)+J.d+=T.dd

Mp = f(x,)+B.d My = f(x,)+J.d 2
Jacobian Estimation Globalizations Implementation
» Graph Coloring Line Search Trust Region * Parallel
» Finite Difference Interval Halving Dogleg * OO-C++
« Jacobian-Free %ﬁ;’ift'c Inexact Dogleg « Independent of the

Newton-Krylov More-Thuente linear algebra

package!

http://trilinos.sandia.gov/packages/nox

Sandia
Developers: Tammy Kolda, Roger Pawlowski @ National
Laboratories

40

LOCA

= Library of continuation algorithms

= Provides

*

*

*

*

Zero order continuation

First order continuation

Arc length continuation

Multi-parameter continuation (via Henderson's MF Library)
Turning point continuation

Pitchfork bifurcation continuation

Hopf bifurcation continuation

Phase transition continuation

Eigenvalue approximation (via ARPACK or Anasazi)

]]) Sandia
Developers: Andy Salinger, Eric Phipps National

Laboratories

' 41

MOOCHO & Aristos

= MOOCHO: Multifunctional Object-Oriented arCHitecture
for Optimization

+ |arge-scale invasive simultaneous analysis and design
(SAND) using reduced space SQP methods.

Developer: Roscoe Bartlett

= Aristos: Optimization of large-scale design spaces

+ Invasive optimization approach
+ Based on full-space SQP methods
+ Efficiently manages inexactness in the inner linear solves

L Sandia
Developer: Denis Ridzal National
Laboratories

o8

—

Whirlwind Tour of Packages

Core Utilities
Discretizations Methods Solvers

Sandia

42

National
Laboratories

g 43
B Interoperable Tools for Rapid Development
> II renl of Compatible Discretizations

Intrepid offers an innovative software design for compatible discretizations:

= Access to finite {element, volume, difference} methods using a common API
= Supports hybrid discretizations (FEM, FV and FD) on unstructured grids
= Supports a variety of cell shapes:
» Standard shapes (e.g., tets, hexes): high-order finite element methods
= Arbitrary (polyhedral) shapes: low-order mimetic finite difference methods
= Enables optimization, error estimation, V&V, and UQ using fast invasive techniques
(direct support for cell-based derivative computations or via automatic differentiation)

io o e

Higher order % General cells

Developers: Pavel Bochev and Denis Ridzal

' 44

Rythmos

= Suite of time integration (discretization) methods

= Supported methods include
» Backward and Forward Euler
= Explicit Runge-Kutta
= [mplicit BDF

= Qperator splitting methods & sensitivities
= Revived by Glen Hansen and under active development

Sandia
Developers: Glen Hansen, Roscoe Bartlett, Todd Coffey @ National
Laboratories

o

Whirlwind Tour of Packages

Discretizations Methods Core Solvers

Sandia

45

National
Laboratories

46

Sacado: Automatic Differentiation

» Automatic differentiation tools optimized for element-level computation

= Applications of AD: Jacobians, sensitivity and uncertainty analysis, ...

» Uses C++ templates to compute derivatives
+ You maintain one templated code base; derivatives don’t appear explicitly

= Provides three forms of AD

of
+ Forward Mode: @ V) — <f’ %V)

» Propagate derivatives of intermediate variables w.r.t. independent variables forward
» Directional derivatives, tangent vectors, square Jacobians, df / dx when m 2 n

of
+ Reverse Mode: (= W) — <f’ WT@)

* Propagate derivatives of dependent variables w.r.t. intermediate variables backwards
» Gradients, Jacobian-transpose products (adjoints), of / 0x when n > m.

d d dk
» Taylor polynomial mode: #(®) = 3" et — 3° futk = F(z(®)) + O(™"), fiu= L Fla(®)
k=0 k=0)

+ Basic modes combined for higher derivatives

Sandia
Developers: Eric Phipps, David Gay @ [daat;[ional _
oratories

o

Solver collaborations:

Abstract interfaces
and applications

Sandia
National

47

Laboratories

Categories of Abstract Problems

and Abstract Algorithms _ .
Trilinos Packages
- Linear Problems: Given linear operator (matrix) A € R™ "
Linear equations: Solve Az = b for z € R” Belos
Eigen problems: Solve Av = Mv for (all) v € R” and A € R Anasazi
- Nonlinear Problems: Given nonlinear operator ¢(z,u) € R"™™ — R"
Nonlinear equations: solve ¢(z) = 0 for z € R" NOX
- Stability analysis: For ¢(z,u) = O find space u € U such that % is singular
LOCA
- Transient Nonlinear Problems:
DAEs/ODEs: Solve f(&(t),z(t),t) = 0,t € [0,T], z(0) = zo, #(0) =)
for z(t) e R",t € [0,T] RythmOS
- Optimization Problems:
Unconstrained: Find v € R" that minimizes f(u) MOOCHO
- Constrained: Find y € R™ and u € R" that: Aristos
minimizes f(y,u)
_ Sandia
such that c¢(y,u) =0 Natioal

Laboratories

'

| 'Abstract Numerical Algorithms

49

An abstract numerical algorithm (ANA) is a numerical algorithm that can be
expressed solely in terms of vectors, vector spaces, and linear operators

Example Linear ANA (LANA) : Linear Conjugate Gradients

Given:
Ae X —- X : s.p.d. linear operator
be X : right hand side vector
Find vector z € X that solves Ax = b

Linear Conjugate Gradient Algorithm

* ANAs can be very mathematically sophisticated!
* ANAs can be extremely reusable!

Compute r(0) = b { Az(O]for the initial guess z(0).

Types of operations Types of objects

linear operator Linear Operators

fori=1,2,...
pio1 = (r=D) (=D
Bi—1=pi—1/pi—2
pi) =207 D 45,
¢ = Ap®
i = (p®,qM)

applications o A

vector-vector Vectors
operations e, x, P g
. Scalars
scalar operations
°p, B,y o

o = pi—1/%

check convergence; continue if necessary

end

scalar product
<x,y> defined by
vector space

Vector spaces?
o X

A | fsional
Laboratories

e “olver Software Components >

Y

- and Interfaces

Thyra::Nonlin

Example Trilinos Packages:
* Belos (linear solvers)
* Anasazi (eigensolvers)
* NOX (nonlinear equations)

* Rhythmos (ODEs,DAEs)
* MOOCHO (Optimization)

Thyra ‘:

APP ANA Interfaces to !
Linear Algebra !

/l

Examples

* SIERRA

* NEVADA

* Xyce F==="

* Sundance ~ Example Trilinos Packages:

. J * Epetra/Tpetra (Mat, Vec)
FEl/Thyra [* Ifpack, AztecOO, ML (Preconditioners)
APPtoLAL Interfaces ~ + Z-J----_ ' Custom/Thyra E « Meros (Preconditioners)

| ~ ' LAL to LAL : * Pliris (Interface to direct solvers)
| ~ ! Interfaces ! » Amesos (Direct solvers)
- O O O O » Komplex (Complex/Real forms)

Types of Software Components

1) ANA : Abstract Numerical Algorithm (e.g. linear solvers, eigensolvers, nonlinear
solvers, stability analysis, uncertainty quantification, transient solvers,
optimization etc.)

2) LAL : Linear Algebra Library (e.g. vectors, sparse matrices, sparse factorizati

preconditioners) Sandia

National
3) APP : Application (the model: physics, discretization method etc.) Laboratories

Stratimikos package

'},'

» Greek oTparnyikn (strategy) + ypapMikog (linear)

« Uniform run-time interface to many different packages

e Linear solvers: Amesos, AztecOO, Belos, ...

* Preconditioners: Ifpack, ML, ...

* Defines common interface to create and use linear solvers
» Thyra::DefaultLinearSolverBuilder

*Reads in options through a Teuchos::ParameterList
« Can change solver and its options at run time
 Can validate options, & read them from a string or XML file
* Accepts any linear system objects that provide
*Epetra Operator / Epetra RowMatrix view of the matrix
Vector views (e.g., Epetra_MultiVector) for right-hand side and initial guess

*Increasing support for Tpetra objects

h

Sandia
National
Laboratories

Stratimikos Parameter List and Sublists

<ParameterList name=“Stratimikos”>
<Parameter name="Linear Solver Type" type="string" value=“Aztec00"/>
<Parameter name="Preconditioner Type" type="string" value="Ifpack"/> TOp level parametel’s
<ParameterList name="Linear Solver Types'">
<ParameterList name="Amesos">

<Parameter name="Solver Type" type="string" value="Klu"/>
<ParameterList name="Amesos Settings">
<Parameter name="MatrixProperty" type="string" value="general"/>
<ParameterList name="Mumps"> ... </ParameterList>
<ParameterList name="Superludist"> ... </ParameterList> - SUbliStS passed
</ParameterList> 5
</ParameterList> 1] on to package
<ParameterList name="AztecOO"> = code!
<ParameterList name="Forward Solve"> (d))
<Parameter name="Max Iterations" type="int" value="400"/> SL
<Parameter name="Tolerance" type="double" value="1le-06"/> é
<ParameterList name="AztecOO Settings"> =
<Parameter name="Aztec Solver" type="string" value="GMRES"/> @
_ Every parameter
</ParameterList> . oo
</ParameterList> and sublist is
handled by Thyra
</ParameterList> i
<ParameterList name="Belos"> ... </ParameterList> code and is fu"y
</ParameterList> validated!
<ParameterList name="Preconditioner Types">
<ParameterList name="Ifpack">
<Parameter name="Prec Type" type="string" value="ILU"/> :?
<Parameter name="Overlap" type="int" value="0"/> g
<ParameterList name="Ifpack Settings"> le]
<Parameter name="fact: level-of-fill" type="int" value="0"/> Ei
ce =
</ParameterList> o
</ParameterList> =
<ParameterlList name="ML"> ... </ParameterList> 2
</ParameterList> o
</ParameterList> _

Sandia
m National
Laboratories

o

Trilinos integrated into other
libraries or applications

Sandia
National

53

Laboratories

TrBITS: Trilinos/Tribal Build, Integrate, Test System

Based on CMake, CTest, & CDash (Kitware open-source toolset)
¢ Developed during Trilinos’ move to CMake
¢ Later extended for use in CASL projects (e.g., VERA) & SCALE
Partitions a project into packages
¢ Common CMake build and test infrastructure across packages
+ Handles dependencies between packages

Integrated support for MPI, CUDA, & third-party libraries (TPLs)

Multi-repository development
¢ Can depend on packages in external repositories
¢ Handy for mixing open-source & closed-source packages
Test driver:
¢ Partitions output per package to CDash
+ Failed packages don’t propagate errors to downstream packages
¢ Integrated coverage and memory testing (shows up on CDash)
¢ Nightly and continuous integration (CI) test driver
Pre-push synchronous continuous integration testing
¢ Developers must use Python checkin-test.py script to push
¢ [t enables dependent packages, & builds & runs tests
¢ Also automates asynchronous continuous integration tests

Plus: TribitsDashboardDriver system, download-cmake.py and numerous othe Sandia

National
Laboratories

Current state of TriBITS

Package7 Package8

Package1 Package2
Package3 Package4
Packageb Package6

Package9

RepoA/ ProjectA

RepoB

TrBITS: Meta Project, Repository, Packages

Package10

RepoC

ProjectD

Flexible aggregation of Packages from

ProjectC

Future changes/additions to TriBITS

different Repositories into meta Projects

TriBITS directory can be snapshoted out of

Trilinos into stand-alone projects
(independent of Trilinos)

Being used by CASL VERA software, and
several other CASL-related software

packages

egdist: Managing multiple repositories

Combining concepts of TPLs and Packages to
allow flexible configuration and building

TribitsExampleProject
Trilinos-independent TriBITS documentation

Provide open access to TribitsExampleProject
and therefore TriBITS

Sandia
National
Laboratories

Albany: rapid code development with
transformational algorithms

Piro Analysis Cubit
|| Dakota ' Exodus | | Pamgen || Hand-Coded:
— OptiPack 7 — = &
Piro Solver ||| MOOCHO e STK_IO
NOX f Cubit
Rythmos Abstract I — |
LOCA Discretization i
MOOCHO Model | :
Stokh Evaluator STK Mesh
°‘ B ! Albany
“Application”
Abstract —Problem Factory
Stratimikos Problem
Aztec Phalanx Field Managerl Sacado AD
Belos A Stokhos UQ
PR]
. |l _.—— Abstract Node fe---1
alld =gzl It--- -I Phalanx Evaluators I
ML Kokkos | ry
Amesos Multicore o _| e — Sandia
Ifpack Accelerators J eboraorics

Jig o

Software interface idioms

Sandia

57

National
Laboratories

ldioms: Common “look and feel”

= Petra distributed object model
+ Provided by Epetra & Tpetra
¢ Common “language” shared by many packages

» Kokkos shared-memory parallel programming model
+ Multidimensional arrays (with device-optimal layout)
+ Parallel operations (for, reduce, scan): user specifies kernel
¢ Thread-parallel hash table, sparse graph, & sparse matrix

= Teuchos utilities package
¢ Hierarchical “input deck™ (ParameterList)

+ Memory management classes (RCP, ArrayRCP)
« Safety: Manage data ownership & sharing
» Performance: Avoid deep copies

+ Performance counters (e.g., TimeMonitor)

[

58

Sandia
National
Laboratories

o

Petra Distributed Object Model

Sandia

59

National
Laboratories

Solving Ax = b:

Typical Petra Object Construction Sequence

* Any number of Comm objects can exist.
“ « Comms can be nested (e.g., serial within MPI).

+ Maps describe parallel layout.

 Maps typically associated with more than one comp
object.

« Two maps (source and target) define an export/import

object.

« Computational objects.
« Compatibility assured via common map.

Sandia
National
Laboratories

' 61

Petra Implementations

= Epetra (Essential Petra):
¢ Current production version
+ Uses stable core subset of C++ (circa 2000)
+ Restricted to real, double precision arithmetic
+ Interfaces accessible to C and Fortran users

» Tpetra (Templated Petra):
+ Next-generation version
¢+ C++ compiler can’t be too ancient (no need for C++11 but good to have)

+ Supports arbitrary scalar and index types via templates
 Arbitrary- and mixed-precision arithmetic
» 64-bit indices for solving problems with >2 billion unknowns
+ Hybrid MPI / shared-memory parallel
» Supports multicore CPU and hybrid CPU/GPU
 Built on Kokkos manycore node library

Sandia
Package leads: Mike Heroux, Mark Hoemmen (many developers) National

Laboratories

A Simple Epetra/AztecOO Program

/I Header files omitted...
int main(int argc, char *argv[]) {
Epetra_Serial Comm Comm();

/[***** Map puts same number of equations on each pe *****

int NumMyElements = 1000 ;
Epetra_Map Map(-1, NumMyElements, 0, Comm);
int NumGlobalElements = Map.NumGlobalElements();

/[***** Create x and b vectors *****
Epetra_Vector x(Map);

Epetra_Vector b(Map);

b.Random(); // Fill RHS with random #s

/[***** Create Linear Problem *****
Epetra_LinearProblem problem(&A, &x, &b);

/| ***** Create an Epetra_Matrix tridiag(-1,2,-1) *****

Epetra_CrsMatrix A(Copy, Map, 3);

double negOne = -1.0; double posTwo = 2.0;

for (int i=0; i<NumMyElements; i++) {
int GlobalRow = A.GRID(i);
int RowLess1 = GlobalRow - 1;
int RowPlus1 = GlobalRow + 1;
if (RowLess1!=-1)

A.InsertGlobalValues(GlobalRow, 1, &negOne, &RowlLess1);

if (RowPlus1!=NumGlobalElements)

A.InsertGlobalValues(GlobalRow, 1, &negOne, &RowPlus1);
A.InsertGlobalValues(GlobalRow, 1, &posTwo, &GlobalRow);

}
A FillComplete(); // Transform from GIDs to LIDs

/[***** Create/define AztecOO instance, solve *****
AztecOO solver(problem);
solver.SetAztecOption(AZ_precond, AZ_Jacobi);
solver.lterate(1000, 1.0E-8);

// *kkkk Report results, flnISh kkhkkkkkhkkhhkhkkhkkkhkkkhkkhkkkk
cout << "Solver performed " << solver.Numlters()
<< " iterations." << endl|
<< "Norm of true residual ="
<< solver.TrueResidual()
<< endl;

return O;

} @ Sandia |
Laboratories

winterfaces
Distributor

Petra Object
Model

+hroadcast() - int
+gatherAllf) - int
+sumAllf) - int
HmaxAllf) - int
i) int
tscansumy) it
+myimagelDy) - in
HnLimirmages() @
+orgataDistributor) @ Distnbuto
+roreatelirectoryy) | Directary

1

Import/Export
commPlan : int

+export()

+checkCompatibility()
FeopyAndPermute()
+packAndPrepars()
+unpackandCombine]

wextandss

sint
E=() :int
IValues() : int
ues() :int
aluas() : int
ues() @ int
+HillComplete() : int

I+ oballndicaé{j cint
+replacebylndices() Int
HHllCompletel) : int

Detalls about Epetra Maps

= Note: Focus on Maps (not BlockMaps).
» Getting beyond standard use case...

= Note: All of the concepts presented here for
Epetra carry over to Tpetral!

Sandia
National
Laboratories

1-to-1 Maps

= Amap is 1-to-1 if...
+ Each global ID appears only once in the map
+ (and is thus associated with only a single process)

= Certain operations in parallel data repartitioning
require 1-to-1 maps:
¢ Source map of an import must be 1-to-1.
¢ Target map of an export must be 1-to-1.
¢+ Domain map of a 2D object must be 1-to-1.
¢+ Range map of a 2D object must be 1-to-1.

Sandia
National
Laboratories

2D Objects: Four Maps

= Epetra 2D objects:
¢ CrsMatrix, FECrsMatrix
¢ CrsGraph
+ VbrMatrix, FEVbrMatrix

= Have four maps:
+ Row Map: On each pr
that process wi

¢+ Column Map: On each processor, the global IDs of the
columns that process will “manage.”

+ Domain Map: The layout of domain objects)
(the x (multi)vector in y = Ax).

+ Range Map: The layout of range objects ~
(the y (multi)vector in y = Ax).

Typically a 1-to-1 map

Typically NOT a 1-to-1 map

or, the global IDs of the rows

Must be 1-to-1
maps!!!

Sandia
National
Laboratories

M
Vo
V3

Sample Problem

A
2 -1
-1 2
0 -1

X

[

Sandia
National
Laboratories

Case 1: Standard Approach

+ First 2 rows of 4, elements of y and elements of x, kept on PE 0.
+ Last row of 4, element of y and element of x, kept on PE 1.

PE 0 Contents PE 1 Contents
A2 2 -1 0 X,
= oA = yeX = = ,.A=10 =1 2|,.x=|x
s P b B P BV ST A

= RowMap = {0, 1} = RowMap = {2}

= (ColMap = {0, 1, 2} = (ColMap = {1, 2}

= DomainMap = {0, 1} * DomainMap = {2}

= RangeMap = {0, 1} = RangeMap = {2}

Original Problem Notes:

y = Rows are wholly owned.
Y X = RowMap=DomainMap=RangeMap (all 1-to-1).
)2 2 —1 0 X, = ColMapis NOT 1-to-1. ;
= (all to FillComplete: A.FillComplete(); // Assumes

v |1=l-1 2 -1 |x

0 -1 2| |x () i
Vil L J A3 laboratories

Case 2: Twist 1

* First 2 rows of 4, first element of y and last 2 elements of x, kept on PE 0.
¢ Last row of 4, last 2 element of y and first element of x, kept on PE 1.

-

PE 0 Contents
_[] - 2 -1 0
y=|yl,--A= 1 9 yeriX

= RowMap = {0, 1}

= ColMap =10, 1, 2}

= DomainMap = {l,2}

= RangeMap = {0}

Original Problem
y A X

vl 2 -1 0] [x

yl=l-1 2 -1 |x
¥ 0 -1 2 X,

PE 1 Contents

y:|:y2:|,...A=[O -1 2],.x=[x]

V3
= RowMap = {2}
= (ColMap = {1, 2}
= DomainMap = {0}
= RangeMap = {1, 2}

Notes:

Rows are wholly owned.
RowMap is NOT = DomainMap

is NOT = RangeMap (all 1-to-1).
ColMap is NOT 1-to-1.

Call to FillComplete:
A.FillComplete(DomainMap, RangeMap);

Sandia
National
Laboratories

Case 2: Twist 2

* First row of A, part of second row of A4, first element of y and last 2 elements of x,
kept on PE 0.
+ Last row, part of second row of 4, last 2 element of y and first element of x, kept on
PE 1.
PE 0 Contents PE 1 Contents
2 -1 0 X ¥, 0 1 -1
= o d = x=| = A= o X=X
g [yl] {_1 1 O} Lj g L’j {O -1 2} [1]
= RowMap = {0, 1} = RowMap = {1, 2}
= (ColMap = {0, 1} = (ColMap = {1, 2}
= DomainMap ={l,2} = DomainMap = {0}
= RangeMap = {0} = RangeMap = {1, 2}
Notes:
Original Problem = Rows are NOT wholly owned.
y A X = RowMap is NOT = DomainMap
_ o - - - is NOT = RangeMap (all 1-to-1).
Vi 2 —1 0 X = RowMap and ColMap are NOT 1-to-1.
= (all to FillComplete:
Vo |= —1 2 —1 X5 A.FillComplete(DomainMap, RangeMap);
0 -1 2| |x) i
— y3 - = d L73_ [‘a%[:ﬂg?(llries

What does FillComplete do?

Signals you're done defining matrix structure
Does a bunch of stuff

Creates communication patterns for

distributed sparse matrix-vector multiply:
+ |f ColMap # DomainMap, create Import object
+ |f RowMap # RangeMap, create Export object

A few rules:

+ Non-square matrices will always require:
A.FillComplete (DomainMap, RangeMap) ;

¢+ DomainMap and RangeMap must be 1-to-1

Sandia
National
Laboratories

Typical Flow of Tpetra Object
Construction

* Generalization of Epetra “Comm”
« Composed with Kokkos::Node

« Kokkos node. Options are:
» Pthreads, OpenMP, Thrust (CUDA), TBB,
Serial

Sandia
National
Laboratories

} Data Classes Stacks

Classic Stack

New Stack

73

Sandia
National
Laboratories

<#include <Tpetra Map.hpp> Tp etra-Xp etra D i ff

<#include <Tpetra CrsMatrix.hpp>
<#include <Tpetra_Vector.hpp>

<#include <Tpetra MultiVector.hpp> LO — Local Ordinal

> #include <Xpetra Map.hpp> GO - GlObal Ordlnal

> #include <Xpetra CrsMatrix.hpp>

> #include <Xpetra Vector.hpp>

> #include <Xpetra MultiVector.hpp>

>

> #include <Xpetra MapFactory.hpp>

> #include <Xpetra CrsMatrixFactory.hpp>

67¢70,72

< RCP<const Tpetra::Map<LO, GO> > map = Tpetra::createUniformContigMap<LO, GO>(numGlobalElements, comm);

> Xpetra::UnderlyingLib lib = Xpetra::UseTpetra;

>

> RCP<const Xpetra::Map<LO, GO> > map = Xpetra::MapFactory<LO, GO>::createUniformContigMap(lib, numGlobalElet
72c¢77

< RCP<Tpetra::CrsMatrix<Scalar, LO, GO> > A = rcp(new Tpetra::CrsMatrix<Scalar, LO, GO>(map, 3));

> RCP<Xpetra::CrsMatrix<Scalar, LO, GO>> A = Xpetra::CrsMatrixFactory<Scalar, LO, GO>::Build(map, 3);

97d101 Sandia
National
Laboratories

ParameterList: Trilinos’ “input deck”

= Simple key/value pair database, but nest-able

+ Naturally hierarchical, just like numerical algorithms or
software

¢+ Communication protocol between application layers
» Reproducible runs: save to XML, restore configuration
= (Can express constraints and dependencies
» QOptional GUI (Optika): lets novice users run your app

Teuchos: : ParameterlList p;
p.set(“Solver”, “GMRES”) ;
p.set (“Tolerance”, 1.0e-4);
p.set("Max Iterations”, 100) ;

Teuchos: : ParameterlList& lsParams = p.sublist(“Solver Options”) ;
lsParams.set (“Fill Factor”, 1);

double tol = p.get<double>(“Tolerance”) ;
int fill = p.sublist(“Solver Options”) .get<int>(“Fill Factor”)

Sandia
National
Laboratories

Memory management classes

= Scientific computation: Lots of data, big objects
+ Avoid copying and share data whenever possible
+ Who “owns” (deallocates) the data?

* Manual memory management (void*) not an option
+ Results in buggy and / or conservative code

» Reference-counted pointers (RCPs) and arrays
+ You don’t have to deallocate memory explicitly
+ Objects deallocated when nothing points to them anymore
+ Almost no performance cost for large objects

[

76

Sandia
National
Laboratories

DAY T 1 ° 1

Teuch

SAND REPORT

SAND2004-3268
Unlimited Release

"= SAND2007-4078

Teuchos::RCP Beginner’s Guide

An Introduction to the Trilinos Smart

Reference-Counted Pointer Class for

(Almost) Automatic Dynamic Memory
Management in C++

Roscoe A. Bartlett
Optimization and Uncertainty Estimation

Prepared by
Sanai Naticnal Laboratones
ADuguerque. New Mexico 37155 and Livermore, Calfornia 34550

andla Corporation,
[t of Energy's
Conlract DE-ACTH-G4-ALESO00

Sandia Is 3 multipragram laboralory operat
3 Loownzed Martin Company, far tne.
National Nucear Security Admintras

Approved for public reiease; furtner dssemination unimked

(lil] Sandia National Laboratories

cport

http://trilinos.sandia.gov/documentation.html

Trilinos/doc/RCPbeginnersGuide

Sandia
National
Laboratories

http://trilinos.sandia.gov/documentation.html

78

“But | don’t want RCPsY/”

They do add some keystrokes:

¢ RCP<Matrix>VS.Matrix*
¢ ArrayRCP<double> vs. double[]

BUT: Run-time cost is none or very little
+ \We have automated performance tests

Debug build = useful error checking
¢+ More than Boost’'s / C++11’s shared ptr
+ \Which we couldn’t use for historical reasons

Not every Trilinos package exposes them
¢+ Some packages hide them behind handles or typedefs
+ Python “skin” hides them; Python is garbage-collected

RCPs part of interface between packages
¢ Trilinos like LEGO™ blocks

¢ Packages don’t have to worry about memory management

+ Easier for them to share objects in interesting ways @ Sanda
dtiona
Laboratories

79

TimeMonitor

Timers that keep track of:
¢+ Runtime
¢+ Number of calls
Time object associates a string name to the timer:

RCP<Time> stuffTimer =
TimeMonitor: :getNewCounter (“Do Stuff”);

TimeMonitor guard controls timer in scope-safe way
{

TimeMonitor tm (*stuffTimer);
doStuff () ;

}
Automatically takes care of recursive / nested calls

Scalable (O(log P)), safe parallel timer statistics summary

¢ TimeMonitor: :summarize () Sand
ndia
@ National
Laboratories

Jig o

Getting started: "How do I...?”

Sandia

80

National
Laboratories

"‘How do |...?7"

Build my application with Trilinos?
Learn about common Trilinos programming idioms?
Download / find an installation of Trilinos?

Find documentation and help?

[

81

Sandia
National
Laboratories

82

Building your app with Trilinos

If you are using Makefiles:
» Makefile.export system

If you are using CMake:
= CMake FIND_ PACKAGE

ACMake

Sandia
National
Laboratories

}*'Trilinos helps you link it with your application

* Library link order
* -Inoxepetra -Inox —lepetra —lteuchos —Iblas —llapack
* Order matters!
» Optional package dependencies affect required libraries

» Using the same compilers that Trilinos used
e g++ oriccoricpcor...?
* mpiCC or mpCC or mpicxx or ... ?

» Using the same libraries that Trilinos used
» Using Intel's MKL requires a web tool to get the link line right
* Trilinos remembers this so you don'’t have to

» Consistent build options and package defines:
« g++ -g—-03 -D HAVE_MPI -D STL CHECKED

* You don’t have to figure any of this out! Trilinos does it for you!
» Please don'’t try to guess and write a Makefile by hand!
 This leads to trouble later on, which I've helped debug.

Sandia
m National
Laboratories

o
},_' Why let Trilinos help?
* Trilinos has LOTS of packages

* As package dependencies (especially optional ones) are
introduced, more maintenance is required by the top-level

packages:
NOX > ML \ »| Amesos iSuperLU
Ifpack New Library New Library
Epetra
EpetraExt
\ . S N— g
Y N
Direct Dependencies Indirect Dependencies
NOX either must:

» Account for the new libraries in its configure script (unscalable), or
* Let Trilinos’ build system tell it about direct and indirect dependencies

Sandia
m National
Laboratories

85

Using CMake to build with Trilinos

CMake: Cross-platform build system
+ Similar function as the GNU Autotools

Building Trilinos requires CMake
You don’t have to use CMake to use Trilinos
But if you do: FIND_PACKAGE(Trilinos ...)

¢+ Example:
https://code.google.com/p/trilinos/wiki/CMakeFindPackageTr
ilinosExample

| find this much easier than writing Makefiles

M ACMake

Sandia
National
Laboratories

Using the Makefile.export system

i

}‘

#

A Makefile that your application can use if you want to build with Epetra.

#
You must first set the TRILINOS_INSTALL_DIR variable.

Include the Trilinos export Makefile for the Epetra package.
include $(TRILINOS_INSTALL_DIR)/include/Makefile.export.Epetra

Add the Trilinos installation directory to the library and header search paths.
LIB_PATH = $(TRILINOS_INSTALL_DIR)/lib
INCLUDE_PATH = $(TRILINOS_INSTALL_DIR)/include $(CLIENT_EXTRA_INCLUDES)

Set the C++ compiler and flags to those specified in the export Makefile.
This ensures your application is built with the same compiler and flags
with which Trilinos was built.

CXX = $(EPETRA_CXX_COMPILER)

CXXFLAGS = $(EPETRA_CXX_FLAGS)

Add the Trilinos libraries, search path, and rpath to the

linker command line arguments

LIBS = $(CLIENT_EXTRA_LIBS) $(SHARED_LIB_RPATH_COMMAND) \
$(EPETRA_LIBRARIES) \
$(EPETRA_TPL_LIBRARIES) \
$(EPETRA_EXTRA_LD_FLAGS)

#
Rules for building executables and objects.
#
%.exe : %.0 $(EXTRA_OBJS)
$(CXX) -0 $@ $(LDFLAGS) $(CXXFLAGS) $< $(EXTRA_OBJS) -L$(LIB_PATH) $(LIBS)

%.0 : %.Cpp
$(CXX) -c -0 $@ $(CXXFLAGS) -I$(INCLUDE_PATH) $(EPETRA_TPL_INCLUDES) $<

Sandia
m National
Laboratories

How do | learn more?

Sandia
National
Laboratories

\

How do | learn more?

= Documentation:

+ Trilinos Wiki with many runnable examples:
https://code.google.com/p/trilinos/wiki/

+ Per-package documentation: htip://trilinos.sandia.gov/packages/
¢ Other material on Trilinos website: http://trilinos.sandia.gov/

= E-mail lists: http://trilinos.sandia.gov/mail lists.html

* Annual user meetings and other tutorials:

¢ Trilinos User Group (TUG) meeting and tutorial
« Late October, or early November at SNL / NM

» Talks available for download (slides and video):

— http://trilinos.sandia.gov/events/trilinos_user group 201<N>
— WhereNis 0,1, 2,3
¢ European TUG meetings (once yearly, in summer)
* Next: CSCS, Lugano, Switzerland, June 30 — July 1, 2014.
» Also (tentative): Paris-Saclay, early March 2015.

88 Sandla
National
Laboratories

http://trilinos.sandia.gov/events/trilinos_user_group_2010
http://trilinos.sandia.gov/events/trilinos_user_group_2010
http://trilinos.sandia.gov/mail_lists.html
http://trilinos.sandia.gov/Trilinos10.6Tutorial.pdf
http://trilinos.sandia.gov/packages/
https://code.google.com/p/trilinos/wiki/

A

How do | get Trilinos?

= Current release (11.6) available for download
¢ http://trilinos.sandia.gov/download/trilinos-11.6.html

+ Source tarball with sample build scripts
+ 11.8 Freeze was last week.

» Public (read-only) git repository
¢ http://trilinos.sandia.gov/publicRepo/index.html
+ Development version, updated ~ nightly

» Cray packages recent releases of Trilinos

+ http://www.nersc.gov/users/software/programming-libraries/math-libraries/trilinos/
¢ S module load trilinos

¢+ Recommended for best performance on Cray machines

» Most packages under BSD license
+ A few packages are LGPL Sandia
. @

National
Laboratories

http://www.nersc.gov/users/software/programming-libraries/math-libraries/trilinos/
http://www.nersc.gov/users/software/programming-libraries/math-libraries/trilinos/
http://www.nersc.gov/users/software/programming-libraries/math-libraries/trilinos/
http://www.nersc.gov/users/software/programming-libraries/math-libraries/trilinos/
http://www.nersc.gov/users/software/programming-libraries/math-libraries/trilinos/
http://trilinos.sandia.gov/publicRepo/index.html
http://trilinos.sandia.gov/publicRepo/index.html
http://trilinos.sandia.gov/download/trilinos-11.6.html
http://trilinos.sandia.gov/download/trilinos-11.6.html
http://trilinos.sandia.gov/download/trilinos-11.6.html

\

How do | build Trilinos?

* Need C and C++ compiler and the following tools:
¢+ CMake (version >= 2.8)
¢+ LAPACK and BLAS
= QOptional software:
+ MPI (for distributed-memory parallel computation)
+ Many other third-party libraries
* You may need to write a short configure script
¢+ Sample configure scripts in sampleScripts/
+ Find one closest to your software setup, & tweak it
» Build sequence looks like GNU Autotools

1. Invoke your configure script, that invokes CMake
2. make
3. make install

= Documentation:
¢ http://trilinos.sandia.gov/Trilinos11CMakeQuickstart.txt
90* Ask me at the hands-on if interested @ Sandia

National
Laboratories

http://trilinos.sandia.gov/Trilinos10CMakeQuickstart.txt

\

Hands-on tutorial

= Two ways to use Trilinos

+ Student shell accounts
* WebTrilinos

» Student shell accounts
¢ Pre-built Trilinos with Trilinos_tutorial (Github repository)
+ Github: branch, send pull requests, save commits / patches!

+ Steps (we may do some for you in advance):
1) Log in to student account on paratoolsO07.rrt.net
2) git clone https://github.com/jwillenbring/Trilinos_tutorial.qgit
3) cd Trilinos_tutorial && source ./setup.sh (load modules)
4) cd cmake build && ./live-cmake (build all examples)
5) Change into build subdirectories to run examples by hand

= \WebTrilinos

¢ Build & run Trilinos examples in your web browser!

+ Need username & password (will give these out later)

¢ https://code.google.com/p/trilinos/wiki/TrilinosHandsOnTutorial
o1* Example codes: https://code.google.com/p/trilinos/w/list @ Sandia

National
Laboratories

https://code.google.com/p/trilinos/w/list
https://code.google.com/p/trilinos/w/list
https://code.google.com/p/trilinos/wiki/TrilinosHandsOnTutorial
https://code.google.com/p/trilinos/wiki/TrilinosHandsOnTutorial
https://github.com/jwillenbring/Trilinos_tutorial.git

\

Other options to use Trilinos

= Virtual machine

+ [nstall VirtualBox, download VM file, and run it
+ Same environment as student shell accounts
+ We won’t cover this today, but feel free to try it

= Build Trilinos yourself on your computer

+ \We may cover this later, depending on your interest

+ Prerequisites:
« C++ compiler, Cmake version >= 2.8, BLAS & LAPACK, (MPI)
* Download Trilinos: trilinos.org -> Download

+ Find a configuration script suitable for your computer
 https://code.google.com/p/trilinos/wiki/BuildScript
 Trilinos/sampleScripts/

+ Modify the script if necessary, & use it to run CMake

+ make —jN, make —JN install

¢ Build your programs against Trilinos
« Use CMake with FIND PACKAGE(Trilinos ...), or
» Use Make with Trilinos Makefile.export system @ Sandia

92 National

Laboratories

https://code.google.com/p/trilinos/wiki/BuildScript
https://code.google.com/p/trilinos/wiki/BuildScript

o

Manycore/Acclerator Capabilities:
A very brief introduction
Full tutorial:

http://trilinos.sandia.qgov/events/trilinos user group 2013/presentat
ions/2013-11-TUG-Kokkos-Tutorial.pdf

93 Sandia
National
Laboratories

http://trilinos.sandia.gov/events/trilinos_user_group_2013/presentations/2013-11-TUG-Kokkos-Tutorial.pdf
http://trilinos.sandia.gov/events/trilinos_user_group_2013/presentations/2013-11-TUG-Kokkos-Tutorial.pdf
http://trilinos.sandia.gov/events/trilinos_user_group_2013/presentations/2013-11-TUG-Kokkos-Tutorial.pdf
http://trilinos.sandia.gov/events/trilinos_user_group_2013/presentations/2013-11-TUG-Kokkos-Tutorial.pdf
http://trilinos.sandia.gov/events/trilinos_user_group_2013/presentations/2013-11-TUG-Kokkos-Tutorial.pdf
http://trilinos.sandia.gov/events/trilinos_user_group_2013/presentations/2013-11-TUG-Kokkos-Tutorial.pdf
http://trilinos.sandia.gov/events/trilinos_user_group_2013/presentations/2013-11-TUG-Kokkos-Tutorial.pdf
http://trilinos.sandia.gov/events/trilinos_user_group_2013/presentations/2013-11-TUG-Kokkos-Tutorial.pdf
http://trilinos.sandia.gov/events/trilinos_user_group_2013/presentations/2013-11-TUG-Kokkos-Tutorial.pdf
http://trilinos.sandia.gov/events/trilinos_user_group_2013/presentations/2013-11-TUG-Kokkos-Tutorial.pdf

B
‘MPI+X" programming model

*Modern HPC environment has at least 2
levels of parallelism:

— (1) distributed memory parallelism typically supported
through a Message Passing Interface (MPI) library
and

— (2) shared memory parallelism supported through one
of the many thread-level programming models (CUDA,
OpenMP, OpenACC, OpenCL, pthreads etc)

),

Laboratories

ol
“X” in “MPI+X”

« CUDA,

. OpenACC _NVIDIA GPUs

Incompatible‘_glgenglz .

it gt J | » AMDGPUs, DSPs, and FPGAs
* OpenMP — Multicore CPUs, MICs (Intel's Xeon Phi)
 Pthreads

),

laboratories

=

11 ”» (11 b}
X7 in "MPI1+X
—>» + Low-level control and optimizations
‘ CUDA— * Not easy to program
« Require significant code
modifications
‘ OpenACC » Pthreads: can’t be used on GPUs

* OpenC
» Architecture-specific,
s OpenACC: doesn’t provide
° OpenMP low-level control or of e.g.,
memory residence

 Pthread

Kokkos - a programming model that enables performance
portability across diverse and evolving manycore devices.

Sandia
|I'| National
Laboratories

k.

Struct-of-Arrays vs. Array-of-Structs

A False Dilemma

97 o

a
Laboratories

98

With C++ as your hammer,
everything looks like your thumb.

Sandia

ional _
laboratories

k.

Compile-time Polymorphism

i
_

Kokkos functor udaKerne

(e.g.,
compute_jacobian

—

99 o

Laboratories

'.';,'
C++ Approach: Trilinos/Kokkos Array

 Challenge: Manycore Portability with Performance

— Multicore-CPU and manycore-accelerator (e.g., NVIDIA)

— Diverse memory access patterns, shared memory utilization, ...
 Via a Library, not a language

— C++ with template meta-programming
— In the spirit of Thrust or Threading Building Blocks (TBB)
— Concise and simple API: functions and multidimensional arrays

» Data Parallel Functions
— Deferred task parallelism, pipeline parallelism, ...
— Simple parallel_for and parallel reduce semantics

* Multidimensional Arrays
— versus “arrays of structs” or “structs of arrays”

100 o

laboratories

*;,'
Kokkos Array Abstractions

* Manycore Device
— Has many threads of execution sharing a memory space
— Manages a memory space separate from the host process
* Physically separate (GPU) or logically separate (CPU)
* or with non-uniform memory access (NUMA)

« Data Parallel Function
— Created in the host process, executed on the manycore device
— Performance can be dominated by memory access pattern
* E.g., NVIDIA coalesced memory access pattern

* Multidimensional Array
» Map array data into a manycore device’s memory
— Partition array data for data parallel work
— Function + parallel partition + map -> memory access pattern

101 o

laboratories

Albany Greenland Ice Sheet Model (FELIX project)

e An unstructured-grid finite element ice sheet
code for land-ice modeling.

e Project objective:

— Provide sea level rise prediction

— Run on new architecture machines (hybrid
systems).

Funding Source: SciDAC
Collaborators: SNL, ORNL, LANL, LBNL, UT, FSU, SC, MIT, NCAR

Sandia Staff: A. Salinger, |. Kalashnikova, M. Perego,
R. Tuminaro, J. Jakeman, M. Eldred

Sandia
I‘l National
Laboratories

ol

Greenland Ice-Sheet model

Scatter Stokes<Residual>

11:10

StokesFOResid<Residual>

10:9
ViscosityFO<Residual> 10:3
9:8 10:2
DOFVecGradlInterpolation<Residual> DOFVecInterpolation<Residual> DOFGradInterpolation<Residual>
MapToPhysicalFrame<Residual> 3:0 3:2 8.7 8:2

5:1 Gather Solution<Residual> @-ﬁme Height<Residual> ComputeBasisFunctions<Residual>

2:1

Gather Coordinate Vector<Residual>

Sandia
ﬂ'l National

laboratories

-

Kokkos implementation algorithm:

1) Replace array allocations with Kokkos::Views (in Host space)
2) Replace array access with Kokkos::Views
3) Replace functions with Functors, run in parallel on Host

4) Set device to ‘Cuda’, ‘OpenMP’ or ‘Threads’ and run on
specified Device

Sandia
Il'] National _
Laboratories

=

General code structure for a Kokkos implementation

1. void main()

2. |

3 Device::initialize()

4. Allocate Kokkos::View (arrays)

5 ..

6 Kokkos::deep_ copy (..) //Copy data to device

7

8 Kokkos::parallel_for/ parallel_reduce (over the number of
iterations to be performed in parallel, Kokkos Functor)

9. ...

10. Kokkos::deep_copy (..) //Copy data to host

11.

12. Device::finalize()

13. }

Sandia
National _
Laboratories

Kokkos functor examp

for(int cell = O; cell < worksetNumCells; cell++) {
for(int gp = 0; gp < numQPs; qp++) {
for(introw = 0; row < numDims; row++){
for(int col = 0; col < numDims; col++){
for(int node = 0; node < numNodes; node++){
jacobian(cell, gp, row, col) +=

coordVec(cell, node, row)
*pasisGrads(node, gp, col);
} // node
} /1 col
} I/ row

Hiagp
} 1/ cell

v

Kokkos::parallel_for (worksetNumCells,
compute_jacobian<ScalarT, Device, numQPs, numDims,
numNodes> (basisGrads, jacobian, coordVec));

e: compute jacobian

template < typename ScalarType, clas DeviceType, int numQPs_,
int numDims_, int numNodes_ >
class compute_jacobian {
Array3 basisGrads_;
Array4 jacobian_;
Array3_const coordVec_;
public:
typedef DeviceType device_type;
compute_jacobian(Array3 &basisGrads, Array4 &jacobian,
Array3 &coordVec)
: basisGrads_(basisGrads)
, jacobian_(jacobian)
, coordVec_(coordVec)}

KOKKOS_INLINE_FUNCTION
void operator () (const std::size_ti) const
{
for(intgp = 0; qp < numQPs_; gp++){
for(int row = 0; row < numDims_; row++){
for(int col = 0; col < numDims_; col++){
for(int node = 0; node < numNodes_; node++){
jacobian_(i, gp, row, col) += coordVec_(i, node, row)
*pbasisGrads_(node, gp, col);
}// node
} /1 col
} 1 row
i gp
}
2

Performance Evaluation

» Using Sandia Computing Research Center Testbed Clusters
e Compton: 32nodes
e 2x Intel Xeon E5-2670 (Sandy Bridge), hyperthreading enabled
 2x Intel Xeon Phi 57core (pre-production)
* ICC 13.1.2, Intel MP1 4.1.1.036
e Shannon: 32nodes
e 2x Intel Xeon E5-2670, hyperthreading disabled
e 2x NVidia K20x
« GCC4.4.5,Cuda 5.5, MVAPICH2 v1.9 with GPU-Direct

= Absolute performance “unit” tests
* Evaluate parallel dispatch/synchronization efficiency
« Evaluate impact of array access patterns and capabilities

* Mini-application : Kokkos vs. ‘native’ implementations
* Evaluate cost of portability

Sandia
107 @ National
Laboratories

MPI+X Performance Test: MiniFE

Conjugate Gradient Solve of a Finite Element Matrix

* Comparing X = Kokkos, OpenMP, Cuda (GPU-direct via

MVAPICH?)

" Weak scaling with one MPI process per device
s/socket due to NUMA

* Except on Xeon: OpenMP requires one proces
[I

 8M elements/device

» Kokkos performance

* 90% or better of “native”

* Improvements ongoing

108

Time 1n sec

12

[
=)

o0

®—® Xecon - Kokkos
@& -@ Xcon - OpenMP

B—8 Xeon Phi - Kokkos ||
= 1 Xeon Phi - OpenMP H

Kepler - Kokkos
Kepler - Cuda

4
#0

8

|
16

f Devices

32

m

64

National _
Laboratories

Linear System Solves

Sandia
National
Laboratories

AztecOO

= Aztec 1s the previous workhorse solver at Sandia:

¢ Extracted from the MPSalsa reacting flow code.

¢ Installed in dozens of Sandia apps.
= AztecOO leverages the investment in Aztec:

+ Uses Aztec iterative methods and preconditioners.
= AztecOO improves on Aztec by:

+ Using Epetra objects for defining matrix and RHS.

¢ Providing more preconditioners/scalings.

+ Using C++ class design to enable more sophisticated use.
= AztecOO interfaces allows:

¢ Continued use of Aztec for functionality.

* Introduction of new solver capabilities outside of Aztec.
= Belos 1s coming along as alternative.

* AztecOO will not go away.

+ Will encourage new efforts and refactorings to use Belos.

Sandia
National
Laboratories

AztecOO Extensibility

" AztecOO is designed to accept externally defined:
¢ Operators (both 4 and M):

» The linear operator 4 is accessed as an Epetra_Operator.

» Users can register a preconstructed preconditioner as an
Epetra Operator.

+ RowMatrix:

« If A isregistered as a RowMatrix, Aztec’s preconditioners are
accessible.

» Alternatively M can be registered separately as an Epetra RowMatrix,
and Aztec’s preconditioners are accessible.

¢ StatusTests:
» Aztec’s standard stopping criteria are accessible.
« Can override these mechanisms by registering a StatusTest Object.

Sandia
National
Laboratories

AztecOO understands Epetra Operator

Epetra_Operator

Epetra FastCrsOperator

Epetra_InvOperator

Epetra RowMatrix

AztecOO 1s designed to
accept externally defined:
¢ Operators (both 4 and M).

¢+ RowMatrix (Facilitates use
of AztecOO preconditioners
with external A4).

+ StatusTests (externally-
defined stopping criteria).

Sandia
National
Laboratories

Belos and Anasazi

Next generation linear solver / eigensolver library, written in
templated C++.

Provide a generic interface to a collection of algorithms for
solving large-scale linear problems / eigenproblems.
Algorithm implementation is accomplished through the use of
traits classes and abstract base classes:

¢ e.g.: MultiVecTraits, OperatorTraits

+ e.g.: SolverManager, Eigensolver / lteration, Eigenproblem/
LinearProblem, StatusTest, OrthoManager, OutputManager

Includes block linear solvers / eigensolvers:
+ Higher operator performance.
+ More reliable.
Solves:
¢ AX=XN\or AX = BX\ (Anasazi)
¢+ AX = B (Belos)

Sandia
National
Laboratories

Why are Block Solvers Useful?

= Block Solvers (in general):
+ Achieve better performance for operator-vector products.

= Block Eigensolvers (Op(A)X = LX):

+ Reliably determine multiple and/or clustered eigenvalues.
¢+ Example applications: Modal analysis, stability analysis,
bifurcation analysis (LOCA)

= Block Linear Solvers (Op(A)X =B).

+ Useful for when multiple solutions are required for the same
system of equations.

¢+ Example applications:

* Perturbation analysis
» Optimization problems
 Single right-hand sides where A has a handful of small eigenvalues

* Inner-iteration of block eigensolvers
Sandia
National
Laboratories

'

' Linear / Eigensolver

Software Design

Belos and Anasazi are solver libraries that:

1.

2.

Provide an abstract interface to an operator-vector products,
scaling, and preconditioning.

Allow the user to enlist any linear algebra package for the
elementary vector space operations essential to the
algorithm. (Epetra, PETSc, etc.)

Allow the user to define convergence of any algorithm (a.k.a.
status testing).

Allow the user to determine the verbosity level, formatting,
and processor for the output.

Allow these decisions to be made at runtime.
Allow for easier creation of new solvers through “managers”
using “iterations” as the basic kernels.
@ Sandia
National
Laboratories

Nonlinear System Solves

Sandia
National
Laboratories

' 117
}‘ NOX/LOCA: Nonlinear Solver
and Analysis Algorithms

NOX and LOCA are a combined package for solving and
analyzing sets of nonlinear equations.

= NOX: Globalized Newton-based solvers.
= LOCA: Continuation, Stability, and Bifurcation Analysis.

We define the nonlinear problem:
given F : R" — R",
find zx« € R" such that F(xx) =0 ¢ R"

F is the residual or function evaluation

X is the solution vector

OF;

8?:]-

J € Ran is the Jacobian Matrix defined by: Jz‘j —

Nonlinear Solver Algorithms

118

Newton’s Method

Tensor Method
My = f(x.)+J.d+ %Tcdd

MN = f(XC) +ch

Broyden’'s Method
Mg = f(x,)*+B.d

Globalizations

Homotopy

Artificial Parameter Continuation
Natural Parameter Continuation

Line Search l
Interval Halving Trust Reqgion
Quadratic Dogleg
Cubic Inexact Dogleg
More’-Thuente
Curvilinear (Tensor)

lterative Linear Solvers: Adaptive Forcing Terms
Jacobian-Free Newton-Krylov
Jacobian Estimation: Colored Finite Difference

@

Sandia
National

Laboratories

Building Blocks of NOX

Example: Newton’s Method for F (x) =0

= Choose an 1nitial guess X,
K = Fork=0,1,2,...
¢ Compute F, =F (x,)

Calculating ¢ Compute J, where
the Direction (J)y = OF i(x)/ox
¢ Let dk = 'Jk-l Fk
Iterate Control , ,
(Solver) D_amplng or|__, ¢ (Optional) Let A, be a
Line Search calculated step length

. Set Xk+1 - Xk + kkdk
Y A4 Test fOl’ Convergence or

Failure
Sandia
National
Laboratories

Stopping Criteria
(Status Test)

Stopping Criteria
(StatusTests)

Highly Flexible Design: Users build a convergence test hierarchy and
registers it with the solver (via solver constructor or reset method).

— Norm F: {Inf, One, Two} {absolute, relative} | F'|| < tol
— Norm Update AX: {Inf, One, Two} |z — 21| < tol
— Norm Weighted Root Mean Square (WRMS):

2
1 N k_ k-1
cl=3 S < tol
N 4 \RTOL[zF 1| + ATOL;

— Max lterations: Failure test if solver reaches max # iters

— FiniteValue: Failure test that checks for NaN and Inf on || F||

— Stagnation: Failure test that triggers if the convergence rate
fails a tolerance check for n consecutive iterations.

F
| F|l > tol
| Fe—1]|

— Combination: {AND, OR} Sandi
la

— Users Designed: Derive from NOX::StatusTest::Generic National
Laboratories

Building a Status Test

- Converge if both: [|F||<1.0E -6 ||0z|wrms < 1.0
« Fail if value of ||F|| becomes Nan or Inf
e Fail if we reach maximum iterations

/ FiniteValue: finiteValueTest

Combo(OR) L2 I\ 1axiters: maxitersTest

allTests
\ normFTest
Combo(AND): convergedTest <
normWRMSTest

NOX::StatusTest::NormF normFTest();
NOX::StatusTest: :NormWRMS normWRMSTest();
NOX::StatusTest::Combo convergedTest(NOX::StatusTest::Combo::AND);
convergedTest.addStatusTest(normFTest);

convergedTest.addStatusTest(normWRMSTest);

NOX::StatusTest::FiniteValue finiteValueTest;

NOX::StatusTest::MaxIters maxItersTest(200);

NOX::StatusTest::Combo allTests(NOX::StatusTest::Combo::0OR);
allTests.addStatusTest(finiteValueTest);

allTests.addStatusTest(maxItersTest); Sandia

allTests.addStatusTest(convergedTest); mﬂrga'm%

Status Tests Continued

-— Final Status Test Results —-

Converged....OR Combination ->
Converged....AND Combination ->
Converged....F-Norm = 3.567e-13 < 1.000e-08
(Length-Scaled Two-Norm, Absolute Tolerance)
Converged....WRMS-Norm = 1.724e-03 < 1

(Min Step Size: 1.000e+00 >= 1)

(Max Lin Solv Tol: 4.951e-14 < 0.5)
o Finite Number Check (Two-Norm F) = Unknown
2 e e e e e e Number of Iterations = -1 < 200

User Defined are Derived from NOX::StatusTest::Generic
NOX::StatusTest::StatusType checkStatus(const NOX::Solver::Generic &problem)

NOX::StatusTest::StatusType
checkStatusEfficiently(const NOX::Solver::Generic &problem,
NOX::StatusTest::CheckType checkType)

NOX::StatusTest::StatusType getStatus() const

ostream& print(ostream &stream, int indent=0) const

ia
nal
ories

123

NOX Interface

NOX solver methods are ANAs, and are implemented in terms
of group/vector abstract interfaces:

Group Vector
computeF () innerProduct ()
computeJacobian () scale()
applyJacobianInverse () norm ()

update ()

NOX solvers will work with any group/vector that implements
these interfaces.

Four concrete implementations are supported:
1. LAPACK

2. EPETRA

3. PETSc

4. Thyra (Release 8.0)

Sandia
National
Laboratories

NOX Interface
Solvers
Solver | Line Search \ __

Layer L Trust Region || pirections Line Searches Status Tests
- e.g., Newton | | - e.g., Polynomial ||-e.g.,, Norm F
Abstract Abstract Vector & Abstract Group
Layer

» Don’t need to directly access the vector or matrix entries, only
manipulate the objects.

* NOX uses an abstract interface to manipulate linear algebra objects.

* Isolate the Solver layer from the linear algebra implementations used by
the application.

* This approach means that NOX does NOT rely on any specific linear
algebra format.

 Allows the apps to tailor the linear algebra to their own needs!

— Serial or Parallel

— Any Storage format: User Defined, LAPACK, PETSc, Epetra ﬁgnﬁgi[?al
Laboratories

NOX Framework

Solvers
Solver | _Il__me Ssar_ch \ —
Layer L rust Region || pirections Line Searches Status Tests
- e.g., Newton | | - e.g., Polynomial ||-e.g.,, Norm F
Abstract Abstract Vector & Abstract Group
_':EY_eI__________//_ _____________________________
Implementations EPetra Dependent Features
Linear - EPetra - Jacobian-Free Newton-Krylov
Algebra - PETSc - Preconditioning
Interface - LAPACK - Graph Coloring / Finite Diff.
- USER DEFINED

User Interface

- Compute F
- Compute Jacobian
- Compute Preconditioner

Sandia
National
Laboratories

The Epetra “Goodies”

Matrix-Free Newton-Krylov Operator
» Derived from Epetra_Operator _ Fx+yo)—-F(x)
» Can be used to estimate Jacobian action on a Iy = S
vector
* NOX::Epetra::MatrixFree

Finite Difference Jacobian

* Derived from an Epetra_RowMatrix F(x + SGj) —F(X)
» Can be used as a preconditioner matrix Jj = 5
* NOX::Epetra::FiniteDifference

Graph Colored Finite Difference Jacobian
» Derived from NOX::Epetra::FiniteDifference
 Fast Jacobian fills — need connectivity/coloring
graph
* (NOX::Epetra::FiniteDifferenceColoring)

Full interface to AztecOO using NOX parameter list

* Preconditioners: internal AztecOO, Ifpack, User defined Sandia
+ Scaling object National

2
Next Generation Multigrid: MueLu

Andrey Prokopenko, Jonathan Hu, Chris Siefert, Ray Tuminaro, Tobias
Wiesner

 Sandia
\ National
Laboratories

Motivation for a New Multigrid Library

" Trilinos already has mature multigrid library, ML
¢ Algorithms for Poisson, Elasticity, H(curl), H(div)
+ Algorithms extensively exercised in practice

¢ Broad user base with hard problems

= However ...
¢ Poor links to other Trilinos capabilities (e.g., smoothers)
¢ (-based, only scalar type “double” supported explicitly

¢ Over 50K lines of source code
» Hard to add cross-cutting features like MPI+X
» Optimizations & semantics are poorly documented

Sandia
National
Laboratories

Objectives for New Multigrid
Framework

Templating on scalar, ordinal types
¢ Scalar: Complex; extended precision
¢ Ordinal: Support 64-bit global indices for huge problems

Advanced architectures
+ Kokkos support for various compute node types (MPI,
MPI+threads, MPI+GPU)
Extensibility

+ Facilitate development of other algorithms
* Energy minimization methods

» Geometric, classic algebraic multigrid, ...

+ Ability to combine several types of multigrid
Preconditioner reuse
+ Reduce setup expense @ Sandia

National
Laboratories

AMG

Two main components
¢ Smoothers o] Au= f

* Approximate solves on each level '

* “Cheaply” reduces particular error components \ /
 On coarsest level, smoother = 4/ (usually) Ol B

¢ (Grid Transfers
» Moves data between levels

* Must represent components that smoothers can’t
reduce

Algebraic Multigrid (AMG)

¢ AMG generates grid transfers NS
¢+ AMG generates coarse grid 4;’s ‘ (lmaxlevel

Sandia
National
Laboratories

Current MueLu Capabilities

» Transfer operators
+ Smoothed aggregation
+ Nonsmoothed aggregation
¢ Petrov Galerkin
¢ Energy minimization
= Smoothers and direct solvers
+ Ifpack/Ifpack2 (Jacobi, Gauss-Seidel, ILU, polynomial, ...)
¢+ Amesos/Amesos2 (KLU, Umfpack, Superlu, ...)

¢ Block smoothers (Braess Sarazin, ...)

We support both Epetra and Tpetra!

Sandia
National
Laboratories

Xpetra

= Wrapper for Epetra and Tpetra

+ Based on Tpetra interfaces

o Allows unified access o cither L ML

linear algebra library

= Layer concept:
¢ Layer 2: blocked operators
¢ Layer 1: operator views

¢ Layer 0: low level E/Tpetra
wrappers (automatically
generated code)

= MueLu algorithms are written =

using Xpetra

Sandia
National
Laboratories

Design overview

Sandia
National
Laboratories

Design

* Hierarchy
¢ (Generates and stores data

¢ Provides multigrid cycles

= Factory

* (Generates data

Muelu: :Hierarchy

= FactoryManager

+ Manages dependencies among factories

Preconditioner is created by linking together factories (constructing
FactoryManager) and generating Hierarchy data using that manager.

User 1s not required to specify these dependencies.

Sandia
National
Laboratories

Factories

* Factory processes input data (from
Level) and generates some output data Input 1
(stored in Level)

Factory
* Two types of factories
— Single level (smoothers, aggregation, ...)

— Two level (prolongators)
Output is stored on next coarser level

DeclareInput(...)

Build(..)

Output l’

Factory can generate more multiple
output variables (e.g. ,,Ptent” and
»Nullspace®)

@

Sandia
National

Laboratories

Multigrid hierarchy

FactoryManager

Factory Factory

Factory Factory

fine level

Level 1 Factory Factory

* A set of factories defines the
building process of a coarse
level

* Reuse factories to iteratively
set up multigrid hierarchy

coarse level

Level 3

Sandia
National
Laboratories

Multigrid hierarchy

FactoryManager

Factory Factory

Factory Factory

Level 1 Factory Factory

* A set of factories defines the
building process of a coarse
level

Level 3 * Reuse factories to iteratively
set up multigrid hierarchy

fine level

coarse level

Sandia
National
Laboratories

Smoothed Aggregation Setup

. |
Group fine unknowns into aggregates A R
to form coarse unknowns |

Partition given nullspace B, across 1
aggregates to have local support

Sandia
National
Laboratories

Smoothed Aggregation Setup

= Group fine unknowns into aggregates -
to form coarse unknowns |

= Partition given nullspace B, across 1
aggregates to have local support

= Calculate QR=B, to get initial |-
prolongator P (=Q) and coarse
nullspace (R). L

- Form final prolongator P = (| — wD'A)Ptent

Sandia
National
Laboratories

Linking factories

8 -~ |
CoalesceDropFactory

[& Graph]

N

AggregationFactory
[Nullspace .

[- Aggregates]

TentativePFactory

[& Ptent]
o
[. i] Sandia
National

Laboratories

Muelu:CoamsehapFactory

(Coarsehap

lspace

CoarssMap

Linking factories

MueLu::SmentherFactory {pre: = MusLu::Hpack2Smocther [type = RELAXATION}, post = pre]

Aggregates

MueLu: Uncoupled AggregationFactary

MueLu"szsLarxeAcFaclc(y

‘ MunLu ﬂaa]mc:Trans(erFi:hnry
MueLu “RAFFactory

Mu:Lu TransPFactory

MucLu:EminPFaciary

fmparier Importer

MucLu: T.:mzuv:??aclr_ry
W UhAmslgamationlnfo

Mu:].u _Rcbahme‘rmmfu}:a:m

Importer

MueLu:RepartticrFactory T
MucLu: Zolianlnterface

Coordinates

mumber of partitions

MueluCoordinatesTransferFactory

Grapn

MucLu: CoalesceDropFactary

uAmalgamationlfa

Aggrogates

Aggregatc:

Sandia
National
Laboratories

Advantages of Data Management on
Level

» |Level manages data deallocation once all requests satisfied

" Generating factory does not need to know what other
factories require data

= Data reuse

+ Any data (aggregates, P, ...) can be retained by user request for
reuse in later runs.

¢ Data can be retained for later analysis.

+ Almost any reuse granularity is possible.

Sandia
National
Laboratories

Muelu User interfaces

Sandia
National
Laboratories

MuelLu — User Interfaces

= MueLlu can be customized as follows:
¢+ XML input files

¢ Parameter lists (key-value pairs)
¢ Directly through C++ interfaces

= New/casual users
¢ Minimal interface

+ Sensible defaults provided automatically

» Advanced users

¢ (Can customize or replace any component of multigrid algorithm.

Sandia
National
Laboratories

C++: smoothed aggregation

Hierarchy H(fineA); // generate hierarchy using fine level matrix
H.Setup () ; /f call multigrid setup (create hierarchy)

H.Iterate (B, nIts, X); // perform nIts iterations with multigrid
// algorithm (V-Cycle)

(= B [S S) N

» Generates smoothed aggregation AMG
» Uses reasonable defaults.
« Every component can be easily changed

Sandia
National
Laboratories

C++: unsmoothed aggregation

1 |Hierarchy H(fineA) ; // generate hierarchy using fine level matrix
Z

2 |RCP<TentativePFactory = PFact = rcp(new TentativePFactory ());

4 | FactoryManager M; // construct factory manager

5 |M.SetFactory ("P", PFact); // define tentative prolongator factory

3] // as default factory for generating P

r

& |H.Setup (M) ; // call multigrid setup (create hierarchy)
9

10 |H.Iterate (B, nIts, X); // perform nIts iterations with multigrid
11 // algorithm (V-Cycle)

» Generates unsmoothed prolongator

Sandia
National
Laboratories

C++: unsmoothed aggregation

1 |Hierarchy H(fineA) ; // generate hierarchy using fine level matrix
2z

2 |RCP<TentativePFactory = PFact = rcp(new TentativePFactory ());

4 | FactoryManager M; // construct factory manager

5 |M.SetFactory ("P", PFact); // define tentative prolongator factory

3] // as default factory for generating P

7

& |H.Setup (M) ; // call multigrid setup (create hierarchy)
=)

10 |H.Iterate (B, nIts, X); // perform nIts iterations with multigrid
11 // algorithm (V-Cycle)

» Generates unsmoothed prolongator

Sandia
National
Laboratories

C++: polynomial smoother

Hierarchy H(fTineA); // generate hierarchy using fine level matrix
Teuchos : :ParameterList smootherParams ; \
smootherParams .set ("chebyshev: degree ", 3);

RCP <SmootherPrototype = smooProto =
rcp (new TrilinosSmoother ("Chebyshev ", smootherParams) ;

kﬂmmlmm.mh}p

RCP <SmootherFactory = smooFact =

16 rcp (new SmootherFactory (smooProto));

11

12 | FactoryManager M;

wé M.SetFactory ("Smoother ", smooFact); /
14

15 |H.Setup (M) ; /f call multigrid setup (create hierarchy)

16

17 |H.Iterate {B, nIts, X); // perform nIts iterations with multigrid

18 // algorithm (V-Cycle)

» Uses degree 3 polynomial smoother

Sandia
National
Laboratories

=] Ch N & W k) =

XML: creating hierarchy

ParameterListInterpreter mueluFactory (xmlFile) ;
RCP <Hierarchy = H = mueluFactory .CreateHierarchy () ;
H-=GetLevel (0)-=Set("A", finehA):

mueluFactory .SetupHierarchy (*H);

H-=Iterate (B, nIlts, X):

Sandia
National
Laboratories

XML: smoothed aggregation

1 | <ParameterList name= "MuelLu" =

2 <Parameter name= "verbosity" type= "string" wvalue= "high" /=

3

- <Parameter name= "max levels" type="int" wvalue= "10" />

5 <Parameter name= "coarse: max size" type= "int" wvalue= "2000" /=
b

7 <Parameter name= "number of equations" type= "int" wvalue= "1" />
8

9 <Parameter name= "algorithm" type= "string" wvalue= "sa" /=

10

11 | =/ParameterList>

» Generates smoothed aggregation AMG
» Uses reasonable defaults

Sandia
National
Laboratories

XML: unsmoothed aggregation

1 | <ParameterList name= "MuelLu" =
2 <Parameter name= "verbosity" type= "string" wvalue= "high" /=
3
4 <Parameter name= "max levels" type="int" wvalue= "10" />
5 <Parameter name= "coarse: max size" type= "int" wvalue= "2000" /=
3]
7 <Parameter name= "number of eguations" type= "int" value= "1" />
=
[9 <Parameter name= "algorithm" type= "string" wvalue= "unsmoothed" /=]
10
11 | </ParameterlList>

» Generates unsmoothed prolongator

Sandia
National
Laboratories

XML

: polynomial smoother

1 | <ParameterList name= "MuelLu" =
2 <Parameter name= "verbosity" type= "string" wvalue= "high" />
3
4 <Parameter name= "max levels" type="int" wvalue= "10" />
5 <Parameter name= "coarse: max slze" type= "int" wvalue= "2000" />
3]
7 <Parameter name= "number of equations" type= "int" wvalue= "1" />
8
9 <Parameter name= "algorithm" type= "string" wvalue= "sa" />
10
11 <Parameter name= "smoother: type" type= "string" wvalue= "CHEBYSHEV" />
12 <ParameterList name= "smoother: params" =
13 <Parameter name= "chebyshev: degree" type= "int" wvalue= "3" />
14 </ParameterList>
1o
16 | =/ParameterList>
» Uses degree 3 polynomial smoother
Sandia
National

Laboratories

XML: polynomial smoother only for
level 2

1 | <ParameterList name= "Muelu" =

2 <Parameter name= "verbosity" type= "string" wvalue= "high" /=

3

- <Parameter name= "max levels" type="int" value= "10" />

5 <Parameter name= "coarse: max size" type= "int" wvalue= "2000" />

b

7 <Parameter name= "number of equations™ type= "int" value= "1" />

8

9 <Parameter name= "algorithm" type= "string" wvalue= "sa" /=

10

11 <ParameterList name= "level 2" >

2 <Parameter name= "smoother: type" type= "string" wvalue= "CHEBYSHEV" /=
13 <ParameterList name= "smoother: params" =

14 <Parameter name= "chebyshev: degree" type= "int" wvalue= "3" />
15 </ParameterList>

16 </ParameterList>

17

18 | </ParameterList>

» Uses degree 3 polynomial smoother for level 2
» Uses default smoother (Gauss-Seidel) for all other levels

Sandia
National
Laboratories

Summary

= (Current status
+ Part of publicly available Trilinos anonymous clone
+ We still support ML.

" Ongoing/Future work

¢ Preparing for public release
* Improving documentation

» Improving application interfaces
¢ Improving performance
¢+ Integrating existing algorithms

¢ Developing new algorithms

Sandia
National
Laboratories

