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Schedule

Session 1: Trilinos overview

Session 2: Hands-on Trilinos tutorial

Session 3: Kokkos overview and tutorial

Session 4: Hands-on, audience-directed topics
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Outline

 What can Trilinos do for you?

 Trilinos’ software organization

 Whirlwind tour of Trilinos packages

 Getting started: “How do I…?”

 Preparation for hands-on tutorial
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What can Trilinos do for you? 



What is Trilinos?

 Object-oriented software framework for…

 Solving big complex science & engineering problems

 More like LEGO™ bricks than Matlab™
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Applications

 All kinds of physical simulations:
 Structural mechanics (statics and dynamics)

 Circuit simulations (physical models)

 Electromagnetics, plasmas, and superconductors

 Combustion and fluid flow (at macro- and nanoscales)

 Coupled / multiphysics models

 Data and graph analysis
 Even gaming!
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Target platforms: 
Any and all, current and future

 Laptops and workstations

 Clusters and supercomputers
 Multicore CPU nodes 

 Hybrid CPU / GPU nodes

 Parallel programming environments
 MPI, OpenMP, Pthreads, Intel TBB

 CUDA (for NVIDIA GPUs)

 Combinations of the above

 User “skins”
 C++ (primary language)

 C, Fortran, Python

 Web (Hands-on demo)



Unique features of Trilinos

 Huge library of algorithms
 Linear and nonlinear solvers, preconditioners, …

 Optimization, transients, sensitivities, uncertainty, …

 Support for huge (> 2B unknowns) problems

 Support for mixed and arbitrary precisions

 Growing support for hybrid (MPI+X) parallelism
 X: CPU threads (multicore or Intel Xeon Phi) or Nvidia GPU

 Built on a unified shared-memory parallel programming 
model: Kokkos (see Session 3)

 Support currently limited, but growing fast.
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How Trilinos evolved

Numerical math
Convert to models that 
can be solved on digital 

computers

Algorithms
Find faster and more 
efficient ways to solve 

numerical models
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Numerical model
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Algorithms
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Algorithms

physicsphysics

computationcomputation

Linear
Nonlinear

Eigenvalues
Optimization

Linear
Nonlinear

Eigenvalues
Optimization

Automatic diff.

Domain dec.

Mortar methods

Automatic diff.

Domain dec.

Mortar methods

Time domain

Space domain

Time domain

Space domain

Petra 
Utilities

Interfaces
Load Balancing

Petra 
Utilities

Interfaces
Load Balancing

solvers

discretizations methods

core

 Started as linear solvers and distributed objects

 Capabilities grew to satisfy application and 
research needs

 Discretizations in space and time

 Optimization and sensitivities

 Uncertainty quantification



From Forward Analysis, to Support 
for High-Consequence Decisions

Forward Analysis

Accurate & Efficient Forward Analysis

Robust Analysis with Parameter Sensitivities

Optimization of Design/System

Quantify Uncertainties/Systems Margins

Optimization under Uncertainty

Each stage requires greater performance and error control of prior stages:   
Always will need: more accurate and scalable methods. 

more sophisticated tools.

Each stage requires greater performance and error control of prior stages:   
Always will need: more accurate and scalable methods. 

more sophisticated tools.

Systems of systems



Trilinos strategic goals

 Algorithmic goals
 Scalable computations (at all levels of parallelism)

 Hardened computations

• Fail only if problem intractable

• Diagnose failures & inform the user

 Full vertical coverage

• Problem construction, solution, analysis, & optimization

 Software goals
 Universal interoperability (within & outside Trilinos)

 Universal accessibility

• Any hardware & operating system with a C++ compiler

• Including programming languages besides C++

 “Self-sustaining” software

• Clean design & implementation

• Sufficient testing & documentation for confident refactoring
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Trilinos’ software organization
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Trilinos is made of packages
 Not a monolithic piece of software

 Like LEGO™ bricks, not Matlab™

 Each package
 Has its own development team and management

 Makes its own decisions about algorithms, coding style, etc.

 May or may not depend on other Trilinos packages

 May even have a different license (most are BSD) or release status

 Benefits from Trilinos build and test infrastructure

 Trilinos is not “indivisible”
 You don’t need all of Trilinos to get things done

 Don’t feel overwhelmed by large number (~55) of packages!

 Any subset of packages can be combined and distributed

 Trilinos top layer framework (TriBITS)
 Manages package dependencies

 Runs packages’ tests nightly, and on every check-in

 Useful: spun off from Trilinos into a separate project
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Why packages?

 Users decide how much of Trilinos they want to use
 Only use and build the packages you need

 Mix and match Trilinos components with your own, e.g.,

• Trilinos sparse matrices with your own linear solvers

• Your sparse matrices with Trilinos’ linear solvers

• Trilinos sparse matrices & linear solvers with your nonlinear solvers

• …

 Popular packages keep their “brand”
 Well-known packages like ML & Zoltan still stand alone

 But benefit from Trilinos build & test infrastructure

 Reflects organization of research / development teams
 Easy to turn a research code into a new package

 Keeps team sizes small for more productivity

 “Multifrontal development” (minimizes interference)
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Interoperability vs. Dependence
(“Can Use”)                   (“Depends On”)

 Packages have minimal required dependencies…

 But interoperability makes them useful:
 NOX (nonlinear solver) needs linear solvers

• Can use any of {AztecOO, Belos, LAPACK, …} 

 Belos (linear solver) needs preconditioners, matrices, and vectors
• Matrices and vectors: any of {Epetra, Tpetra, Thyra, …, PETSc}

• Preconditioners: any of {IFPACK, ML, Ifpack2, MueLu, Teko, …}

 Interoperability is enabled at configure time
 Each package declares its list of interoperable packages

 Trilinos’ build system automatically hooks them together

 You can ask to build only specific packages
• Trilinos will enable only those packages needed to make them build

 External compatible development
 DTK (https://github.com/CNERG/DataTransferKit)

 Parallel distributed data transfer engine, Stuart Slattery 

https://github.com/CNERG/DataTransferKit
https://github.com/CNERG/DataTransferKit


Capability areas and leaders

 Capability areas:
 Framework, Tools & Interfaces (Jim Willenbring)

 Software Engineering Technologies and Integration (Ross Bartlett)

 Discretizations (Pavel Bochev)

 Geometry, Meshing & Load Balancing (Karen Devine)

 Scalable Linear Algebra (Mike Heroux)

 Linear & Eigen Solvers (Jonathan Hu)

 Nonlinear, Transient & Optimization Solvers (Andy Salinger)

 Scalable I/O (Ron Oldfield)

 User Experience (Bill Spotz)

 Each area includes one or more Trilinos packages

 Each leader provides strategic direction within area
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Whirlwind Tour of Packages
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Trilinos Package Summary
Objective Package(s)

Discretizations
Meshing & Discretizations STKMesh, Intrepid, Pamgen, Sundance, Mesquite

Time Integration Rythmos

Methods
Automatic Differentiation Sacado

Mortar Methods Moertel

Services

Linear algebra objects Epetra, Tpetra

Interfaces Xpetra, Thyra, Stratimikos, RTOp, FEI, Shards

Load Balancing Zoltan, Isorropia, Zoltan2

“Skins” PyTrilinos, WebTrilinos, ForTrilinos, Ctrilinos, Optika

Utilities, I/O, thread API Teuchos, EpetraExt, Kokkos, Triutils, ThreadPool, Phalanx

Solvers

Iterative linear solvers AztecOO, Belos, Komplex

Direct sparse linear solvers Amesos, Amesos2, ShyLU

Direct dense linear solvers Epetra, Teuchos, Pliris

Iterative eigenvalue solvers Anasazi

Incomplete factorizations AztecOO, IFPACK, Ifpack2

Multilevel preconditioners ML, CLAPS, MueLu

Block preconditioners Meros, Teko

Nonlinear solvers NOX, LOCA

Optimization MOOCHO, Aristos, TriKota, Globipack, Optipack

Stochastic PDEs Stokhos



Two solver stacks: 
Epetra & Tpetra

 Many packages built on Epetra linear algebra interface
 Common “solver stack” for Epetra sparse matrices & vectors

 Users want features that break interfaces
 Support for solving huge problems (> 2B entities)

 Arbitrary and mixed precision

 Hybrid (MPI+X) parallelism ( most radical interface changes)

 Users also value backwards compatibility

 We decided to build a (partly) new stack using Tpetra
 MPI+X – friendly interfaces go into Tpetra stack

 Epetra got some support for huge problems (“Epetra64”)

 Some packages can work with either Epetra or Tpetra

• Iterative linear solvers & eigensolvers (Belos, Anasazi)

• Multilevel preconditioning (MueLu), sparse direct (Amesos2)
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Whirlwind Tour of Packages

Discretizations Methods       Core Solvers
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 Portable utility package of commonly useful tools

 ParameterList: nested (key, value) database (more later)

 Generic LAPACK and BLAS wrappers

 Local dense matrix and vector classes

 Memory management classes (more later)

 Scalable parallel timers and statistics

 Support for generic algorithms (traits classes)

 Help make Trilinos work on as many platforms as possible
 Protect algorithm developers from platform differences

 Not all compilers could build Boost in the mid-2000s

 BLAS and LAPACK Fortran vs. C calling conventions

 Different sizes of integers on different platforms

 You’ll see this package a lot

Package lead: Roscoe Barlett (many developers)

Teuchos
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1Petra is Greek for “foundation”.

Trilinos Common Language: Petra

 “Common language” for distributed linear algebra objects 
(operator, sparse matrix, dense vectors)

 Petra1 provides distributed matrix and vector services

 Object model

 Describes basic user and support classes in UML, 
independent of language/implementation

 Describes objects and relationships to build and use 
matrices, vectors and graphs

 Has 2 implementations under active development
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Petra Implementations

 Epetra (Essential Petra):  
 Earliest and most heavily used

 C++ circa 1998 (“C+/- compilers” OK)

 Real, double-precision arithmetic

 Interfaces accessible to C and Fortran users

 Tpetra (Templated Petra):  
 C++ circa mid-2000s (no C++11)

 Supports arbitrary scalar and index types via templates

• Arbitrary- and mixed-precision arithmetic

• 64-bit indices for solving problems with >2 billion unknowns

 Hybrid MPI / shared-memory parallel 

• Supports multicore CPU and hybrid CPU/GPU

• Built on Kokkos shared-memory parallel programming model

Package leads: Mike Heroux, Mark Hoemmen (many developers)
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EpetraExt: Extensions to Epetra

 Library of useful classes not needed by everyone

 Most classes are types of “transforms”.

 Examples:
 Graph/matrix view extraction.

 Epetra/Zoltan interface.

 Explicit sparse transpose.

 Singleton removal filter, static condensation filter.

 Overlapped graph constructor, graph colorings.

 Permutations.

 Sparse matrix-matrix multiply.

 Matlab, MatrixMarket I/O functions.

 Most classes are small, useful, but non-trivial to write.

 Migrating to 64-bit ints

Developer: Robert Hoekstra, Alan Williams, Mike Heroux,
Chetan Jhurani
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Zoltan(2)

 Data Services for Dynamic Applications

 Dynamic load balancing
 Graph coloring
 Data migration
 Matrix ordering

 Partitioners:
 Geometric (coordinate-based) methods:

• Recursive Coordinate Bisection (Berger, Bokhari)
• Recursive Inertial Bisection (Taylor, Nour-Omid)
• Space Filling Curves (Peano, Hilbert)
• Refinement-tree Partitioning (Mitchell) 

 Hypergraph and graph (connectivity-based) methods:
• Hypergraph Repartitioning PaToH (Catalyurek)
• Zoltan Hypergraph Partitioning
• ParMETIS (U. Minnesota)
• Jostle (U. Greenwich)

 Isorropia package: interface to Epetra objects

Developers: Karen Devine, Erik Boman, Siva Rajamanickam, Michael Wolf
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Thyra

 Abstract linear algebra interfaces

 Offers flexibility through abstractions to algorithm developers

 Linear solvers (Direct, Iterative, Preconditioners)

 Use abstraction of basic matrix & vector operations

 Can use any concrete linear algebra library (Epetra, Tpetra, …)

 Nonlinear solvers (Newton, etc.) 

 Use abstraction of linear solve

 Can use any concrete linear solver library and preconditioners

 Transient/DAE solvers (implicit)

 Use abstraction of nonlinear solve

 Thyra is how Stratimikos talks to data structures & solvers

Developers:  Roscoe Bartlett, Kevin Long



28

“Skins”
 PyTrilinos provides Python access to Trilinos packages

 Uses SWIG to generate bindings.

 Support for many packages

 CTrilinos: C wrapper (mostly to support ForTrilinos).

 ForTrilinos: OO Fortran interfaces.

 WebTrilinos:  Web interface to Trilinos

 Generate test problems or read from file.

 Generate C++ or Python code fragments and click-run.

 Hand modify code fragments and re-run.

 Will use during hands-on.

Developers: Ray Tuminaro, Jonathan Hu, Marzio Sala, Jim Willenbring

Developer: Bill Spotz

Developers: Nicole Lemaster, Damian Rouson
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Whirlwind Tour of Packages

Discretizations Methods       Core        Solvers
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Kokkos: Node-level Data Classes

 Manycore/Accelerator data structures & kernels

 Epetra is MPI-only, Tpetra is MPI[+X[+Y]].

 Kokkos parallel dispatch and data structures
 See Session 3 for details

 Multi-dimensional arrays, hash table, sparse graph & matrix

 Hide physical data layout & target it to the hardware

 “Pretty Good Kernels” 
 Computational kernels for sparse and dense matrices

 Written generically to Kokkos, not to specific hardware

• “How I learned to stop worrying and love CSR”

 Replaceable with vendor-optimized libraries

Developer: Carter Edwards, Mark Hoemmen, Dan Sunderland, 
Christian Trott
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 Interface to direct solvers for distributed sparse linear 
systems (KLU, UMFPACK, SuperLU, MUMPS, ScaLAPACK)

 Challenges:
 No single solver dominates

 Different interfaces and data formats, serial and parallel

 Interface often changes between revisions

 Amesos offers:
 A single, clear, consistent interface, to various packages

 Common look-and-feel for all classes

 Separation from specific solver details

 Use serial and distributed solvers; Amesos takes care of data 
redistribution

 Native solvers:  KLU and Paraklete

Developers: Ken Stanley, Marzio Sala, Tim Davis

Amesos
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 Second-generation sparse direct solvers package

 Unified interface to multiple solvers, just like Amesos

 Supports matrices of arbitrary scalar and index types

 Path to multicore CPU and hybrid CPU/GPU solvers

 Multiple solvers can coexist in the same MPI process

 Supports new “hybrid / hybrid” direct / iterative solver ShyLU

 Abstraction from specific sparse matrix representation

 Accepts Epetra or Tpetra sparse matrices

 Extensible to other matrix types

Developers: Eric Bavier, Erik Boman, and Siva Rajamanickam

Amesos2



33

AztecOO

 Krylov subspace solvers: CG, GMRES, BiCGSTAB,…

 Incomplete factorization preconditioners

 Aztec was Sandia’s workhorse solver:
 Extracted from the MPSalsa reacting flow code

 Installed in dozens of Sandia apps

 1900+ external licenses

 AztecOO improves on Aztec by:
 Using Epetra objects for defining matrix and vectors

 Providing more preconditioners/scalings

 Using C++ class design to enable more sophisticated use

 AztecOO interface allows:
 Continued use of Aztec for functionality

 Introduction of new solver capabilities outside of Aztec

Developers:  Mike Heroux, Alan Williams, Ray Tuminaro
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Belos

 Next-generation linear iterative solvers

 Decouples algorithms from linear algebra objects
 Linear algebra library has full control over data layout and kernels
 Improvement on “reverse communication” interface of Aztec
 Essential for hybrid (MPI+X) parallelism

 Solves problems that apps really want to solve, faster:
 Multiple right-hand sides: AX=B
 Sequences of related systems: (A + ΔAk) Xk = B + ΔBk

 Many advanced methods for these types of systems
 Block methods: Block GMRES and Block CG
 Recycling solvers: GCRODR (GMRES) and CG
 “Seed” solvers (hybrid GMRES) 
 Block orthogonalizations (TSQR)

 Supports arbitrary and mixed precision, and complex

Developers:  Heidi Thornquist, Mike Heroux, Mark Hoemmen,
Mike Parks, …
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Ifpack(2): Algebraic preconditioners

 Preconditioners:
 Overlapping domain decomposition

 Incomplete factorizations (within an MPI process)

 (Block) relaxations & Chebyshev

 Accepts user matrix via abstract matrix interface

 Uses Epetra for basic matrix/vector calculations

 Perturbation stabilizations & condition estimation

 Can be used by NOX, ML, AztecOO, Belos, …

 Ifpack2: Tpetra version of Ifpack
 Supports arbitrary precision & complex arithmetic

 Path forward to hybrid-parallel factorizations

Developers:  Mike Heroux, Mark Hoemmen, Siva Rajamanickam, 
Marzio Sala, Alan Williams, etc.
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: Multi-level Preconditioners

 Smoothed aggregation, multigrid and domain decomposition 
preconditioning package

 Critical technology for scalable performance of many apps

 ML compatible with other Trilinos packages:
 Accepts user data as Epetra_RowMatrix object (abstract interface). 

Any implementation of Epetra_RowMatrix works.

 Implements the Epetra_Operator interface. Allows ML preconditioners
to be used with AztecOO, Belos, Anasazi.

 Can also be used independent of other Trilinos packages

 Next-generation ML package: MueLu
 Works with Epetra or Tpetra objects (via Xpetra interface)

Developers: Ray Tuminaro, Jeremie Gaidamour, Jonathan Hu, Marzio Sala, Chris Siefert
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MueLu: Next-gen algebraic multigrid

 Motivation for replacing ML
 Improve maintainability & ease development of new algorithms

 Decouple computational kernels from algorithms

• ML mostly monolithic (& 50K lines of code)

• MueLu relies more on other Trilinos packages

 Exploit Tpetra features

• MPI+X (Kokkos programming model mitigates risk)

• 64-bit global indices (to solve problems with >2B unknowns)

• Arbitrary Scalar types (Tramonto runs MueLu w/ double-double)

 Works with Epetra or Tpetra (via Xpetra common interface)

 Facilitate algorithm development
 Energy minimization methods

 Geometric or classic algebraic multigrid; mix methods together

 Better support for preconditioner reuse
 Explore options between “blow it away” & reuse without change

Developers: Andrey Prokopenko, Jonathan Hu, Chris Siefert, Ray Tuminaro, Tobias Wiesner
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Anasazi

 Next-generation iterative eigensolvers

 Decouples algorithms from linear algebra objects
 Like Belos, except that Anasazi came first

 Block eigensolvers for accurate cluster resolution
 Can solve

 Standard (AX = ΛX) or generalized (AX = BXΛ)
 Hermitian or not, real or complex

 Algorithms available
 Block Krylov-Schur (most like ARPACK’s IR Arnoldi)
 Block Jacobi-Davidson; TraceMin in progress
 Locally Optimal Block-Preconditioned CG (LOBPCG)
 Implicit Riemannian Trust Region solvers
 Scalable orthogonalizations (e.g., TSQR, SVQB)

Developers: Heidi Thornquist, Mike Heroux, Chris Baker, 
Rich Lehoucq, Ulrich Hetmaniuk, Mark Hoemmen
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NOX: Nonlinear Solvers

 Suite of nonlinear solution methods

Implementation
• Parallel
• OO-C++
• Independent of the 

linear algebra 
package!

Jacobian Estimation
• Graph Coloring
• Finite Difference
• Jacobian-Free 

Newton-Krylov

MB f xc  Bcd+=

Broyden’s Method Newton’s Method
MN f xc  Jc d+=

Tensor Method    
MT f xc  Jcd

1
2
---Tcdd+ +=

Globalizations
Trust Region

Dogleg
Inexact Dogleg

Line Search
Interval Halving

Quadratic
Cubic

More’-Thuente

http://trilinos.sandia.gov/packages/nox

Developers:  Tammy Kolda, Roger Pawlowski
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LOCA

 Library of continuation algorithms

 Provides 
 Zero order continuation

 First order continuation

 Arc length continuation

 Multi-parameter continuation (via Henderson's MF Library) 

 Turning point continuation

 Pitchfork bifurcation continuation

 Hopf bifurcation continuation

 Phase transition continuation

 Eigenvalue approximation (via ARPACK or Anasazi)

Developers: Andy Salinger, Eric Phipps
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MOOCHO & Aristos

 MOOCHO: Multifunctional Object-Oriented arCHitecture
for Optimization

 Large-scale invasive simultaneous analysis and design 
(SAND) using reduced space SQP methods. 

 Aristos: Optimization of large-scale design spaces

 Invasive optimization approach

 Based on full-space SQP methods

 Efficiently manages inexactness in the inner linear solves

Developer: Denis Ridzal

Developer: Roscoe Bartlett
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Whirlwind Tour of Packages

Core Utilities
Discretizations Methods        Solvers
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Interoperable Tools for Rapid Development 
of Compatible DiscretizationsIntrepidIntrepid

Intrepid offers an innovative software design for compatible discretizations: 

 Access to finite {element, volume, difference} methods using a common API

 Supports hybrid discretizations (FEM, FV and FD) on unstructured grids

 Supports a variety of cell shapes:

 Standard shapes (e.g., tets, hexes): high-order finite element methods

 Arbitrary (polyhedral) shapes: low-order mimetic finite difference methods

 Enables optimization, error estimation, V&V, and UQ using fast invasive techniques 

(direct support for cell-based derivative computations or via automatic differentiation)

Direct: FV/DDirect: FV/D

ReconstructionReconstruction

Cell DataCell Data

ReductionReduction

Pullback: FEMPullback: FEM

Higher order General cells

Λk

Forms

Λk

Forms

d,d*,,^,(,)
Operations

d,d*,,^,(,)
Operations

{C0,C1,C2,C3}
Discrete forms

{C0,C1,C2,C3}
Discrete forms

D,D*,W,M
Discrete ops.

D,D*,W,M
Discrete ops.

Developers:  Pavel Bochev and Denis Ridzal
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Rythmos

 Suite of time integration (discretization) methods

 Supported methods include
 Backward and Forward Euler

 Explicit Runge-Kutta

 Implicit BDF

 Operator splitting methods & sensitivities

 Revived by Glen Hansen and under active development

Developers: Glen Hansen, Roscoe Bartlett, Todd Coffey
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Whirlwind Tour of Packages

Discretizations Methods  Core        Solvers
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Sacado:  Automatic Differentiation

 Automatic differentiation tools optimized for element-level computation

 Applications of AD: Jacobians, sensitivity and uncertainty analysis, …
 Uses C++ templates to compute derivatives

 You maintain one templated code base; derivatives don’t appear explicitly

 Provides three forms of AD

 Forward Mode:

• Propagate derivatives of intermediate variables w.r.t. independent variables forward
• Directional derivatives, tangent vectors, square Jacobians, ∂f / ∂x when m ≥ n

 Reverse Mode:  

• Propagate derivatives of dependent variables w.r.t. intermediate variables backwards
• Gradients, Jacobian-transpose products (adjoints), ∂f / ∂x when n > m.

 Taylor polynomial mode:

 Basic modes combined for higher derivatives

Developers:  Eric Phipps, David Gay
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Solver collaborations:
Abstract interfaces 
and applications
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Categories of Abstract Problems 
and Abstract Algorithms

· Linear Problems:

· Linear equations:

· Eigen problems:

· Nonlinear Problems:

· Nonlinear equations:

· Stability analysis:

· Transient Nonlinear Problems:

· DAEs/ODEs:

· Optimization Problems:

· Unconstrained:

· Constrained:

Trilinos Packages

Belos

Anasazi

NOX

LOCA

Aristos

Rythmos

MOOCHO
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Abstract Numerical Algorithms

An abstract numerical algorithm (ANA) is a numerical algorithm that can be 
expressed solely in terms of vectors, vector spaces, and linear operators

Example Linear ANA (LANA) : Linear Conjugate Gradients

scalar product
<x,y> defined by 
vector space 

vector-vector 
operations

linear operator 
applications

scalar operations

Types of operations Types of objectsLinear Conjugate Gradient Algorithm

• ANAs can be very mathematically sophisticated!

• ANAs can be extremely reusable!
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ANA Linear 
Operator 
Interface

Solver Software Components 
and Interfaces

2) LAL : Linear Algebra Library (e.g. vectors, sparse matrices, sparse factorizations, 
preconditioners)

ANA

APP

ANA/APP 
Interface

ANA Vector 
Interface

1) ANA : Abstract Numerical Algorithm (e.g. linear solvers, eigensolvers, nonlinear 
solvers, stability analysis, uncertainty quantification, transient solvers, 
optimization etc.)

3) APP : Application (the model: physics, discretization method etc.)

Example Trilinos Packages:
• Belos (linear solvers)
• Anasazi (eigensolvers)
• NOX (nonlinear equations)
• Rhythmos (ODEs,DAEs)
• MOOCHO (Optimization)
• …

Example Trilinos Packages:
• Epetra/Tpetra (Mat,Vec)
• Ifpack, AztecOO, ML (Preconditioners)
• Meros (Preconditioners)
• Pliris (Interface to direct solvers)
• Amesos (Direct solvers)
• Komplex (Complex/Real forms)
• …

Types of Software Components

Thyra
ANA Interfaces to 
Linear Algebra

FEI/Thyra
APP to LAL Interfaces Custom/Thyra

LAL to LAL 
Interfaces

Thyra::Nonlin

Examples:
• SIERRA
• NEVADA
• Xyce
• Sundance
• …

LAL

Matrix Preconditioner

Vector



Stratimikos package

• Greek στρατηγική (strategy) + γραμμικός (linear)

• Uniform run-time interface to many different packages

• Linear solvers: Amesos, AztecOO, Belos, …

• Preconditioners: Ifpack, ML, …

• Defines common interface to create and use linear solvers

• Thyra::DefaultLinearSolverBuilder

•Reads in options through a Teuchos::ParameterList

• Can change solver and its options at run time

• Can validate options, & read them from a string or XML file

•Accepts any linear system objects that provide

• Epetra_Operator / Epetra_RowMatrix view of the matrix

• Vector views (e.g., Epetra_MultiVector) for right-hand side and initial guess

• Increasing support for Tpetra objects



Stratimikos Parameter List and Sublists
<ParameterList name=“Stratimikos”>
<Parameter name="Linear Solver Type" type="string" value=“AztecOO"/>
<Parameter name="Preconditioner Type" type="string" value="Ifpack"/>
<ParameterList name="Linear Solver Types">
<ParameterList name="Amesos">
<Parameter name="Solver Type" type="string" value="Klu"/>
<ParameterList name="Amesos Settings">
<Parameter name="MatrixProperty" type="string" value="general"/>
...
<ParameterList name="Mumps"> ... </ParameterList>
<ParameterList name="Superludist"> ... </ParameterList>

</ParameterList>
</ParameterList>
<ParameterList name="AztecOO">
<ParameterList name="Forward Solve">
<Parameter name="Max Iterations" type="int" value="400"/>
<Parameter name="Tolerance" type="double" value="1e-06"/>
<ParameterList name="AztecOO Settings">
<Parameter name="Aztec Solver" type="string" value="GMRES"/>
...

</ParameterList>
</ParameterList>
...

</ParameterList>
<ParameterList name="Belos"> ... </ParameterList>

</ParameterList>
<ParameterList name="Preconditioner Types">

<ParameterList name="Ifpack">
<Parameter name="Prec Type" type="string" value="ILU"/>
<Parameter name="Overlap" type="int" value="0"/>
<ParameterList name="Ifpack Settings">
<Parameter name="fact: level-of-fill" type="int" value="0"/>
...

</ParameterList>
</ParameterList>
<ParameterList name="ML"> ... </ParameterList>

</ParameterList>
</ParameterList>
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Sublists passed 
on to package 

code!

Top level parameters

Every parameter 
and sublist is 

handled by Thyra 
code and is fully 

validated!
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Trilinos integrated into other 
libraries or applications



TriBITS: Trilinos/Tribal Build, Integrate, Test System

 Based on CMake, CTest, & CDash (Kitware open-source toolset)
 Developed during Trilinos’ move to CMake 

 Later extended for use in CASL projects (e.g., VERA) & SCALE

 Partitions a project into packages
 Common CMake build and test infrastructure across packages

 Handles dependencies between packages

 Integrated support for MPI, CUDA, & third-party libraries (TPLs)

 Multi-repository development
 Can depend on packages in external repositories

 Handy for mixing open-source & closed-source packages

 Test driver:
 Partitions output per package to CDash

 Failed packages don’t propagate errors to downstream packages

 Integrated coverage and memory testing (shows up on CDash)

 Nightly and continuous integration (CI) test driver

 Pre-push synchronous continuous integration testing 
 Developers must use Python checkin-test.py script to push

 It enables dependent packages, & builds & runs tests

 Also automates asynchronous continuous integration tests

 Plus: TribitsDashboardDriver system, download-cmake.py and numerous other tools



TriBITS: Meta Project, Repository, Packages

RepoA / ProjectA

Package1 Package2

Package3 Package4

Package5 Package6

RepoB

Package7 Package8

Package9

RepoC

Package10

ProjectD ProjectC

Current state of TriBITS

 Flexible aggregation of Packages from 
different Repositories into meta Projects

 TriBITS directory can be snapshoted out of 
Trilinos into stand-alone projects 
(independent of Trilinos)

 Being used by CASL VERA software, and 
several other CASL-related software 
packages

 egdist: Managing multiple repositories

Future changes/additions to TriBITS

• Combining concepts of TPLs and Packages to 
allow flexible configuration and building

• TribitsExampleProject

• Trilinos-independent TriBITS documentation

• Provide open access to TribitsExampleProject
and therefore TriBITS



Albany: rapid code development with 
transformational algorithms

Phalanx Field Manager Sacado AD
Stokhos UQ

Intrepid

Albany
“Application”

Model
Evaluator

NOX

Rythmos

LOCA

MOOCHO

Stokhos

Piro Solver

Dakota
OptiPack

MOOCHO

Piro Analysis

Aztec

Belos

Anasazi

Stratimikos

ML

Amesos

Ifpack

STK Mesh

Cubit

STK_IO

Exodus Hand-Coded:

Abstract
Discretization

Abstract
Problem

Phalanx Evaluators

Problem Factory

4-line Main()
“input.xml”

Abstract Node

Multicore
Accelerators

Pamgen

Kokkos

Cubit
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Software interface idioms



Idioms: Common “look and feel”

 Petra distributed object model
 Provided by Epetra & Tpetra

 Common “language” shared by many packages

 Kokkos shared-memory parallel programming model
 Multidimensional arrays (with device-optimal layout)

 Parallel operations (for, reduce, scan): user specifies kernel

 Thread-parallel hash table, sparse graph, & sparse matrix

 Teuchos utilities package
 Hierarchical “input deck” (ParameterList)

 Memory management classes (RCP, ArrayRCP)

• Safety: Manage data ownership & sharing

• Performance: Avoid deep copies

 Performance counters (e.g., TimeMonitor)
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Petra Distributed Object Model



Solving Ax = b:
Typical Petra Object Construction Sequence

Construct Comm

Construct Map

Construct x Construct b Construct A

• Any number of Comm objects can exist.
• Comms can be nested (e.g., serial within MPI).

• Maps describe parallel layout.
• Maps typically associated with more than one comp 

object.
• Two maps (source and target) define an export/import 

object.

• Computational objects.
• Compatibility assured via common map.
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Petra Implementations

 Epetra (Essential Petra):  
 Current production version 

 Uses stable core subset of C++ (circa 2000)

 Restricted to real, double precision arithmetic

 Interfaces accessible to C and Fortran users

 Tpetra (Templated Petra):  
 Next-generation version

 C++ compiler can’t be too ancient (no need for C++11 but good to have)

 Supports arbitrary scalar and index types via templates

• Arbitrary- and mixed-precision arithmetic

• 64-bit indices for solving problems with >2 billion unknowns

 Hybrid MPI / shared-memory parallel 

• Supports multicore CPU and hybrid CPU/GPU

• Built on Kokkos manycore node library

Package leads: Mike Heroux, Mark Hoemmen (many developers)



// Header files omitted…
int main(int argc, char *argv[]) {

MPI_Init(&argc,&argv); // Initialize MPI, MpiComm
Epetra_MpiComm Comm( MPI_COMM_WORLD );                      

A Simple Epetra/AztecOO Program

// ***** Create x and b vectors *****
Epetra_Vector x(Map);
Epetra_Vector b(Map);
b.Random(); // Fill RHS with random #s                  

// ***** Create an Epetra_Matrix  tridiag(-1,2,-1) *****

Epetra_CrsMatrix A(Copy, Map, 3);
double negOne = -1.0; double posTwo = 2.0;

for (int i=0; i<NumMyElements; i++) {
int GlobalRow = A.GRID(i); 
int RowLess1 = GlobalRow - 1; 
int RowPlus1 = GlobalRow + 1;
if (RowLess1!=-1) 

A.InsertGlobalValues(GlobalRow, 1, &negOne, &RowLess1);
if (RowPlus1!=NumGlobalElements) 

A.InsertGlobalValues(GlobalRow, 1, &negOne, &RowPlus1);
A.InsertGlobalValues(GlobalRow, 1, &posTwo, &GlobalRow);

}
A.FillComplete(); // Transform from GIDs to LIDs

// ***** Map puts same number of equations on each pe *****        

int NumMyElements = 1000 ;
Epetra_Map Map(-1, NumMyElements, 0, Comm);
int NumGlobalElements = Map.NumGlobalElements();

// ***** Report results, finish ***********************    
cout << "Solver performed " << solver.NumIters()   

<< " iterations." << endl
<< "Norm of true residual = " 
<< solver.TrueResidual() 
<< endl;

MPI_Finalize() ;
return 0;

}

// ***** Create/define AztecOO instance, solve *****
AztecOO solver(problem);
solver.SetAztecOption(AZ_precond, AZ_Jacobi);
solver.Iterate(1000, 1.0E-8);

// ***** Create Linear Problem *****
Epetra_LinearProblem problem(&A, &x, &b);          

// Header files omitted…
int main(int argc, char *argv[]) {
Epetra_SerialComm Comm();                     



Perform redistribution of distributed objects:
• Parallel permutations.
• “Ghosting” of values for local computations.
• Collection of partial results from remote processors.

Petra Object 
Model

Abstract Interface to Parallel Machine
• Shameless mimic of MPI interface.
• Keeps MPI dependence to a single class (through all of Trilinos!).
• Allow trivial serial implementation.
• Opens door to novel parallel libraries (shmem, UPC, etc…)

Abstract Interface for Sparse All-to-All Communication
• Supports construction of pre-recorded “plan” for data-driven communications.
• Examples: 

• Supports gathering/scatter of off-processor x/y values when computing y = Ax.
• Gathering overlap rows for Overlapping Schwarz.
• Redistribution of matrices, vectors, etc…

Describes layout of distributed objects:
• Vectors: Number of vector entries on each processor and global ID
• Matrices/graphs: Rows/Columns managed by a processor.
• Called “Maps” in Epetra.

Dense Distributed Vector and Matrices:
• Simple local data structure.
• BLAS-able, LAPACK-able.
• Ghostable, redistributable.
• RTOp-able.

Base Class for All Distributed Objects:
• Performs all communication.
• Requires Check, Pack, Unpack methods from derived class.

Graph class for structure-only computations:
• Reusable matrix structure.
• Pattern-based preconditioners.
• Pattern-based load balancing tools. Basic sparse matrix class:

• Flexible construction process.
• Arbitrary entry placement on parallel machine.



Details about Epetra Maps

 Note:  Focus on Maps (not BlockMaps).

 Getting beyond standard use case…

 Note: All of the concepts presented here for 
Epetra carry over to Tpetra!



1-to-1 Maps

 A map is 1-to-1 if…
 Each global ID appears only once in the map

 (and is thus associated with only a single process)

 Certain operations in parallel data repartitioning 
require 1-to-1 maps:
 Source map of an import must be 1-to-1.

 Target map of an export must be 1-to-1.

 Domain map of a 2D object must be 1-to-1.

 Range map of a 2D object must be 1-to-1.



2D Objects: Four Maps

 Epetra 2D objects:
 CrsMatrix, FECrsMatrix

 CrsGraph

 VbrMatrix, FEVbrMatrix

 Have four maps:
 Row Map: On each processor, the global IDs of the rows

that process will “manage.”

 Column Map: On each processor, the global IDs of the 
columns that process will “manage.”

 Domain Map: The layout of domain objects 
(the x (multi)vector in y = Ax).

 Range Map: The layout of range objects 
(the y (multi)vector in y = Ax).

Must be 1-to-1
maps!!!

Typically a 1-to-1 map

Typically NOT a 1-to-1 map



Sample Problem
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Case 1: Standard Approach

 RowMap = {0, 1}

 ColMap = {0, 1, 2}

 DomainMap = {0, 1}

 RangeMap = {0, 1}

1 1

22

2 1 0
,... ,...

1 2 1

y x
y A x

xy

    
           

 First 2 rows of A, elements of y and elements of x, kept on PE 0.

 Last row of A, element of y and element of x, kept on PE 1.

PE 0 Contents

     3 3,... 0 1 2 ,...y y A x x   

PE 1 Contents

 RowMap = {2}

 ColMap = {1, 2}

 DomainMap = {2}

 RangeMap = {2}

Notes:

 Rows are wholly owned.

 RowMap=DomainMap=RangeMap (all 1-to-1).

 ColMap is NOT 1-to-1.

 Call to FillComplete: A.FillComplete(); // Assumes
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Case 2: Twist 1

 RowMap = {0, 1}

 ColMap = {0, 1, 2}

 DomainMap = {1, 2}

 RangeMap = {0}

  2

1

3

2 1 0
,... ,...

1 2 1

x
y y A x

x

   
         

 First 2 rows of A, first element of y and last 2 elements of x, kept on PE 0.

 Last row of A, last 2 element of y and first element of x, kept on PE 1.

PE 0 Contents

   2

1

3

,... 0 1 2 ,...
y

y A x x
y

 
    
 

PE 1 Contents

 RowMap = {2}

 ColMap = {1, 2}

 DomainMap = {0}

 RangeMap = {1, 2}
Notes:

 Rows are wholly owned.

 RowMap is NOT = DomainMap
is NOT = RangeMap (all 1-to-1).

 ColMap is NOT 1-to-1.

 Call to FillComplete: 
A.FillComplete(DomainMap, RangeMap);

2 1 0

1 2 1

0 1 2

 
   
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=

y A x
Original Problem



Case 2: Twist 2

 RowMap = {0, 1}

 ColMap = {0, 1}

 DomainMap = {1, 2}

 RangeMap = {0}

  2

1

3

2 1 0
,... ,...

1 1 0

x
y y A x

x

   
        

 First row of A, part of second row of A, first element of y and last 2 elements of x, 
kept on PE 0.

 Last row, part of second row of A, last 2 element of y and first element of x, kept on 
PE 1.

PE 0 Contents

 2

1

3

0 1 1
,... ,...

0 1 2

y
y A x x

y

   
       

PE 1 Contents

 RowMap = {1, 2}

 ColMap = {1, 2}

 DomainMap = {0}

 RangeMap = {1, 2}

Notes:

 Rows are NOT wholly owned.

 RowMap is NOT = DomainMap 
is NOT = RangeMap (all 1-to-1).

 RowMap and ColMap are NOT 1-to-1.

 Call to FillComplete: 
A.FillComplete(DomainMap, RangeMap);
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What does FillComplete do?

 Signals you’re done defining matrix structure

 Does a bunch of stuff

 Creates communication patterns for 
distributed sparse matrix-vector multiply:

 If ColMap ≠ DomainMap, create Import object

 If RowMap ≠ RangeMap, create Export object

 A few rules:

 Non-square matrices will always require:
A.FillComplete(DomainMap,RangeMap);

 DomainMap and RangeMap must be 1-to-1



Typical Flow of Tpetra Object 
Construction

Construct Platform

Construct Map

Construct x Construct b Construct A

• Kokkos node.  Options are:
• Pthreads, OpenMP, Thrust (CUDA), TBB,

Serial

Construct Node

• Generalization of Epetra “Comm”
• Composed with Kokkos::Node
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Data Classes Stacks

Kokkos POM Layer

Kokkos Array             User Array Types

Node sparse  structures

Manycore

BLAS

Tpetra

Simple Array Types

Epetra

Xpetra

Classic Stack New Stack



Tpetra-Xpetra Diff< #include <Tpetra_Map.hpp>

< #include <Tpetra_CrsMatrix.hpp>

< #include <Tpetra_Vector.hpp>

< #include <Tpetra_MultiVector.hpp>

---

> #include <Xpetra_Map.hpp>

> #include <Xpetra_CrsMatrix.hpp>

> #include <Xpetra_Vector.hpp>

> #include <Xpetra_MultiVector.hpp>

> 

> #include <Xpetra_MapFactory.hpp>

> #include <Xpetra_CrsMatrixFactory.hpp>

67c70,72

<   RCP<const Tpetra::Map<LO, GO> > map = Tpetra::createUniformContigMap<LO, GO>(numGlobalElements, comm);

---

>   Xpetra::UnderlyingLib lib = Xpetra::UseTpetra;

> 

>   RCP<const Xpetra::Map<LO, GO> > map = Xpetra::MapFactory<LO, GO>::createUniformContigMap(lib, numGlobalElements

72c77

<   RCP<Tpetra::CrsMatrix<Scalar, LO, GO> > A = rcp(new Tpetra::CrsMatrix<Scalar, LO, GO>(map, 3));

---

>   RCP<Xpetra::CrsMatrix<Scalar, LO, GO> > A =  Xpetra::CrsMatrixFactory<Scalar, LO, GO>::Build(map, 3);

97d101

LO – Local Ordinal
GO – Global Ordinal



ParameterList: Trilinos’ “input deck”
 Simple key/value pair database, but nest-able

 Naturally hierarchical, just like numerical algorithms or 
software

 Communication protocol between application layers

 Reproducible runs: save to XML, restore configuration

 Can express constraints and dependencies

 Optional GUI (Optika): lets novice users run your app
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Teuchos::ParameterList p;
p.set(“Solver”, “GMRES”);
p.set(“Tolerance”, 1.0e-4);
p.set(“Max Iterations”, 100);

Teuchos::ParameterList& lsParams = p.sublist(“Solver Options”);
lsParams.set(“Fill Factor”, 1);

double tol = p.get<double>(“Tolerance”);
int fill = p.sublist(“Solver Options”).get<int>(“Fill Factor”);



Memory management classes
 Scientific computation: Lots of data, big objects

 Avoid copying and share data whenever possible

 Who “owns” (deallocates) the data?

 Manual memory management (void*) not an option
 Results in buggy and / or conservative code

 Reference-counted pointers (RCPs) and arrays
 You don’t have to deallocate memory explicitly

 Objects deallocated when nothing points to them anymore

 Almost no performance cost for large objects
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Teuchos::RCP Technical Report
SAND2007-4078

http://trilinos.sandia.gov/documentation.html

Trilinos/doc/RCPbeginnersGuide

http://trilinos.sandia.gov/documentation.html


“But I don’t want RCPs!”
 They do add some keystrokes:

 RCP<Matrix> vs. Matrix*

 ArrayRCP<double> vs. double[]

 BUT: Run-time cost is none or very little
 We have automated performance tests

 Debug build  useful error checking
 More than Boost’s / C++11’s shared_ptr

 Which we couldn’t use for historical reasons

 Not every Trilinos package exposes them
 Some packages hide them behind handles or typedefs

 Python “skin” hides them; Python is garbage-collected

 RCPs part of interface between packages
 Trilinos like LEGO™ blocks

 Packages don’t have to worry about memory management

• Easier for them to share objects in interesting ways
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TimeMonitor

 Timers that keep track of:
 Runtime

 Number of calls

 Time object associates a string name to the timer:
RCP<Time> stuffTimer = 

TimeMonitor::getNewCounter (“Do Stuff”);

 TimeMonitor guard controls timer in scope-safe way
{ 

TimeMonitor tm (*stuffTimer); 

doStuff (); 

}

 Automatically takes care of recursive / nested calls

 Scalable (O(log P)), safe parallel timer statistics summary
 TimeMonitor::summarize ();
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Getting started: “How do I…?”



“How do I…?”

 Build my application with Trilinos?

 Learn about common Trilinos programming idioms?

 Download / find an installation of Trilinos?

 Find documentation and help?
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Building your app with Trilinos

If you are using Makefiles:

 Makefile.export system

If you are using CMake:

 CMake FIND_PACKAGE
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Trilinos helps you link it with your application

• Library link order
• -lnoxepetra -lnox –lepetra –lteuchos –lblas –llapack
• Order matters!
• Optional package dependencies affect required libraries

• Using the same compilers that Trilinos used
• g++ or icc or icpc or …? 
• mpiCC or mpCC or mpicxx or … ?

• Using the same libraries that Trilinos used
• Using Intel’s MKL requires a web tool to get the link line right
• Trilinos remembers this so you don’t have to

• Consistent build options and package defines:
• g++ -g –O3 –D HAVE_MPI –D _STL_CHECKED

• You don’t have to figure any of this out! Trilinos does it for you!
• Please don’t try to guess and write a Makefile by hand!
• This leads to trouble later on, which I’ve helped debug.



Why let Trilinos help?

• Trilinos has LOTS of packages

• As package dependencies (especially optional ones) are 
introduced, more maintenance is required by the top-level 
packages:

NOX Amesos

EpetraExt

Epetra

Ifpack

ML SuperLU

Direct Dependencies Indirect Dependencies

NOX either must:
• Account for the new libraries in its configure script (unscalable), or
• Let Trilinos’ build system tell it about direct and indirect dependencies

New Library New Library



Using CMake to build with Trilinos

 CMake: Cross-platform build system
 Similar function as the GNU Autotools

 Building Trilinos requires CMake

 You don’t have to use CMake to use Trilinos

 But if you do: FIND_PACKAGE(Trilinos …)
 Example: 

https://code.google.com/p/trilinos/wiki/CMakeFindPackageTr
ilinosExample

 I find this much easier than writing Makefiles
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Using the Makefile.export system

#
# A Makefile that your application can use if you want to build with Epetra.
#
# You must first set the TRILINOS_INSTALL_DIR variable.

# Include the Trilinos export Makefile for the Epetra package.
include $(TRILINOS_INSTALL_DIR)/include/Makefile.export.Epetra

# Add the Trilinos installation directory to the library and header search paths.
LIB_PATH = $(TRILINOS_INSTALL_DIR)/lib
INCLUDE_PATH = $(TRILINOS_INSTALL_DIR)/include $(CLIENT_EXTRA_INCLUDES)

# Set the C++ compiler and flags to those specified in the export Makefile.
# This ensures your application is built with the same compiler and flags
# with which Trilinos was built.
CXX = $(EPETRA_CXX_COMPILER)
CXXFLAGS = $(EPETRA_CXX_FLAGS)

# Add the Trilinos libraries, search path, and rpath to the 
# linker command line arguments 
LIBS = $(CLIENT_EXTRA_LIBS) $(SHARED_LIB_RPATH_COMMAND) \
$(EPETRA_LIBRARIES) \
$(EPETRA_TPL_LIBRARIES) \
$(EPETRA_EXTRA_LD_FLAGS) 

#
# Rules for building executables and objects.
# 
%.exe : %.o $(EXTRA_OBJS)

$(CXX) -o $@ $(LDFLAGS) $(CXXFLAGS) $< $(EXTRA_OBJS) -L$(LIB_PATH) $(LIBS)

%.o : %.cpp
$(CXX) -c -o $@ $(CXXFLAGS) -I$(INCLUDE_PATH) $(EPETRA_TPL_INCLUDES) $<
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How do I learn more?
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How do I learn more?

 Documentation:
 Trilinos Wiki with many runnable examples: 

https://code.google.com/p/trilinos/wiki/
 Per-package documentation: http://trilinos.sandia.gov/packages/
 Other material on Trilinos website: http://trilinos.sandia.gov/

 E-mail lists: http://trilinos.sandia.gov/mail_lists.html
 Annual user meetings and other tutorials:

 Trilinos User Group (TUG) meeting and tutorial
• Late October, or early November at SNL / NM
• Talks available for download (slides and video):

– http://trilinos.sandia.gov/events/trilinos_user_group_201<N>
– Where N is 0, 1, 2, 3

 European TUG meetings (once yearly, in summer)
• Next: CSCS, Lugano, Switzerland, June 30 – July 1, 2014.
• Also (tentative): Paris-Saclay, early March 2015.

http://trilinos.sandia.gov/events/trilinos_user_group_2010
http://trilinos.sandia.gov/events/trilinos_user_group_2010
http://trilinos.sandia.gov/mail_lists.html
http://trilinos.sandia.gov/Trilinos10.6Tutorial.pdf
http://trilinos.sandia.gov/packages/
https://code.google.com/p/trilinos/wiki/
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How do I get Trilinos?

 Current release (11.6) available for download
 http://trilinos.sandia.gov/download/trilinos-11.6.html

 Source tarball with sample build scripts
 11.8 Freeze was last week.

 Public (read-only) git repository
 http://trilinos.sandia.gov/publicRepo/index.html
 Development version, updated ~ nightly

 Cray packages recent releases of Trilinos
 http://www.nersc.gov/users/software/programming-libraries/math-libraries/trilinos/

 $ module load trilinos
 Recommended for best performance on Cray machines

 Most packages under BSD license
 A few packages are LGPL

http://www.nersc.gov/users/software/programming-libraries/math-libraries/trilinos/
http://www.nersc.gov/users/software/programming-libraries/math-libraries/trilinos/
http://www.nersc.gov/users/software/programming-libraries/math-libraries/trilinos/
http://www.nersc.gov/users/software/programming-libraries/math-libraries/trilinos/
http://www.nersc.gov/users/software/programming-libraries/math-libraries/trilinos/
http://trilinos.sandia.gov/publicRepo/index.html
http://trilinos.sandia.gov/publicRepo/index.html
http://trilinos.sandia.gov/download/trilinos-11.6.html
http://trilinos.sandia.gov/download/trilinos-11.6.html
http://trilinos.sandia.gov/download/trilinos-11.6.html
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How do I build Trilinos?

 Need C and C++ compiler and the following tools:
 CMake (version >= 2.8)
 LAPACK and BLAS

 Optional software:
 MPI (for distributed-memory parallel computation)
 Many other third-party libraries

 You may need to write a short configure script
 Sample configure scripts in sampleScripts/
 Find one closest to your software setup, & tweak it

 Build sequence looks like GNU Autotools
1. Invoke your configure script, that invokes CMake
2. make
3. make install

 Documentation:
 http://trilinos.sandia.gov/Trilinos11CMakeQuickstart.txt
 Ask me at the hands-on if interested

http://trilinos.sandia.gov/Trilinos10CMakeQuickstart.txt
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Hands-on tutorial

 Two ways to use Trilinos
 Student shell accounts
 WebTrilinos

 Student shell accounts
 Pre-built Trilinos with Trilinos_tutorial (Github repository)
 Github: branch, send pull requests, save commits / patches!
 Steps (we may do some for you in advance):

1) Log in to student account on paratools07.rrt.net
2) git clone https://github.com/jwillenbring/Trilinos_tutorial.git
3) cd Trilinos_tutorial && source ./setup.sh (load modules)
4) cd cmake_build && ./live-cmake (build all examples)
5) Change into build subdirectories to run examples by hand

 WebTrilinos
 Build & run Trilinos examples in your web browser!
 Need username & password (will give these out later)
 https://code.google.com/p/trilinos/wiki/TrilinosHandsOnTutorial
 Example codes: https://code.google.com/p/trilinos/w/list

https://code.google.com/p/trilinos/w/list
https://code.google.com/p/trilinos/w/list
https://code.google.com/p/trilinos/wiki/TrilinosHandsOnTutorial
https://code.google.com/p/trilinos/wiki/TrilinosHandsOnTutorial
https://github.com/jwillenbring/Trilinos_tutorial.git
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Other options to use Trilinos

 Virtual machine
 Install VirtualBox, download VM file, and run it
 Same environment as student shell accounts
 We won’t cover this today, but feel free to try it

 Build Trilinos yourself on your computer
 We may cover this later, depending on your interest
 Prerequisites: 

• C++ compiler, Cmake version >= 2.8, BLAS & LAPACK, (MPI)
• Download Trilinos: trilinos.org -> Download

 Find a configuration script suitable for your computer
• https://code.google.com/p/trilinos/wiki/BuildScript
• Trilinos/sampleScripts/

 Modify the script if necessary, & use it to run CMake
 make –jN, make –jN install
 Build your programs against Trilinos

• Use CMake with FIND_PACKAGE(Trilinos …), or
• Use Make with Trilinos Makefile.export system

https://code.google.com/p/trilinos/wiki/BuildScript
https://code.google.com/p/trilinos/wiki/BuildScript
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Manycore/Acclerator Capabilities:
A very brief introduction

Full tutorial:
http://trilinos.sandia.gov/events/trilinos_user_group_2013/presentat

ions/2013-11-TUG-Kokkos-Tutorial.pdf

http://trilinos.sandia.gov/events/trilinos_user_group_2013/presentations/2013-11-TUG-Kokkos-Tutorial.pdf
http://trilinos.sandia.gov/events/trilinos_user_group_2013/presentations/2013-11-TUG-Kokkos-Tutorial.pdf
http://trilinos.sandia.gov/events/trilinos_user_group_2013/presentations/2013-11-TUG-Kokkos-Tutorial.pdf
http://trilinos.sandia.gov/events/trilinos_user_group_2013/presentations/2013-11-TUG-Kokkos-Tutorial.pdf
http://trilinos.sandia.gov/events/trilinos_user_group_2013/presentations/2013-11-TUG-Kokkos-Tutorial.pdf
http://trilinos.sandia.gov/events/trilinos_user_group_2013/presentations/2013-11-TUG-Kokkos-Tutorial.pdf
http://trilinos.sandia.gov/events/trilinos_user_group_2013/presentations/2013-11-TUG-Kokkos-Tutorial.pdf
http://trilinos.sandia.gov/events/trilinos_user_group_2013/presentations/2013-11-TUG-Kokkos-Tutorial.pdf
http://trilinos.sandia.gov/events/trilinos_user_group_2013/presentations/2013-11-TUG-Kokkos-Tutorial.pdf
http://trilinos.sandia.gov/events/trilinos_user_group_2013/presentations/2013-11-TUG-Kokkos-Tutorial.pdf


“MPI+X” programming model

•Modern HPC environment has at least 2 
levels of parallelism:

– (1) distributed memory parallelism typically supported 
through a Message Passing Interface (MPI) library 
and 

– (2) shared memory parallelism supported through one 
of the many thread-level programming models (CUDA, 
OpenMP, OpenACC, OpenCL, pthreads etc)

9
4

MPI

X



“X” in “MPI+X”

9
5

• CUDA,

• OpenACC

• OpenCL

• OpenMP

• Pthreads

• ….

NVIDIA GPUs

Multicore CPUs, MICs (Intel’s Xeon Phi)

AMD GPUs, DSPs, and FPGAs
Incompatible 

with C++



“X” in “MPI+X”

• CUDA,

• OpenACC

• OpenCL

• OpenMP

• Pthreads

• ….

• Low-level control and optimizations
• Not easy to program

• Require significant code 
modifications

• Pthreads: can’t be used on GPUs

• Architecture-specific,
• OpenACC: doesn’t provide 

low-level control or of e.g., 
memory residence

Kokkos - a programming model that enables performance 
portability across diverse and evolving manycore devices. 



Struct-of-Arrays vs. Array-of-Structs

A False Dilemma

97



With C++ as your hammer, 
everything looks like your thumb.
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Compile-time Polymorphism

Kokkos functor

(e.g., 
compute_jacobian

in FELIX example 
below)

Serial 
Kernel

+SerialNode OpenMP

Kernel

+OpenMPNode

CudaKernel

+CudaNode

Future 
Kernel

+FutureNode

. . .

99
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C++ Approach: Trilinos/Kokkos Array

• Challenge: Manycore Portability with Performance
– Multicore-CPU and manycore-accelerator (e.g., NVIDIA)

– Diverse memory access patterns, shared memory utilization, … 

• Via a Library, not a language
– C++ with template meta-programming

– In the spirit of Thrust or Threading Building Blocks (TBB)

– Concise and simple API: functions and multidimensional arrays

• Data Parallel Functions
– Deferred task parallelism, pipeline parallelism, ...

– Simple parallel_for and parallel_reduce semantics

• Multidimensional Arrays
– versus “arrays of structs” or “structs of arrays”
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Kokkos Array Abstractions

• Manycore Device
– Has many threads of execution sharing a memory space

– Manages a memory space separate from the host process

• Physically separate (GPU) or logically separate (CPU)

• or with non-uniform memory access (NUMA)

• Data Parallel Function
– Created in the host process, executed on the manycore device

– Performance can be dominated by memory access pattern 

• E.g., NVIDIA coalesced memory access pattern

• Multidimensional Array
Map array data into a manycore device’s memory

– Partition array data for data parallel work

– Function + parallel partition + map -> memory access pattern



Albany Greenland Ice Sheet Model  (FELIX project)

• An unstructured-grid finite element ice sheet 
code for land-ice modeling.

• Project objective:

– Provide sea level rise prediction

– Run on new architecture machines (hybrid 
systems).

Funding Source: SciDAC

Collaborators: SNL, ORNL, LANL, LBNL, UT, FSU, SC, MIT, NCAR

Sandia Staff: A. Salinger, I. Kalashnikova, M. Perego, 
R. Tuminaro, J. Jakeman, M. Eldred



Greenland Ice-Sheet  model 



Kokkos implementation algorithm:

1) Replace array allocations with Kokkos::Views  (in Host space)

2) Replace array access with Kokkos::Views 

3) Replace functions with Functors, run in parallel on Host

4) Set device to ‘Cuda’, ‘OpenMP’ or ‘Threads’ and run on 
specified Device



General code structure for a Kokkos implementation

1. void main()

2. {

3. Device::initialize() 

4. Allocate Kokkos::View (arrays)

5. …

6. Kokkos::deep_copy (..)  //Copy data to device

7. …

8. Kokkos::parallel_for/ parallel_reduce (over the number of   
iterations to be performed in parallel, Kokkos_Functor) 

9. …

10. Kokkos::deep_copy (..)  //Copy data to host

11. …

12. Device::finalize() 

13. }



Kokkos_functor example: compute_jacobian
template < typename ScalarType, clas DeviceType, int numQPs_,

int numDims_, int numNodes_ >

class compute_jacobian {

Array3 basisGrads_;

Array4 jacobian_;

Array3_const coordVec_;

public:

typedef DeviceType device_type;

compute_jacobian(Array3 &basisGrads, Array4 &jacobian,

Array3 &coordVec)

: basisGrads_(basisGrads)

, jacobian_(jacobian)

, coordVec_(coordVec){}

KOKKOS_INLINE_FUNCTION

void operator () (const std::size_t i) const

{

for(int qp = 0; qp < numQPs_; qp++) {

for(int row = 0; row < numDims_; row++){

for(int col = 0; col < numDims_; col++){

for(int node = 0; node < numNodes_; node++){

jacobian_(i, qp, row, col) += coordVec_(i, node, row)

*basisGrads_(node, qp, col);

} // node

} // col

} // row

} // qp

}

};

for(int cell = 0; cell < worksetNumCells; cell++) {
for(int qp = 0; qp < numQPs; qp++) {

for(int row = 0; row < numDims; row++){
for(int col = 0; col < numDims; col++){

for(int node = 0; node < numNodes; node++){
jacobian(cell, qp, row, col) += 

coordVec(cell, node, row)
*basisGrads(node, qp, col);

} // node
} // col

} // row
} // qp

} // cell

Kokkos::parallel_for ( worksetNumCells,
compute_jacobian<ScalarT, Device, numQPs, numDims, 

numNodes> (basisGrads, jacobian, coordVec));
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Performance Evaluation

 Using Sandia Computing Research Center Testbed Clusters
• Compton: 32nodes

• 2x Intel Xeon E5-2670 (Sandy Bridge), hyperthreading enabled

• 2x Intel Xeon Phi 57core (pre-production)

• ICC 13.1.2, Intel MPI 4.1.1.036

• Shannon: 32nodes

• 2x Intel Xeon E5-2670, hyperthreading disabled

• 2x NVidia K20x

• GCC 4.4.5, Cuda 5.5, MVAPICH2 v1.9 with GPU-Direct

 Absolute performance “unit” tests
• Evaluate parallel dispatch/synchronization efficiency

• Evaluate impact of array access patterns and capabilities

 Mini-application : Kokkos vs. ‘native’ implementations
• Evaluate cost of portability
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MPI+X Performance Test: MiniFE
Conjugate Gradient Solve of a Finite Element Matrix

 Comparing X = Kokkos, OpenMP, Cuda (GPU-direct via 
MVAPICH2)

 Weak scaling with one MPI process per device
• Except on Xeon: OpenMP requires one process/socket due to NUMA

• 8M elements/device

 Kokkos performance
• 90% or better of “native”

• Improvements ongoing 



Linear System Solves



AztecOO

 Aztec is the previous workhorse solver at Sandia:
 Extracted from the MPSalsa reacting flow code.

 Installed in dozens of Sandia apps.

 AztecOO leverages the investment in Aztec:
 Uses Aztec iterative methods and preconditioners.

 AztecOO improves on Aztec by:
 Using Epetra objects for defining matrix and RHS.

 Providing more preconditioners/scalings.

 Using C++ class design to enable more sophisticated use.

 AztecOO interfaces allows:
 Continued use of Aztec for functionality.

 Introduction of new solver capabilities outside of Aztec.

 Belos is coming along as alternative.
 AztecOO will not go away.

 Will encourage new efforts and refactorings to use Belos.



AztecOO Extensibility

 AztecOO is designed to accept externally defined:
 Operators (both A and M):

• The linear operator A is accessed as an Epetra_Operator.

• Users can register a preconstructed preconditioner as an 
Epetra_Operator.

 RowMatrix:

• If A is registered as a RowMatrix, Aztec’s preconditioners are 
accessible.

• Alternatively M can be registered separately as an Epetra_RowMatrix, 
and Aztec’s preconditioners are accessible.

 StatusTests:

• Aztec’s standard stopping criteria are accessible.

• Can override these mechanisms by registering a StatusTest Object.



AztecOO understands Epetra_Operator

 AztecOO is designed to 
accept externally defined:
 Operators (both A and M).

 RowMatrix (Facilitates use 
of AztecOO preconditioners 
with external A).

 StatusTests (externally-
defined stopping criteria).
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Belos and Anasazi

 Next generation linear solver / eigensolver library, written in 
templated C++.

 Provide a generic interface to a collection of algorithms for 
solving large-scale linear problems / eigenproblems.

 Algorithm implementation is accomplished through the use of 
traits classes and abstract base classes:
 e.g.: MultiVecTraits, OperatorTraits

 e.g.: SolverManager, Eigensolver / Iteration, Eigenproblem/ 
LinearProblem, StatusTest, OrthoManager, OutputManager

 Includes block linear solvers / eigensolvers:
 Higher operator performance.

 More reliable.

 Solves:
 AX = XΛ or AX = BXΛ (Anasazi)

 AX = B (Belos)
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Why are Block Solvers Useful?

 Block Solvers ( in general ):

 Achieve better performance for operator-vector products.

 Block Eigensolvers ( Op(A)X = LX ):

 Block Linear Solvers ( Op(A)X = B ):

 Reliably determine multiple and/or clustered eigenvalues.

 Example applications: Modal analysis, stability analysis, 

bifurcation analysis (LOCA)

 Useful for when multiple solutions are required for the same 
system of equations.

 Example applications:

• Perturbation analysis

• Optimization problems

• Single right-hand sides where A has a handful of small eigenvalues

• Inner-iteration of block eigensolvers
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Belos and Anasazi are solver libraries that:
1. Provide an abstract interface to an operator-vector products, 

scaling, and preconditioning.

2. Allow the user to enlist any linear algebra package for the 
elementary vector space operations essential to the 
algorithm. (Epetra, PETSc, etc.)

3. Allow the user to define convergence of any algorithm (a.k.a. 
status testing).

4. Allow the user to determine the verbosity level, formatting, 
and processor for the output.

5. Allow these decisions to be made at runtime.

6. Allow for easier creation of new solvers through “managers” 

using “iterations” as the basic kernels.

Linear / Eigensolver
Software Design



Nonlinear System Solves
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NOX and LOCA are a combined package for solving and 
analyzing sets of nonlinear equations.

 NOX: Globalized Newton-based solvers.

 LOCA: Continuation, Stability, and Bifurcation Analysis.

We define the nonlinear problem:

is the residual or function evaluation

is the solution vector

is the Jacobian Matrix defined by: 

NOX/LOCA: Nonlinear Solver 
and Analysis Algorithms
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MB f xc  Bcd+=

Broyden’s Method

Newton’s Method
MN f xc  Jc d+=

Tensor Method    
MT f xc  Jcd

1
2
---Tcdd+ +=

Iterative Linear Solvers: Adaptive Forcing Terms
Jacobian-Free Newton-Krylov

Jacobian Estimation: Colored Finite Difference

Line Search
Interval Halving

Quadratic
Cubic

More’-Thuente
Curvilinear (Tensor)

Homotopy
Artificial Parameter Continuation
Natural Parameter Continuation

Trust Region
Dogleg

Inexact Dogleg

Globalizations

Nonlinear Solver Algorithms



Stopping Criteria
(Status Test)

Example: Newton’s Method for F  (x) = 0

 Choose an initial guess x0

 For k = 0,1,2,...

 Compute Fk = F  (xk)

 Compute Jk where 
(Jk )ij = F  i(xk)/x  j

 Let dk = -Jk
-1 Fk

 (Optional) Let k be a 
calculated step length

 Set xk+1 = xk + kdk

 Test for Convergence or 
Failure

Calculating
the Direction

Damping or
Line Search

Iterate Control
(Solver)

Building Blocks of NOX



Stopping Criteria 
(StatusTests)

Highly Flexible Design:  Users build a convergence test hierarchy and 
registers it with the solver (via solver constructor or reset method).

– Norm F: {Inf, One, Two}  {absolute, relative}

– Norm Update X: {Inf, One, Two}

– Norm Weighted Root Mean Square (WRMS):

– Max Iterations: Failure test if solver reaches max # iters

– FiniteValue: Failure test that checks for NaN and Inf on 

– Stagnation: Failure test that triggers if the convergence rate 
fails a tolerance check for n consecutive iterations.

– Combination: {AND, OR}

– Users Designed: Derive from NOX::StatusTest::Generic



Building a Status Test

• Fail if value of          becomes Nan or Inf 

NOX::StatusTest::FiniteValue finiteValueTest;

FiniteValue: finiteValueTest

• Fail if we reach maximum iterations

• Converge if both:

MaxIters: maxItersTest

NOX::StatusTest::MaxIters maxItersTest(200);

normFTest

NOX::StatusTest::NormF normFTest();

normWRMSTest

NOX::StatusTest::NormWRMS normWRMSTest();

Combo(AND): convergedTest

NOX::StatusTest::Combo convergedTest(NOX::StatusTest::Combo::AND);

Combo(OR)
allTests

NOX::StatusTest::Combo allTests(NOX::StatusTest::Combo::OR);

allTests.addStatusTest(finiteValueTest);

allTests.addStatusTest(maxItersTest);

allTests.addStatusTest(convergedTest);

convergedTest.addStatusTest(normFTest);

convergedTest.addStatusTest(normWRMSTest);



Status Tests Continued

User Defined are Derived from NOX::StatusTest::Generic
NOX::StatusTest::StatusType checkStatus(const NOX::Solver::Generic &problem)

NOX::StatusTest::StatusType
checkStatusEfficiently(const NOX::Solver::Generic &problem, 

NOX::StatusTest::CheckType checkType)

NOX::StatusTest::StatusType getStatus() const

ostream& print(ostream &stream, int indent=0) const

-- Status Test Results --
**...........OR Combination -> 
**...........AND Combination -> 
**...........F-Norm = 5.907e-01 < 1.000e-08

(Length-Scaled Two-Norm, Absolute Tolerance)
**...........WRMS-Norm = 4.794e+01 < 1

(Min Step Size:  1.000e+00 >= 1)
(Max Lin Solv Tol:  1.314e-15 < 0.5)

**...........Finite Number Check (Two-Norm F) = Finite
**...........Number of Iterations = 2 < 200

-- Final Status Test Results --
Converged....OR Combination -> 
Converged....AND Combination -> 
Converged....F-Norm = 3.567e-13 < 1.000e-08

(Length-Scaled Two-Norm, Absolute Tolerance)
Converged....WRMS-Norm = 1.724e-03 < 1

(Min Step Size:  1.000e+00 >= 1)
(Max Lin Solv Tol:  4.951e-14 < 0.5)

??...........Finite Number Check (Two-Norm F) = Unknown
??...........Number of Iterations = -1 < 200
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NOX Interface

Group Vector

computeF() innerProduct()

computeJacobian() scale()

applyJacobianInverse() norm()

update()

NOX solver methods are ANAs, and are implemented in terms
of group/vector abstract interfaces:

NOX solvers will work with any group/vector that implements
these interfaces.

Four concrete implementations are supported:
1. LAPACK
2. EPETRA
3. PETSc
4. Thyra (Release 8.0)



NOX Interface

Solver
Layer

Abstract Vector & Abstract Group
Abstract

Layer

Solvers
- Line Search 
- Trust Region Directions

- e.g., Newton
Line Searches
- e.g., Polynomial

Status Tests
- e.g., Norm F

• Don’t need to directly access the vector or matrix entries, only 
manipulate the objects.

• NOX uses an abstract interface to manipulate linear algebra objects.

• Isolate the Solver layer from the linear algebra implementations used by 
the application.

• This approach means that NOX does NOT rely on any specific linear 
algebra format.

• Allows the apps to tailor the linear algebra to their own needs!

– Serial or Parallel

– Any Storage format: User Defined, LAPACK, PETSc, Epetra 



NOX Framework

Solver
Layer

Abstract Vector & Abstract Group
Abstract

Layer

Linear 
Algebra
Interface

Implementations
- EPetra
- PETSc

- LAPACK
- USER DEFINED

EPetra Dependent Features
- Jacobian-Free Newton-Krylov
- Preconditioning
- Graph Coloring / Finite Diff.

Solvers
- Line Search 
- Trust Region Directions

- e.g., Newton
Line Searches
- e.g., Polynomial

Status Tests
- e.g., Norm F

Application
Interface

Layer

User Interface
- Compute F
- Compute Jacobian
- Compute Preconditioner



The Epetra “Goodies”

• Matrix-Free Newton-Krylov Operator
• Derived from Epetra_Operator
• Can be used to estimate Jacobian action on a 

vector 
• NOX::Epetra::MatrixFree 

• Finite Difference Jacobian
• Derived from an Epetra_RowMatrix 
• Can be used as a preconditioner matrix
• NOX::Epetra::FiniteDifference

• Graph Colored Finite Difference Jacobian
• Derived from NOX::Epetra::FiniteDifference
• Fast Jacobian fills – need connectivity/coloring 

graph
• (NOX::Epetra::FiniteDifferenceColoring)

• Full interface to AztecOO using NOX parameter list
• Preconditioners: internal AztecOO, Ifpack, User defined 
• Scaling object

Jy
F x y+  F x –


-----------------------------------------=

Jj

F x ej+  F x –


-------------------------------------------=



Next Generation Multigrid: MueLu

Andrey Prokopenko, Jonathan Hu, Chris Siefert, Ray Tuminaro, Tobias 
Wiesner



Motivation for a New Multigrid Library

 Trilinos already has mature multigrid library, ML
 Algorithms for Poisson, Elasticity, H(curl), H(div)

 Algorithms extensively exercised in practice

 Broad user base with hard problems

 However …
 Poor links to other Trilinos capabilities (e.g., smoothers)

 C-based, only scalar type “double” supported explicitly

 Over 50K lines of source code

• Hard to add cross-cutting features like MPI+X

• Optimizations & semantics are poorly documented



Objectives for New Multigrid 
Framework

 Templating on scalar, ordinal types
 Scalar: Complex; extended precision

 Ordinal: Support 64-bit global indices for huge problems

 Advanced architectures
 Kokkos support for various compute node types (MPI, 

MPI+threads, MPI+GPU)

 Extensibility
 Facilitate development of other algorithms

• Energy minimization methods

• Geometric, classic algebraic multigrid, …

 Ability to combine several types of multigrid

 Preconditioner reuse
 Reduce setup expense



AMG

 Two main components
 Smoothers

• Approximate solves on each level

• “Cheaply” reduces particular error components

• On coarsest level, smoother = Ai
-1 (usually)

 Grid Transfers

• Moves data between levels

• Must represent components that smoothers can’t 
reduce

 Algebraic Multigrid (AMG)
 AMG generates grid transfers

 AMG generates coarse grid Ai’s

Au=f

A2e2=r2

A1e1=r1



Current MueLu Capabilities

 Transfer operators
 Smoothed aggregation

 Nonsmoothed aggregation

 Petrov Galerkin

 Energy minimization

 Smoothers and direct solvers
 Ifpack/Ifpack2 (Jacobi, Gauss-Seidel, ILU, polynomial, …)

 Amesos/Amesos2 (KLU, Umfpack, Superlu, …)

 Block smoothers (Braess Sarazin, …)

We support both Epetra and Tpetra!



Xpetra

 Wrapper for Epetra and Tpetra
 Based on Tpetra interfaces
 Allows unified access to either

linear algebra library

 Layer concept:
 Layer 2: blocked operators
 Layer 1: operator views
 Layer 0: low level E/Tpetra

wrappers (automatically
generated code)

 MueLu algorithms are written
using Xpetra

Tpetra Epetra

Kokkos

Xpetra

Layer 2 (advanced logic)

Layer 1 (basic logic)

Layer 0 (low level wrapper)

MueLu



Design overview



Design

 Hierarchy
 Generates and stores data

 Provides multigrid cycles

 Factory
 Generates data

 FactoryManager
 Manages dependencies among factories

Preconditioner is created by linking together factories (constructing 
FactoryManager) and generating Hierarchy data using that manager. 

User is not required to specify these dependencies.
M
u
e
L
u
:
:
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y MueLu::Level

MueLu::Level

MueLu::Level



Factories

Input

Output

Factory

DeclareInput(…)

Build(…)

• Factory processes input data (from 
Level) and generates some output data 
(stored in Level)

• Two types of factories 

– Single level (smoothers, aggregation, ...)

– Two level (prolongators)
Output is stored on next coarser level

Factory can generate more multiple 
output variables (e.g. „Ptent“ and 
„Nullspace“)



Multigrid hierarchy

• A set of factories defines the 
building process of a coarse 
level

• Reuse factories to iteratively 
set up multigrid hierarchy

Level 1

Level 2

Level 3

Factory

Factory

FactoryFactory

Factory

Factory

FactoryManager

Input

Output
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Multigrid hierarchy

• A set of factories defines the 
building process of a coarse 
level

• Reuse factories to iteratively 
set up multigrid hierarchy

Level 1

Level 2

Level 3

Factory

Factory

FactoryFactory

Factory

Factory

FactoryManager

fi
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 Group fine unknowns into aggregates
to form coarse unknowns

 Partition given nullspace B(h) across 
aggregates to have local support

Smoothed Aggregation Setup
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 Group fine unknowns into aggregates
to form coarse unknowns

 Partition given nullspace B(h) across 
aggregates to have local support

 Calculate QR=B(h) to get initial 
prolongator Ptent (=Q) and coarse 
nullspace (R).

Smoothed Aggregation Setup
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• Form final prolongator Psm = (I – ωD-1A)Ptent



Linking factories

TentativePFactory

AggregationFactory

CoalesceDropFactory

SaPFactory

Graph

Aggregates

Ptent

P

Nullspace

A



Linking factories



Advantages of Data Management on 
Level

 Level manages data deallocation once all requests satisfied

 Generating factory does not need to know what other 
factories require data

 Data reuse
 Any data (aggregates, P, …) can be retained by user request for 

reuse in later runs.

 Data can be retained for later analysis.

 Almost any reuse granularity is possible.



Muelu User interfaces



MueLu – User Interfaces

 MueLu can be customized as follows:
 XML input files

 Parameter lists (key-value pairs)

 Directly through C++ interfaces

 New/casual users
 Minimal interface

 Sensible defaults provided automatically

 Advanced users
 Can customize or replace any component of multigrid algorithm.



C++: smoothed aggregation

• Generates smoothed aggregation AMG

• Uses reasonable defaults.

• Every component can be easily changed



C++: unsmoothed aggregation

• Generates unsmoothed prolongator



C++: unsmoothed aggregation

• Generates unsmoothed prolongator



C++: polynomial smoother

• Uses degree 3 polynomial smoother



XML: creating hierarchy



XML: smoothed aggregation 

• Generates smoothed aggregation AMG

• Uses reasonable defaults



XML: unsmoothed aggregation

• Generates unsmoothed prolongator



XML: polynomial smoother 

• Uses degree 3 polynomial smoother



XML: polynomial smoother only for 
level 2 

• Uses degree 3 polynomial smoother for level 2

• Uses default smoother (Gauss-Seidel) for all other levels 



Summary

 Current status
 Part of publicly available Trilinos anonymous clone

 We still support ML.

 Ongoing/Future work
 Preparing for public release

• Improving documentation

• Improving application interfaces

 Improving performance

 Integrating existing algorithms

 Developing new algorithms


