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Objectives

• Present advanced surety/reliability analysis 
techniques as an extension of traditional 
probabilistically based surety/reliability analysis 
techniques

• Provide understanding of need for advanced 
techniques

• Summarize advanced techniques by simple 
examples 

• Discuss software tools available for implementing 
advanced techniques for not so simple real world 
problems
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To the Student

• Pay attention to the concepts

– e.g., epistemic uncertainty vs. aleatory uncertainty

• Understand that the techniques have an axiomatic basis 
developed by mathematicians

– Don’t try to “roll your own”

• Understand that there are people, references, and software 
available to help you

• We will cover a lot of material quickly

– Not a college course

– Will not cover all the material included here

• Backup material included with more details 

• Relax and enjoy the course
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Course Topics

• Part I: Traditional Techniques
– Risk measure for safety

– Probability measure of uncertainty

– Probabilistic Risk Analysis (PRA)

– Classical statistical inference

• Part II:  Advanced Techniques
– Bayesian concepts

– Epistemic uncertainty

– Belief/Plausibility measure of uncertainty

– Fuzzy sets: vagueness

– Approximate reasoning

– Linguistic evaluations
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Progression of Course Topics

Objective

Aleatory 
Uncertainty

Classical 
Probability

Classical 
Statistics

Information Available

Quantitative Quantitative, some Qualitative Qualitative

Bayesian 
Concepts

Subjective

Epistemic 
Uncertainty 

Belief/Plausibility

Fuzzy Sets

Traditional Techniques Advanced Techniques

Lightning strikes at Pantex New strong link
Abnormal environments

Terrorist attacks
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Part I:  Traditional Techniques
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Risk Measure for Safety

• Risk is a combination of the Likelihood of an undesirable event 
and the Consequence of that event

• Product Definition of Risk

– Risk = Likelihood * Consequence

– High likelihood low consequence event can have same risk as 
low likelihood high consequence event

Accident Sequence Likelihood
(per year)

Consequence
(equivalent $ Loss)

Risk:
Likelihood * 

Consequence
($ per year)

A 3 100 300

B 1 400 400

C 10-4 107 1000

D 10-2 104 100

E 0.1 700 70

Total: $1870 per year
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Risk Measure for Safety
• Product definition of risk loses distinction between likelihood and 

consequence

– Typically more concerned with higher consequence sequences

• Risk as likelihood of exceeding consequence

– Kaplan and Garrick “On the Quantitative Definition of Risk”, Risk Analysis Vol. 1 
No. 1, 1981

Accident Sequence 
ordered by 
increasing 
consequence

Likelihood
(per year)

Consequence
(equivalent $ Loss)

Risk:
Likelihood of 

Consequence or 
Greater

(per year)

A 3 100 3 + 1 + 0.1 + 10-2 + 10-4 = 
4.1101

B 1 400 1 + 0.1 + 10-2 + 10-4 = 
1.1101

E 0.1 700 0.1 + 10-2 + 10-4 = 0.1101

D 10-2 104 10-2 + 10-4 = 0.0101

C 10-4 107 0.0001
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Risk Measure for Safety

Risk:  Likelihood Exceed Consequence
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Likelihood

• Frequency or Probability?
• Attacks against US soldiers deployed in Iraq after war ended

– Frequency: 5000 per year 
– Probability of attack in 1 year about 1.0
– Consequence: 3 deaths per 10 attacks: 0.3 deaths per attack

• Product measure for Risk with likelihood as frequency
– Risk = 5000 * 0.3 = 1500 deaths per year

• Product measure for Risk with likelihood as probability
– Risk = 1.0 * 0.3 = 0.3 deaths in one year
– WRONG!

• Probability is “one or more attacks per year”
– 1 attack has consequence 0.3 deaths
– 2 attacks have consequence 2 * 0.3 = 0.6 deaths
– 3 attacks have consequence 3 * 0.3 = 0.9 deaths
– …
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Likelihood
• Probability within time T for event                      

with frequency f
– Exponential distribution
– P(T) = 1 – e-fT

– If fT small P(T) ≈ 1 – (1 – fT) = fT
• For f in per year and T of 1 year P(1) = f
• f and P numerically equal, but not the same concept

• Earlier problem using Probability ibstad of Frequency
– Erlangian distribution gives P of exactly n = 1, 2, 3… occurrences (consequences)

• P(n, T) = e-fT(fT)n/n! 
• Risk = ∑n = 0 to∞ e-fT(fT)n/n! * (nC)

– F = 5000 per year
– T = 1 year
– C = 0.3 deaths

• Solution using Mathematica software

– 1500 deaths in 1 year

In[15]:= Risk = SumAã- f T Hf TLn ‘ n! n C, 8n, 0, ¥ <E
Out[15]= C f T

In[16]:= Risk . 8C ® 0.3, f ® 5000, T ® 1<
Out[16]= 1500.
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Probability Measure of Uncertainty

• Frequency, F, and Consequence, C, for Risk, R, 
have uncertainty

– F and C are random variables

• Risk has Uncertainty

– Risk is a function of the two random variables 

F and C

• Digress to discuss Probability, then apply to 
provide Uncertainty for Risk
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Classical Probability is Objective

• Classical probability is a specific value (one value)

– Event E, N identical trials

– Probability of Event: P(E)

• P(E) = limN->∞ (number of time E occurs / N)

• P(E) is fixed but perhaps unknown with certainty

• To know P(E) precisely requires infinite number of identical 
trials

– Classical probability is an Objective concept

• Probability is a Frequency

– Not a physical rate but a dimensionless ratio

• For now assume we know the probability

– As introductory courses on probability assume

• (If do not know probability can infer it from a sample 
using statistics; discussed later)
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Probability Concepts 

• Sample space is set of all unique outcomes

– Set: No repeats, order does not matter

– Toss a Die

– Valid Sample Space
• {Even, Odd}

– All outcomes and each outcome is unique

– Invalid Sample Space
• {4 or Greater}

– Does not have all outcomes: 1, 2, and 3 not included

• {4 or Greater, 5 or less}
– Outcomes not unique: 4 and 5 are in both outcomes

• Failure to understand that outcomes must be unique has 
led to many incorrect analyses
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Probability Concepts

• Basic courses in probability focus on Random 
Variables: express Sample Space with Real 
Numbers

• Random variable is a mapping from the Sample 
Space to the Reals
– Toss a Die

• Random variable for value: {1, 2, 3, 4, 5, 6}

• Random variable with 0 if even value and 1 if odd 
value: {0, 1}

• All elements of Sample Space / Values for 
Random Variable are unique
– Outcomes are mutually exclusive

Many standard probability distributions

For a random variable:

• Binomial

• Normal

• Exponential

• Beta

• …
…
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Probability Concepts

• Event is a subset of the sample space

– Random variable for die value {1, 2, 3, 4, 5, 6}

– Define Event A as “greater than 3” = {4, 5, 6}

– Define Event B as “less then 5” {1, 2, 3, 4}

– Events are NOT mutually exclusive

• A and B share outcome 4

– Outcomes ARE mutually exclusive

• 1, 2, 3, 4, 5, 6

• Outcomes sometimes called “elementary events”
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Probability Concepts

• More complicated Sample Space

– Toss a coin twice, each toss is Heads, H, or Tails, T

– Sample Space = {<H, T>, <T, H>, <H, H>, <T, T>}

– Sample space is a set {} of tuples <>

• Set: no repeats, order does not matter

• Tuple: repeats allowed, order does matter
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If you cannot describe the sample space, 

you do not understand the problem.
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Probability Concepts

Probability Measure, P, for Sample Space, S:

Kolmogorov axioms

(the mathematics for probability)

1. For any event E, 0 ≤ P(E) ≤ 1

2. P(S) = 1 

3. For any set of mutually exclusive events 

{E1, E2, E3, …En} the Probability of the union (or) 
of all the events is the sum of the probabilities 
of each event 

P(E1 or E2 or E3 or … or En} = P(E1) + P(E2) + P(E3) + … + P(En)
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Probability Concepts

• Outcomes are mutually exclusive so probabilities of 
outcomes add (third Kolmogorov axiom)

– P(S) = Sum of  P(all outcomes for S) = 1.0

• For any two events A and B

– P(A or B) = P(A) + P(B) – P(A and B)

– If A and B are mutually exclusive P(A and B) = 0

– If A and B are independent P(A and B) = P(A) * P(B)

• Mutually exclusive events are NOT independent events

• For any real-world problem

– What is the sample space?

– What events are of concern?

• Do not implicitly assume mutually exclusive or independent
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Failure to consider dependence in 
real-world problems will 

under-estimate risk.
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Uncertainty for Risk

• Risk a function of Likelihood and Consequence

• Likelihood as Frequency, F, a random variable

• Consequence, C, a random variable

• Risk as a function of the random vector F x C

– Backup material discusses random vector
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Probability Concepts

• Probability Distributions
– R a continuous or discrete random variable

– r a specific value of R 

• Three Probability Distributions for 
a random variable R
– Cumulative Distribution Function (CDF)

• CDF(r) = Probability(R ≤ r)

– Complementary Cumulative Distribution Function 
(CCDF)

• CCDF(r) = Probability(R > r) = 1 – CDF(R)

– Probability Density Function (PDF)
• Probability(r in [a,b]) = ∫a to b PDF(r) dr

for continuous R

• Probability(r) = PDF(r) for discrete R
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Risk as a Product: R = F * C
with Uncertainty

• Using Crystal Ball software (Oracle)

– An overlay on Excel that treats Excel 
variables as random variables with 
probability distributions

– Convolution by sampling

• Monte Carlo or Latin Hypercube

• Assume F (per year) is triangular over [0, 10]

• Assume C (equiv. $) is lognormal

• Risk ($ per year) = F * C per convolution

PDF for Risk CDF for Risk
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Risk as Likelihood of Exceedance
with Uncertainty

Frequency >= Consequence
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Probabilistic Risk Analysis (PRA)

• Evaluate risk of complex system of systems using probability 
measure
– Event trees for systems interaction logic: sequences
– Fault trees for system failure logic
– Link fault trees for accident sequences of concern

• Shared components among systems

– Consider uncertainty using probability
– Main application to date: commercial nuclear power plants

• Risk of one sequence more complicated than combining F and C
– F (initiating event) * ∏Pconditional failure mitigating systems 

Combined with many different Consequences
• Many Sequences, Many Systems, Many Components per System
• Software required for real world complex applications

– SAPHIRE software (written by INEL for NRC)
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PRA Event Tree Example
• Seismic Event at Commercial Nuclear Power Plant

– Pipe break: cool core and cool containment

– Loss off offsite power: need onsite emergency electrical power

• Core and containment cooling systems share emergency electrical power

Two Sequences 

of Concern:

(1) Fail Cool Core: 
Small Release

(2) Fail Cool Core 
and Fail Cool 
Containment:
Large Release

Up is Success

Down is Failure

Initiating event:

a Frequency (per year)

Systems Success/Failure:

a Conditional Probability
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PRA Fault Tree Example
• Fail to Cool Core (failure branch on event tree)

• Fail to Cool Containment (failure branch on event tree)Systems share power.

Must link fault trees 

in event tree sequences

to not double-count failures in 

shared components!
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Cut Sets for Event Tree

jldarby@sandia.gov

Failure of emergency power fails both
core and containment cooling:

large release
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Classical Statistical Inference
• Probability: predict result of a sample based on knowledge about the population

– Probability that pump fails to start on demand is “known” to be a binomial probability 
distribution with probability of failure of 0.01

• Probability exactly x failures in n trials is: n!/(x! * (n – x)!) px (1 – p)n-x

– Probability a specific pump fails to start on demand is 0.01
• n and x are 1, and p is 0.01

• Statistics: characterize the population based on taking a sample
– Probability that pump fails to start on demand is assumed to be a binomial probability 

distribution but probability of failure is not known
– Take a sample of pumps, estimate probability of failure for the population of all pumps

• Population has parameters
• Sample has statistics used to estimate parameters

• Inference mean infer parameters of population from statistics of sample

• Triola, Elementary Statistics is an excellent introductory text with a lot of interesting 
applications

– Prussian soldiers killed from being kicked by horses
– Voltaire and friends became rich buying all lottery tickets: cost of tickets less than 

value of prize! 
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Classical Statistical Inference

• Typically we do not know the parameters of a probability 
distribution

• Infer parameters from statistics

– Take a sample

• Example: Probability of failure of a component is assumed 
to be described by the binomial distribution

– p, probability of failure, is a parameter of the binomial 
distribution

– What is p?

• p is fixed but unknown

• Infer p from sample
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Classical Statistical Inference

• From population of N, sample n and observe x 
failures

– Sample with replacement (binomial distribution)

– Sample without replacement (hypergeometric 
distribution)

• If N is large (greater than about 10 times n) 
hypergeometric is well approximated by binomial

• Sample without replacement more efficient for small 
population

– From the sample we can establish a confidence 
interval for the parameter p of the binomial 
distribution Confidence interval represents the

Uncertainty in p due to finite size of sample
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Classical Statistical Inference

• Weapon Component Failures: 
SNL Point Estimates

– Sample n of N and observe 
x failures

• Estimate of expected 
value (mean) = x/n

• If x is 0 x/n is always 0 
and is a poor estimate

– Insensitive to n

• x = 0 from 2 
samples has same 
estimate as x = 0 
from 106 samples

• If x is 0 use 50% UCL for 
point estimate to consider 
that larger n provides less 
uncertainty

0

1

Prob

Defect

Point estimate prob defect 0.03

50% UCL 

90% confidence prob defect 

less than 0.1

0.1

No failures in 22 samples 

from large population

This does NOT mean that p is in [0. 0.1] with 0.9 probability.  
p is a specific value (but unknown).

This means that for 90% of repeated samples the 
calculated confidence intervals will contain p.  
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Classical Statistical Inference

• Surveillance of Stockpile for Estimate of Warhead Reliability

• Sample without replacement: n of N

– Hypergeometric distribution

Number of Samples

for 90% confidence 

for 90% reliability

No failures in Sample

Number of Samples 

for 90% confidence 

for 95% reliability 

No failures in Sample

For n small and N large, 

Hypergeometric dist. 

has same result as 

binomial dist.

Population Sample Size

10 9

20 14

30 16

40 17

50 18

70 19

100 20

200 21

300+ 22

Population Sample Size

10 9

20 18

30 21

50 27

80 35

100 37

200 41

500 43

1500+ 45



35
jldarby@sandia.gov

Part II:  Advanced Techniques
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Bayesian Concepts

• Conditional probability

– Probability of event A given event B: P(A|B)

– P(A|B) = P(A and B) / P(B)

– P(B|A) = P(B and A) / P(A)

• Since P(A and B) = P(B and A)

– P(A|B) = P(B|A) * P(A) / P(B)
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Bayesian Concepts

• Bayes theorem: discrete case

– S a sample space

– {A1, A2, A3, …,An} a partition over S

• The A’s are mutually exclusive and their union is S

– B any event in S

– Law of total probability

• P(B) = ∑k = 1 to n P(B|Ak)*P(Ak)

• P(Ai|B) = P(B|Ai) * P(Ai) / ∑k = 1 to n P(B|Ak)*P(Ak)
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Bayesian Concepts

• Example

– Test for disease is 99% accurate given you have the disease

– Test has 10-4 false positive (falsely says you have disease) 

– 1 in 106 people have the disease

– You test positive

• Probability you have the disease is 0.99?

• NO

– P(T|D) = 0.99 is probability Test T is correct given you have the Disease D

– P(T|ND) = 10-4 is probability Test T is false positive given you do not have the 
disease ND

– P(D) = 10-6 is probability an individual selected at random has the disease

– P(D|T) is the probability you have the disease given you test positive

– P(D|T) = P(T|D) * P(D) / {P(T|D)*P(D) + P(T|ND)*P(ND)} = 

0.99 * 10-6 / {0.99 * 10-6   + 10-4  *  (1 – 10-6)} ≈ 10-6 / 10-4 = 0.01

– Probability you have the disease given you test positive is 0.01, not 0.99
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Bayesian Concepts
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So far we have just used the properties of
conditional probability.

The Bayesian approach is revolutionary in its 
interpretation of conditional probability.
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Bayesian Concepts

• P(Ai|B) = P(B|Ai) * P(Ai) / ∑k = 1 to n P(B|Ak)*P(Ak)

• Let P(Ai) be our initial probability distribution for event Ai

– P(Ai) is our prior probability distribution for Ai before updating 
with information

• Let B be new information

• P(Ai|B) is our updated probability distribution for Ai given the new 
information B
– P(Ai|B) is our posterior probability distribution for Ai after 

updating with information B

• Technique to update given new information

• We discussed discrete case, can also address continuous case

Probability is SUBJECTIVE based on your
state of knowledge.  Totally different from
classical, objective concept of probability.
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Bayesian Concepts

• Bayesian Inference
– Treat probability as a random variable

• Different from classical statistical inference
– Probability treated as fixed (but unknown)

• Reference: Martz and Waller Bayesian Reliability Analysis
• Example: Binomial distribution with unknown failure probability p
• Assume p described by a beta distribution

– Beta distribution is over [0, 1], 
the appropriate range for probability

– Beta distribution is a conjugate prior for the binomial 
distribution

• This means the updated (posterior) distribution for p will also be a 
beta distribution

– Caution: two different sets of parameters used in literature for 
beta distribution, may need to transform variables

• Beta[x, n] and Beta[α, β]
– x failures in n trials (discrete)
– Shape parameters α and β (continuous) 
– Transformation: α = x and β = n - x

Objective probability is a fixed (typically unknown) value.

Subjective Probability is a Random Variable.  NOT fixed.
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Bayesian Concepts

• Using Beta[α, β] convention
– Beta[x0, n0 – x0] is the prior given x0 

failures in n0 trials
– Beta[x + x0, n - x + n0 – x0] is the 

posterior given new information x 
failures in n trials

• Assume prior distribution for p is uniform
– No information as to what p really is
– p equally likely to be any value in [0, 1] 
– Beta[1, 1] is the uniform prior for p

• x0 is 1 and n0 is 2

• New information
– x failures in n trials

• Beta[x + 1, n - x + 2 - 1] is the posterior 
(updated) distribution for p

• Using Mathematica 

PosteriorDistribution[x0_, n0_, x_,n_] = 
BetaDistribution[x + x0, n -x + n0 - x0];

– with x = 6  and n = 400, the posterior 
probability distribution (PDF) for p is

0.01 0.02 0.03 0.04 0.05 0.06
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20
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40
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Prior for p

Posterior for p
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Bayesian Approach is Subjective
• Probability is a state of knowledge and can be estimated even without sufficient data 

to evaluate the classical frequency
– Subjective concept of probability

• Treat probability itself as a random variable instead of a fixed, but perhaps unknown, 
frequency

• Probability of a Probability means
– Subjective probability of the objective probability (the frequency)
– Confusion is that Probability used to mean two different concepts

• Both concepts obey Kolmogorov axioms

• See earlier reference: Kaplan and Garrick 1981 paper in Risk Analysis
• Update P(E) with information: P(E | Information) as discussed earlier

Probability (subjective Probability)

Frequency (objective Probability)

Probability of Probability means

Subjective Probability (state of knowledge) 
of Objective Probability 

(classical frequency)
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Epistemic Uncertainty
• Probability mostly deals with aleatory (stochastic or 

random) uncertainty
• Probability has difficulty dealing with epistemic (state of 

knowledge) uncertainty

• Example of difference between aleatory and epistemic 
uncertainty.  Consider a fair coin, heads on one side, tails 
on the other, with each side equally likely. The uncertainty 
as to the outcome of a toss—heads or tails—is aleatory.  
The probability of heads is one half and the probability of 
tails is one half.  The uncertainty is due to the randomness 
of the toss.  Suppose, however, that we do not know the 
coin is fair; the coin could be biased to come up heads, or 
the coin could even be two-tailed.  Now we have epistemic 
uncertainty; our state of knowledge is insufficient to assign 
a probability to heads or tails: all we can say is the 
likelihood of heads (or tails) is somewhere between 0 and 1.
This is an example of “total ignorance”.
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Epistemic Uncertainty:
Total Ignorance

Heads Tails
Probability Approach: Assume

a probability distribution;

typically assume uniform
0.5 0.5

Heads Tails

With total ignorance we have assumed 

the same probability as if we knew the coin to be fair!  

We have thrown away all the epistemic uncertainty!

Subset (interval) Approach: 

The probability

is somewhere in {Heads, Tails}
1.0
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Belief/Plausibility Measure of Uncertainty

• “Probability assigned to intervals”

• Belief is a lower bound for probability

• Plausibility is an upper bound for probability

• Also called Dempster/Shafer approach
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Belief/Plausibility

• Belief / Plausibility form a Lower / Upper Bound for Probability

• Similar to a Confidence Interval for a Parameter of a probability 
distribution; a confidence measure that parameter is in interval, 
but exactly where in interval is not known

• Belief/Plausibility both reduce to Probability if Evidence is 
Specific
– Subsets (intervals) with evidence are singletons (points)

• For coin that cannot be observed, Belief / Plausibility for both 
Heads and Tails is 0 / 1

Belief

Plausibility

Probability is 
somewhere  in [Belief, 
Plausibility] Interval
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Belief / Plausibility

• More general than Bayesian probability

– Bayesian probability
• Assume prior probability distribution

• Update with data to form posterior probability 
distribution

– Belief and Plausibility
• Do not know prior probability distribution

• Little data for performing update

• Total Ignorance easily addressed

• Belief and plausibility are both probability if no 
epistemic uncertainty (evidence is specific)

• Useful for Formalizing Expert Judgment
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Belief / Plausibility

• m is Evidence assigned to a subset (or interval) 

– Any subset with evidence is called a Focal Element

– All evidence sums to 1.0

• For B a Focal Element with evidence m(B)

• For A any Subset













0|

|

)()(
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ABB
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Belief / Plausibility

• Example of Evidence: In January, 2014 Predict 
Stock Market Close Dec. 31, 2014

– Probability

– Belief / Plausibility

12,000     13,000     14,000     15,000     16,000     17,000

0.05         0.1           0.15            0.3         0.3            0.1         

12,000     13,000     14,000     15,000     16,000     17,000

Evidence 0.7

0.2

0.1

50
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Graphical Interpretation

• Evidence is weighted information that outcome is equally 
likely to be any outcome somewhere in set of selected 
outcomes

• Belief is sum of all evidence contained within set of selected 
outcomes

• Plausibility is sum of all evidence that overlaps set of selected 
outcomes

• Example: Stock Market Close Dec. 31, 2013

– Evidence

– Belief/Plausibility that Close is ≥ 15,000

12,000     13,000     14,000     15,000     16,000     17,000

Evidence

0.7

0.2

0.1

12,000     13,000     14,000     15,000     16,000     17,000

Belief

0.9

Plausibility

1.0
51

Belief

Plausibility
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Belief / Plausibility

• Sample space can be discrete or continuous

– Earlier examples were discrete

• Evidence over subsets

– Can apply to intervals of reals

• Evidence over intervals
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Example of Evidence

• On Dec. 31, 2005, Grandma and Grandpa are 
trying to figure out the age of a distant relative, 
Jack

• Grandpa says “I think Jack was not born before 
1980.”

• Grandma says “I think Jack is a teenager.”

• Jack has definite age, but there is uncertainty as 
to his age.

• Jack’s age is somewhere in [0, 150] years

• We have two pieces of Evidence: what Grandpa 
says and what Grandma says.
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Example of Evidence

• Evidence #1: What Grandpa says.  This is 
evidence for Jack’s age being somewhere exactly
in (0, 26)*

* Nomenclature.  [a, b] contains all values between a and b, 
including a and b; [a, b) contains all values between a and b, 
including a but not including b.

0 15026
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Example of Evidence

• Evidence #2: What Grandma says.  This is 
evidence for Jack’s age being somewhere exactly
in [13, 20)

0 1502013
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Example of Evidence

• We know that Grandma has a better memory than 
Grandpa about relatives, so we decide to weight 
Grandma’s evidence twice as much as Grandpa’s 
evidence: 2/3 for Grandma and 1/3 for Grandpa 

• Our focal elements are as follows. m is a degree 
of evidence

0 1502013 26

m = 0.33 m = 0.67
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Example of Evidence

• For the interval [13, 20), the belief that Jack’s age is in [13, 20) is 0.67 and 
the plausibility that Jack’s age is in [13, 20) is 1.0.  

• For the Interval (0, 26), the belief that Jack’s age is in [0, 26) is 1.0 and the 
plausibility that Jack’s age is in [0, 26) is 1.0

• For the interval [26, 150], the belief is 0 and the plausibility is 0.

• Based on the evidence, Jack is not 26 years old or older; we are certain 
Jack’s age is in (0,26).  The probability that Jack is a teenager, age in 

[13, 20), is somewhere in the belief/plausibility interval 0.67 to 1.0.

0 1502013 26

m = 0.33 m = 0.67
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Example of Evidence

• A given expert can provide more than one piece 
of evidence 

– Grandma could have provided both pieces of 
evidence 

• My best recollection is that Jack is a teenager 

• I think I remember Aunt Maude telling me that Jack is 
not yet 26

• Grandma assigns evidence 2/3 to teenager 

• Grandma assigns evidence 1/3 to not yet 26



59
jldarby@sandia.gov

Assigning Evidence is an Art

• What is the Evidence?

• What Weight is given Each Piece of Evidence?
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Uncertainty for a Random Variable
X a Random Variable in [0, 1]: Concern is X exceeds 10-4

• Subject Matter Expert assigns Probability Distribution To X

• Subject Matter Expert assigns Evidence to Intervals of X
0 1

x 10-4

sum (integrate) Probabilities 

for all values > 10-4

0
x

10-4

1

Belief: Sum All Evidence > 10-4

Plausibility: Sum All Evidence 

Overlapping (10-4, 1]
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Belief/Plausibility Viewed as Lower/Upper 
Bound on Probability

• Belief/plausibility distribution for X obtained from Expert 
assigning evidence to intervals in range for X. All evidence 
must sum to 1.0. Result presented as belief/plausibility of 
exceedance:  Complementary Cumulative Belief Function 
(CCBF) and Complementary Cumulative Plausibility 
Function (CCPF).

x a specific value of Random Variable X with range [0, 1].  

x 10-4

Belief/Plausibility

Interval for

X > 10-4

“Likelihood” of

X exceeding

x

Plausibility: CCPF

Belief: CCBF

Probability (CCDF) is Somewhere 

In Belief/Plausibility Interval, 

but we do not know where
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Belief / Plausibility

• Evaluation of nuclear weapon strong link UQS issue

-2-4-6-8-10-12
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Belief / Plausibility References

• Introductory References
– Klir and Yuan, Fuzzy Sets and Fuzzy Logic
– Appendices in Darby “Evaluation of Risk from Acts of 

Terrorism: The Adversary/Defender Model Using Belief and 
Fuzzy Sets”, SAND2006-5777

• Advanced References
– Shafer, A Mathematical Theory of Evidence, 1976, Princeton 

University Press
– Helton, Jon et al “An exploration of alternative approaches to 

the representation of uncertainty in model predictions”, 
Reliability Engineering and System Safety, Vol. 85 Nos. 1 – 3, 
July –Sept, 2004

– Helton, Jon “Conceptual and Competational basis for the 
Quantification of Margins and Uncertainty”, SAND2009-3055, 
June, 2009
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Belief / Plausibility Software

• BeliefConvolution custom SNL Java code, J. 
Darby, SNL

– Also evaluates fuzzy numbers

• RAMAS RiskCalc software, S, Ferson, Applied 
Biomathematics

• Go see Dr. Jon Helton (on-site consultant at SNL)

– Sampling techniques

– Non-algebraic functions

• e.g., (a + b)a
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Fuzzy Sets: Vagueness

• So far our Uncertainty has been Ambiguity
– Uncertainty as to what will occur in the future

• Dow Jones Industrial Average Close on Dec. 31, 2009

–Will be one value

–Ambiguity as to what that value will be

• Vagueness is another type of Uncertainty
– Uncertainty as how to categorize a known outcome

• Dow Jones close is 9,876 on Dec. 31, 2009

– Is this “High” ?

–What do you mean by “High”?

– Vagueness can be expressed with words: fuzzy sets
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What is a Fuzzy Set

• Classical or crisp set
– Element is either totally within or not within a crisp set

• Membership value either 0 or 1

• Fuzzy Set
– Element can be partially within more than one set

• Membership value can be any value in [0, 1]

Temperature, t, in Degrees

Degree of Membership 

of t in Fuzzy Sets

Cold and Hot

Temperature, t, in Degrees

Degree of Membership 

of t in Crisp Sets

Cold and Hot
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Vagueness
Fuzzy Sets for Numeric Variable

Linguistics for Consequence

0
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• Represent Variable with Sets 
to reason at Fidelity Desired. 
Above 30,000 deaths is 
“Catastrophic”.

• Use Fuzzy Sets to Avoid Sharp 
Distinction. “Major” Deaths is 
Between About 1000 and About
10,000.  999 and 1001 deaths 
are each part “High” and part 
“Major”.
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Uncertainty for Fuzzy Sets: Numeric 
Variable

Linguistics for Consequence
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Evidence

For Deaths 1   10   100   1000   10,000   50,000   100,000   …0.7

0.3

Uncertainty Distribution 

for Deaths:

Belief / Plausibility

Minor      Moderate      High       Major       Catastrophic

0 / 0.65     0 / 1             0 / 1       0 / 0.65           0 / 0.3

(Calculated with BeliefConvolution code using Yager Method)

Fuzzy Sets

for Deaths
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Why is this Important?
• What is Likelihood of Bio-Terror attack against a 

Major US City?
– Evidence is about 1 major Attack every 5 years (0.2/year)

• Assume Expert Opinion is: 10% Chance Attack is bio (0.02/year)

• Assume Following Fuzzy Sets for Evaluating Frequency of Attack

Defender Fuzzy Sets for Threat

0
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0 10 -̂5 10 -̂4 10 -̂3 10 -̂2 0.1 1

frequency of attack (# per year)

fu
z

z
y

 s
e

t 
m

e
m

b
e

rs
h

ip

unlikely

credible

likely



70
jldarby@sandia.gov

Why is this Important?

0        0.02         0.2       1.0  
0.7

0.2

0.1

Evidence

Likelihood 

For Frequency

1

0.43

0

Frequency of Attack (per year)

Unlikely     Credible     Likely

Belief to Plausibility

Interval

(Calculated with BeliefConvolution 

code using Yager Method)
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Qualitative Variables

• Variable Segregated into Purely Linguistic Fuzzy Sets

– Variable: “Health”

– Fuzzy Sets: “Bad”, “Moderate”, “Excellent”

• Why Pure Linguistics?

– Numeric Scale is Unknown

• Is “Health” [0, 10], [0, 106], [-700, square root of 42]?

– Scaling is Un-Manageable when Combine Variables

• Combine “Health” with “Wealth” to Evaluate “Quality of 
Life”

– “Wealth” can be Numeric: [$0, $50B]

– What is Numeric Scale for “Health”?

– What is Numeric Scale for “Quality of Life”?
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Fuzzy Sets for Non-Numeric Variable

Adversary Level of Technical Training:

High School

Bachelors

Advanced

Adversary Level of Technical 
Training:

High School = 1?

Bachelors = 2?

Advanced = 3?

Adversary Level of Technical 
Training:

High School = 10?

Bachelors = 100?

Advanced = 1000?

Do NOT Force  Numeric Measure: Requires Arbitrary Scale
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Uncertainty for Fuzzy Sets: 
Non-Numeric Variable

• Fuzzy Sets for Adversary Level of Technical 
Training

– High School        Bachelors        Advanced

• Evidence 

• Uncertainty Distribution: Belief / Plausibility

High School          Bachelors          Advanced

0.6
0.4

High School          Bachelors          Advanced

0/ 0                         0.4 / 1               0 / 0.6
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Combining Variables:  Convolution of 
Uncertainty Distributions

• Belief/Plausibility Distributions

– Evidence Over Fuzzy Sets for Each Variable

• Convolute Distributions per the Rule Base

– Mathematics of Belief/Plausibility

• Same Concept as Convolution of Probability 
Distributions

– Mathematics of Probability
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Convolute Probability Distributions:
Crystal Ball Software

Z = X + Y

X and Y Independent

Mean of Z is a Point value: 8.34
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Convolute Belief/Plausibility Distributions
for Numeric Variables: BeliefConvolution Software

Z = X + Y, X and Y Non-Interactive
X over [1, 20]  with Evidence: 0.8 for [2, 15], 0.2 for [1,10]

Y over [0,30] with Evidence: 0.7 for [5, 25], Evidence 0.3 for [0, 4]

Belief/Plausibility Exceedance Results
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• Example Follows

Convolute Belief/Plausibility Distributions for 
Linguistic Variables: LinguisticBelief Software
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Combining Qualitative Variables:  
Approximate Reasoning

• Mathematics for Combining Words

• If we use Words instead of numbers we need a 
way of combining the Words for Different 
Variables

• Implemented as A Rule Base for Combining 
Fuzzy Sets from Different Variables
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Combination of Linguistic Variables: 
Example

Develop the Model:  Happiness for Any Individual
Define the Variables and their Fuzzy Sets

– Basic Variables
• Health

– Bad, Moderate, Excellent

• Wealth
– Poor, Middle Class, Rich

• Outlook on Life
– Pessimist, Optimist

– Rule Based Variables
• Quality of Life = Heath x Wealth (x per rule base)

– Not so Good, Good

• Happiness  = Outlook on Life x Quality of Life
– Depressed, Accepting, Very Happy
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Combination of Linguistic Variables: 
Example

Develop the Approximate Reasoning Rule Base for 
Rule Based Variables

Quality of Life
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Combination of Linguistic Variables: 
Example

Happiness
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Combination of Linguistic Variables: 
Example

Evaluate the Model for Specific Individual:

Happiness for “John”

Assign Evidence to Fuzzy Sets for Basic Variables
Health

Bad Moderate Excellent

0.8

0.2
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Combination of Linguistic Variables: 
Example

Wealth

Poor Middle Class Rich

0.3
0.7
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Combination of Linguistic Variables: 
Example

Outlook on Life

Pessimist Optimist

0.02
0.98
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Combination of Linguistic Variables: 
Example

Evaluate Variable: Quality of Life for John 
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Combination of Linguistic Variables: 
Example

Evaluate Variable Happiness for John 



87
jldarby@sandia.gov

Combination of Linguistic Variables: 
Example

Summarize Results Graphically: Happiness for “John”
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CCDF and CCBPFs

• CCDF

• CCBPFs

Likelihood of 

Exceedance

Number of Deaths

0

1

100 108

Number of Deaths

0

1

Very Low Medium

Likelihood of 

Exceedance

Low High Very High

Probability: 
Continuous 

Function

Plausibility: Discrete Function

Belief: Discrete Function

Continuous Variable: 
Real Number

Discrete Variable: 
Linguistic Fuzzy 

Sets

Curve

Interval
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Custom SNL Software Tools: Java

• BeliefConvolution

– Convolution of Numeric Variables with Belief/Plausibility

• LinguisticBelief

– Evaluation of Linguistic Variables

• Linguistic Fuzzy Sets

• Approximate Reasoning

• Belief/Plausibility

• PoolEvidence

– Multiple Experts provide Evidence for Variables 

• Linguistic Fuzzy Sets

– Combine Evidence 

• Pooled Evidence for Variables

– Input for LinguisticBelief
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LinguisticBelief: Example Application
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Conclusion: We Covered

• Risk for evaluation of safety

• Probabilistic uncertainty

– Classical approach

– Bayesian approach

• Epistemic uncertainty

• Belief / Plausibility measure

• Fuzzy Sets

• Approximate reasoning for purely linguistic 
variables
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Suggestions

• Never: create your own “new” approach for risk 
and uncertainty on the fly

• Good: Select an existing technique best suited to 
the fidelity of the information you have

• Better: Ask for help from an expert

– You are the subject matter expert

– Get help from experts on risk and uncertainty
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Backup Information
Some More Details

jldarby@sandia.gov
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Probability Concepts

• Convention: upper case letter denotes a Random Variable, lower case 
letter denotes a specific value of the random variable

– Random Variable: R
• e.g. R = {-2, -1, 0, 1, 2} 

– r: specific value for R
• e.g. r = 2 

• Random Variables can be Discrete or Continuous
– R = {-2, -1, 0, 1, 2} is Discrete, r cannot be 0.2
– T = {x | x in [-2, 2]}  is Continuous, t can be 0.2

• [a, b] denotes the interval of all real numbers between a and b inclusive
• (a, b] denotes the interval of all real numbers between and a and b excluding 

a including b

• Combinations of Random Variables
– Random Vector
– R and T random variables
– Cartesian product R x T = {<r, t>} is a Random Vector
– R and T are independent random variables 

if P(<r,t>) = P(r)* P(t)
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Probability Concepts

• Functions of a Random Variable
– R a random variable, r a specific value of r

– f(r) a function for R
• z = f(r)

• P(z) = ∑ P(r) | f(r) = z)
– Add since mutually exclusive

• Example
– R is {-2, 1, 0, 1, 2}

– Assume each r has same probability: 0.2

– f(r) = r2

– P(z = 4) = P(r = -2) + P(r = 2) = 0.4

– P(z = 1) = P(r = -1) + P(r = 1) = 0.4

– P(z = 0) = P(r = 0) = 0.2

– P(any z) = 0.4 + 0.4 + 0.2 = 1.0 
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Probability Concepts

• Functions of a Random Vector
– R and T random variables
– function z = f(r, t)
– P(z) = ∑ P(<r, t> | f(r, t) = z)

– Add since mutually exclusive
– This is convolution: folding two probability distributions 

– Example
• R = {-2, -1, 0, 1, 2} each outcome prob 0.2
• T = { 0, 1} each outcome prob 0.5
• R x T = {<-2, 0>, <-1, 0>, <0, 0>, <1, 0>, <2, 0>, <-2, 1>, 

<-1, 1>, <0, 1>, <1, 1>, <2, 1>}
• Assume R and T independent: P(<r,t>) = P(r) * P(t)
• Define f(r, t) = r + t
• P(z = 2) = P(<2, 0>) + P(<1,1>) = 0.2 * 0.5 + 0.2 * 0.5 = 0.2 
• R + T = {-2, -1, 0, 1, 2, 3}

– P(-2) = 0.1, P(-1) = 0.2, P(0) = 0.2, P(1) = 0.2, P(2) = 0.2, 
P(3) = 0.1
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Probability Concepts

• Probability for Function of a Continuous Random Vector

– Convolute (faltung or fold) the probability distributions 
for the constituent random variables under the operation 
specified by the function

– z = f(r, t), R and T continuous random variables

– PDF(z) = ∫PDF(r,t) | f(r, t) = z

– If R and T are independent random variables

PDF(r, t) = PDF(r) * PDF(t)

• End digression on Probability; back to Uncertainty for Risk

 
x

dxxzPxPzPyxz )(*)()(
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Classical Statistical Inference

• Upper Confidence Level (UCL)

• “p is in the interval [0, UCL] to confidence level C%” 
means C% of a large number of [0, UCL] confidence 
intervals constructed from repeated samples contains P. 

• [0, UCL]  is an upper one sided confidence interval

• From Martz and Waller Bayesian Reliability Analysis

– α specifies (1 – α) confidence interval

• For x = 0, 50% UCL is: 1 – 0.51/n 

)22,22()1()(

)22,22()1(
)(

1

1

xnxFxxn

xnxFx
xUCL













C% ≡ (1-α)100%

Binomial dist.
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Evidence is NOT The Measure of Uncertainty

• Evidence for any subset (interval) R is: “Likelihood” that 
outcome is exactly in R (in R and nowhere else)

• Belief for any subset (interval) R is:  “Likelihood” that 
outcome is in R or any subset of R

• Plausibility for any subset (interval) R is: “Likelihood” that 
outcome is in R or any subset that overlaps (is not disjoint 
with) R

• Probability thinkers have trouble understanding how T a 
subset of R can have more evidence than R

– T       R
• Since R contains T, Probability(R) ≥ Probability(T)

– They Confuse Evidence with Belief/Plausibility
• Even If Evidence(R) < Evidence(T) 

– Belief(R) ≥ Belief(T) and Plausibility(R) ≥ Plausibility(T)

– Example Follows


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Example of Evidence

• (0, 26) contains [13, 20), but the evidence 0.33 for 
(0, 26) is less than the evidence 0.67 for [13, 20), 
because the evidence for an interval is the 
“likelihood” of being exactly in that interval and 
not localized within any subinterval. 

0 1502013 26

m = 0.33 m = 0.67
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Example of Evidence

• (0, 26) contains [13, 20).  The belief for (0, 26) will be greater than 
or equal to than the belief for [13, 20).  The belief for an interval is 
the total evidence of being in that interval or any other interval 

within that interval.

• (0, 26) contains [13, 20).  The plausibility for (0, 26) will be greater 
than or equal to than the plausibility for [13, 20).  The plausibility 
for an interval is the total evidence of being in any interval that 
overlaps that interval (any interval not disjoint with that interval).

0 1502013 26

m = 0.33 m = 0.67
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Belief/Plausibility can be Viewed as 
Evidence that Supports/Does not Contradict

• Example: X a continuous random variable over [0, 1]

– Event is any Interval 
• Consider Event [0, 5 x10-6]

– Experts Assign Evidence as Follows
[0] has evidence 0.01

[0, 10-6] has evidence 0.45

[10-6, 10-5] has evidence 0.32

[10-6, 10-4] has evidence 0.20

[10-4, 10-2] has evidence 0.01

[10-3] has evidence 0.01

– Belief for [0, 5 x10-6] = 0.01 + 0.45 = 0.46

– Plausibility for [0, 5 x10-6] = 0.01 + 0.45 + 0.32 + 0.20 = 0.98

Evidence 

Supports (within)

[0, 5 x10-6]

Evidence Does Not

Contradict

(overlaps)

[0, 5 x10-6]

Evidence Contradicts [0, 5 x10-6]
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Belief / Plausibility

• Risk as Exceedance of Consequence
– Calculations with BeliefConvolution SNL custom Java software

Belief/Plausibility and Probability Risk Exceedance Results
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Belief / Plausibility

• Mean for random variable X is an interval 

[E*(X), E*(X)]

– Inf (infimum) means greatest lower bound

– sup (supremum) means least upper bound

– Ai is a focal element, interval of real numbers
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Evidence for Variable X

• Evidence for any A a subset of X is: “Likelihood” that X 
is exactly in A (in A and nowhere else)

• Belief for any A a subset of X is:  “Likelihood” that X is 
in A or any subset of A

• Plausibility for any A a subset of X is: “Likelihood” that 
X is in A or any subset that overlaps (is not disjoint with) 
A

• Example: Stock Market Close Dec. 31, 2007

– Evidence

• Belief/Plausibility that Close is ≥ 12000
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Evidence
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0.9

Plausibility

1.0
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Belief / Plausibility for 
Function of Random Variables

• For a function of random variables
– Random vector is Cartesian product  X x Y
– Function z = f(x, y)
– Evidence is binary relation, R, on X x Y (R is a subset of X x Y)

– RX is projection of R on X 
– RY is projection of R on Y

– For any subset A the marginal evidence is mX(A) and mY(B)
• Pow(A) denotes power set of A (set of all subsets of A)
• R|A=RX means all relations R such that the projection of R onto X (RX) is 

equal to A

• If subsets A and B are non-interactive (extension of independence for probability)
– m(A  B) = mx(A)*mY(B)

• Like P(<x, y> = P(x) * P(y) if probabilistic independence 

– m(R) = 0 for all R ≠ A  B
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Quantification of Margins and Uncertainty

• Techniques for evaluating data on aging 
concerns in nuclear weapons

• QMU is the “math” to evaluate 

predictive / diagnostic “data”
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Results Expressed as
Complementary Cumulative Belief/Plausibility 

Functions (CCBPFs) for Linguistic Variable

• Linguistic Fuzzy Sets Ordered from “Best” to “Worst”

– CCBPFs are Non-Increasing
• “Likelihood” of Exceeding Fuzzy Set

• “Likelihood” is Belief/Plausibility Interval

• Analogous to Complementary Cumulative Distribution 
Function (CCDF) for Probability

– CCDF Random Variable is a real number
• discrete or continuous

– CCBPFs Variable has linguistic fuzzy sets
• Discrete

– CCDF is a One Function: a Curve

– CCBPFs are Two Functions: an Interval
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Combination of Linguistic Variables: 
Example

Graphical Summary for Ranking: “John”

Happiness for John
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▲Belief

♦ Plausibility

"Likelihood" is bounded by 

Belief (lower bound) and 

Plausibility (upper bound).

Scenario is Ranked by Plausibility (upper bound) 
with subranking by Belief (lower bound).

For John, "likelihood" of exceeding Accepting 
Happiness is:

  Plausibility 1.0

  Belief 0.016
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Rank Order Scenarios by Risk

• Rank a scenario by the Highest Non-Zero 
Plausibility of Exceeding the “Worst” Fuzzy Set

• For Scenarios with Equal Plausibility, Subrank by 
Highest Belief

– Extension of “Probability of Exceedance” approach

• Uses Fuzzy Sets instead of Numbers

• Uses Belief/Plausibility Interval instead of Probability

– Can be “Color Coded”

• Shown for 3 of 5 scenarios in Following from 
SAND2007-1301 
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Rank Order Results

Risk for Scenario: CBRNE_1B
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▲Belief

♦ Plausibility

"Likelihood" is bounded by 

Belief (lower bound) and 

Plausibility (upper bound).

Scenarios with non-zero Plausibility of exceeding "High" Risk are of 
most concern.

Scenario is Ranked by Plausibility (upper bound) with subranking 
by Belief (lower bound).

For Scenario CBRNE_1B, "likelihood" of exceeding "High" Risk is:
  Plausibility 0.5
  Belief 0
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Rank Order Results
Risk for Scenario: CBRNE_2B

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

          D
iscretionary

          E
m

erging C
oncern

          H
igh

          Im
m

ediate

Fuzzy Set for Risk

"L
ik

e
li
h
o
o
d
" 

o
f 
E

x
c
e
e
d
a
n
c
e

 f
o
r 

a
 F

u
z
z
y
 S

e
t

▲Belief

♦ Plausibility
"Likelihood" is bounded by 

Belief (lower bound) and 

Plausibility (upper bound).

Scenarios with non-zero Plausibility of exceeding "High" Risk are 
of most concern.

Scenario is Ranked by Plausibility (upper bound) with subranking 
by Belief (lower bound).

For Scenario CBRNE_2B, "likelihood" of exceeding "High" Risk is:
  Plausibility 1.0
  Belief 0.94
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Rank Order Results

Risk for Scenario: CBRNE_5B
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▲Belief

♦ Plausibility
"Likelihood" is bounded 

by 

Belief (lower bound) and 

Plausibility (upper 

bound).

Scenarios with non-zero Plausibility of 
exceeding "Emerging Concern" Risk are of 
second most concern.

Scenario is Ranked by Plausibility (upper 
bound) with subranking by Belief (lower 
bound).

For Scenario CBRNE_5B, "likelihood" of 
exceeding "Emerging Concern" Risk is:
  Plausibility 1.0
  Belief 0
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Results of Ranking of All Five Scenarios

RANKING FOR SCENARIOS CBRNE_1B through CBRNE_5B

For Exceeding Fuzzy Set “High” the Scenarios rank ordered (decreasing) are: 
CBRNE_2B has plausibility of exceedance of 1.0 and belief of exceedance of 0.94
CBRNE_3B has plausibility of exceedance of 1.0 and belief of exceedance of 0.77
CBRNE_4B has plausibility of exceedance of 1.0 and belief of exceedance of 0.64
CBRNE_1B has plausibility of exceedance of 0.5 and belief of exceedance of 0.0

For Exceeding Fuzzy Set “Emerging Concern” the Scenarios rank ordered (decreasing)  

(not already ranked for a worse fuzzy set) are: 
CBRNE_5B has plausibility of exceedance of 1.0 and belief of exceedance of 0.0
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Pool Evidence from Many Experts

High School          Bachelors          Advanced

High School          Bachelors          Advanced

High School          Bachelors          Advanced

High School          Bachelors          Advanced
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PoolEvidence: Example Application
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PoolEvidence


