
Making LAPACK and libflame Live in harmony

Kyungjoo Kim
Computer Science Research Institute, Sandia National Laboratories

September 25, 2014

Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin
Corporation, for the U.S. Department of Energy’s National Nuclear Security Administration under contract DE-AC04-94AL85000. SAND NO. 2014-00000

SAND2014-18594PE

Use case of DLA in my application
High order Moving Least Squares (MLS)

FLAPACK
Introduction
FLAPACK
LAPACK test suite
Using FLAPACK
Conclusion

High order Moving Least Squares

This work is supported by the U.S. Department of Energy Office of Science, Office of
Advanced Scientific Computing Research, Applied Mathematics program as part of
the Colloboratory on Mathematics for Mesoscopic Modeling of Materials (CM4),
under Award Number DE-SC0009247.

High order Moving Least Squares (MLS)

Mesh: a list of points with their
connectivities.

Why meshfree methods ?

Generating a suitable mesh is a challenging task.

Easy to handle large deformation, moving
boundary and fluid structure interaction
problems..

By advecting points in Lagrangian form, the
non-linear advection term in Navier Stokes
equations can be removed.

Need to construct basis functions for each particle
in every timestep with updated particle positions.

High order Moving Least Squares (MLS)

Meshfree: points are scattered on
the domain.

Why meshfree methods ?

Generating a suitable mesh is a challenging task.

Easy to handle large deformation, moving
boundary and fluid structure interaction
problems..

By advecting points in Lagrangian form, the
non-linear advection term in Navier Stokes
equations can be removed.

Need to construct basis functions for each particle
in every timestep with updated particle positions.

Computing MLS basis functions

Consider a set of points XΩ = {xi}i∈1,...N ⊂Ω. We seek an approximant of a
function of the form:

uh(x) =
N

∑
j=1

φj(x)u(xj)

where the φj are shape functions associated with each point.

For a given function u(x) known only at discrete values in the cloud of points, we
construct approximation of shape function using polynomials:

φ̂(x) = p(x)T c

where pT = [1,x,y, ...pn] and c = [c0,c1,c2, ...cn]
T .

The unknown coefficient vector c is determined by minimizing the following
function for each particle at xi:

J(c) = ∑
j

(
uj − φ̂i

)2
W(rij)

= ∑
j

(
uj −p(xi)

T c
)2

W(rij).

Solving for the minimization of a SPD quadratic form, the solution is given for each
particle at xi:

c =

(
∑

j
pjW(rij)pT

j

)−1

∑
j

pjW(rij)uj.

Computational aspects

The cost for solving basis functions for each particle increases with O(p9) for
3D problems.

Although the computation is completely local, the cost is comparable to the cost
of solving global linear systems (Krylov solver preconditioned by Algebraic
MultiGrid).

This has to be recomputed for every time iteration.

/ / a s m a n y a s p o s s i b l e
f o r e a c h t i m e s t e p :

/ / # o f p a r t i c l e s ~ m i l l i o n s
f o r e a c h p a r t i c l e i i n t h e p r o b l e m d o m a i n :

/ / # o f n e i g h b o r s ~ pd

f o r e a c h p a r t i c l e j i n t h e n e i g h b o r h o o d o f i:
/ / r a n k o n e u p d a t e ~ p2·dim

M+= pjW(rij)pT
j

e n d o f j
/ / i n v e r t M ~ p3·dim

c= M−1rhs
e n d o f i
/ / i m p l i c i t t i m e i n t e g r a t i o n s o l v i n g g l o b a l s y s t e m s o f e q u a t i o n s

e n d o f t i m e s t e p

Massively parallel 3D implicit MLS code
LAMMPS (a classical molecular dynamics code) handles particle data, parallel data
distribution, ghosting.

Trilinos provides distributed parallel linear algebra: linear and non-linear solvers,
preconditioners.

The code has been developed for distributed memory architectures and wish to
explore hybrid node-level parallelism.

2D incompressible Navier Stokes equations: Lid driven cavity

Discussion

Fast rank one updates and matrix inversion:

Portable performance to many-core architectures.

Multithreaded capability to solve a large number of small problems in parallel.

High-level resource control that can group a small number of threads and assign
the group of threads to small problems.

Standization of LAPACK interface including data layout and characteristic
features of modern architectures.

FLAPACK

This work is supported by NSF award ACI-1148125/1340293 SI2-SSI : A Linear
Algebra Software Infrastructure for Sustained Innovation in Computational
Chemistry and other Sciences.

Overview of libflame
A family of algorithms for each operations is formally
derived.

Object-based APIs with high-level matrix abstraction:
index-free notations.

High performance library.

Arbitrary row and column strides thanks to BLIS
interface.

Multi-threaded runtime task parallelism via
algorithms-by-blocks: SuperMatrix.

Completely in C; no FORTRAN compiler needed.

Overview of libflame
A family of algorithms for each operations is formally
derived.

Object-based APIs with high-level matrix abstraction:
index-free notations.

High performance library.

Arbitrary row and column strides thanks to BLIS
interface.

Multi-threaded runtime task parallelism via
algorithms-by-blocks: SuperMatrix.

Completely in C; no FORTRAN compiler needed.

Problems
libflame:

The library supports an important subset of LAPACK functionality.

For example, banded matrices are not supported.

Full LAPACK functionality is important as many applications already rely on it.

LAPACK:

FORTRAN compilers may not be available for new (or experimental)
architectures: e.g., TI DSP.

LAPACK evolves with new interfaces and new libraries.

This often requires non-trivial modifications in application codes to adopt new
features.

Outdated standard FORTRAN-style interface; future achitectures require
improved data layout and interface for better portability.

FLAPACK delivers portable performance of libflame through the LAPACK
interface.

What have been done...

Entire LAPACK sources (ver. 3.5.0) were converted to C using f2c translator.

For functionality supported in libflame , the LAPACK interface becomes a
wrapper to libflame .

Numerical properties of the algorithms in libflame were carefully examined
via LAPACK test suite.

Replaced by libflame (also include unblocked versions)

(sdcz)getrf - LU with partial pivoting
(sdcz)hegst - Reduction of generalized eigenproblem.
(sdcz)lauum - Triangular matrix multiplication
(sdcz)potrf - Cholesky
(sdcz)potri - SPD inversion
(sdcz)trtri - Triangular inversion

(sd)gebrd, orgbr, ormbr - Bidiagonalization
(sd)sytrd, orgtr, ormtr - Symmetric tridiagonalization
(sd)gelqf, orglq, ormlq - LQ
(sd)geqpf, geqp3 - QR with column pivoting
(sd)geqrf, orgqr, ormqr - QR
(sd)gesvd - SVD

Leverage libflame (also include unblocked versions)

(sdcz)gesv, gesvx, gesvxx - Solution to a system of linear equations.
(sdcz)hegv, hegvd, hegvx - Hermitian eigenproblem.
(sdcz)pbtrf - Cholesky for banded matrix..
(sdcz)pftrf - Cholesky for RFP format.
(sdcz)pftri - SPD inversion for RFP format.
(sdcz)posv, posvx, posvxx - Solution to SPD matrix.
(sdcz)sygv, sygvd, sygvx - Generalized SPD eigenproblem.
(sdcz)getri - Inverse of general matrix
(sdcz)sytri2x - Inverse of Sym Indefinite matrix.

(sd)gels, gelsd, gelss - Least square problem.
gelsx, gelsy

(sd)gesdd, gejsv - SVD.
(sd)syev, syevd, syevr, - Symmetric eigenproblem.

syevx
(sd)ggsvp - Preprocessing for SVD.
(sd)gegs, gges, ggesx, - Non-symmetric eigenproblem.

ggev, ggevx
(sd)ggqrf - Generalized QR.
(sd)ggrqf - Generalized RQ.
(sd)orcsd, orcsd2by1 - CS decomposition.
(sd)ggglm - General Gauss-Markov linear model.
(sd)gglse - Linear equality-constrained least square problem.

libflame As Developer’s Tools

Transpose-free Transpose

Matrix can be virtually tranposed by swapping column and row strides.

A(i, j) = A[i∗ cs+ j∗ rs];

AT(i, j) = A[i∗ rs+ j∗ cs];
BLIS supports arbitrary column and row strides.

High-level matrix abstraction encapsulates stride information.

Often, a single case needs to be implemented and it supports other operations:
e.g., QR(LQ), Tridiagonalization, Bidiagonalization, SVD, etc.

Note that one routine corresponds to one operation in LAPACK implementation.

f u n c t i o n [U , s , V] = F L A _ S v d (A , t r a n s u , j o b u , t r a n s v , j o b v)
i f (F L A _ O b j _ l e n g t h (A) > F L A _ O b j _ w i d t h (A))

[U , s , V] = F L A _ S v d _ u p p e r (A)
e l s e

F L A _ O b j _ f l i p (A)
[V , s , U] = F L A _ S v d _ u p p e r (A)
F L A _ O b j _ f l i p (A)

end i f

A single implementation of FLA_SVD_upper reused for several SVD operations based on
different trans and job flags.

Control tree
A family of algorithms is obtained from rigorous principles of formal derivation.

Algorithms are implemented by harnessing other algorithms using control trees.

This provides great tuning flexibility (algorithmic combination of and maintainability.

f u n c t i o n [U , s , V] = F L A _ S v d _ u p p e r (A , S v d _ c t r l)
i f (F L A _ O b j _ i s _ t a l l _ r e c t a n g u l a r (A , S v d _ c t r l - > C r o s s o v e r) = = F A L S E)

[A , T , S] = F L A _ B i d i a g (A , S v d _ c t r l - > B i d i a g _ c t r l)
[s , U , V] = F L A _ B s v d _ u p p e r (A , T , S , S v d _ c t r l - > B s v d _ c t r l) ;

e l s e
[U , R] = F L A _ Q R (A , S v d _ c t r l - > Q R _ c t r l) ;
[R , T , S] = F L A _ B i d i a g (R , S v d _ c t r l - > B i d i a g _ c t r l) ;
[s , R , V] = F L A _ B s v d _ u p p e r (R , T , S , S v d _ c t r l - > B s v d _ c t r l) ;
[U] = F L A _ G e m m (U , R , S v d _ c t r l - > G e m m _ c t r l) ;

end i f

Algorithm describes workflow and control tree includes its building blocks.

Control tree
A family of algorithms is obtained from rigorous principles of formal derivateinodn.

Algorithms are implemented by harnessing other algorithms using control trees.

This provides great tuning flexibility (algorithmic combination of and maintainability.

Svd_ctrl
+ Crossover
+ Bidiag_ctrl
+ Unblocked (fused) + Blocked alg. variants

+ Bsvd_ctrl
+ Alg. variants
+ Max number of iterations + Blocksize

+ QR_ctrl
+ Unblocked alg. + Blocked alg. variants
+ Blocksize

+ Gemm_ctrl
+ Alg. variants

A control tree describes algorithm variants.

Then, algorithm variants become performance parameters for various matrix shapes and
architectures.

This tuning space cannot be explored in LAPACK implementation.

LAPACK test suite

LAPACK provides rigorous testsuite based

Algorithms in libflame formally derived, but their numerical stability is not
verified.

LAPACK provides rigorous testsuite with various test matrices:
e.g., zero, identity, underflow/overflow, rank deficiency, clustered or evenly
distributed eigenvalues, etc.

The testsuite also test input/output

Test with BLIS

All passed with a single failure on CTFSM:
triangular solve where A is Rectangular Fully Packed (RFP) format.

Inverse scale in TRSM might cause the problem.

Setup FLAPACK

$ cd libflame

./configure \
--enable-max-arg-list-hack \
--enable-lapack2flame \
--disable-vector-intrinsics \
--disable-ldim-alignment \

Remark
libflame and BLIS framework may require leading dimension alignment or storage
alignment.

This may not be treated correctly when FORTRAN interface is used with user-provided
buffer storage.

Using FLAPACK

In FORTRAN, two lines of modification:

CALL FLA_INIT
...
CALL DPOTRF(UPLO, N, AFAC, LDA, INFO)
...
CALL FLA_FINALIZE

FLA_INIT and FLA_FINALIZE are optional.

In C, native libflame interface is recommended (not CLAPACK interface).

Conclusion

Full LAPACK layer is now available in libflame .

The library is verified against LAPACK test suite.

Features of libflame (e.g., SuperMatrix and GPU interface) are deliverable
through the FLAPACK interface.

	Use case of DLA in my application
	High order Moving Least Squares (MLS)

	FLAPACK
	Introduction
	FLAPACK
	LAPACK test suite
	Using FLAPACK
	Conclusion

