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The	
  Space	
  ShuDle	
  Columbia	
  Accident	
  

During the ascent phase a piece of insulating foam hit the 
leading edge of the left wing causing an approximately 10 
inch hole. 



Damage	
  Scenario	
  Inves7gated	
  

The resulting hole allowed 
overheated gases to penetrate the 
wing cavity, compromise its structural 
integrity, leading to a loss of the 
vehicle during descent 



Numerical	
  Simula7ons	
  Suppor7ng	
  the	
  
Inves7ga7on	
  

Simulation conditions 
Altitude = 350,000-300,000 ft 
Mach Number = 27 



Temperature	
  and	
  Hea7ng	
  Profile	
  

T (K)
11196.4
10450
9703.53
8957.1
8210.68
7464.25
6717.83
5971.4
5224.98
4478.55
3732.13
2985.7
2239.28
1492.85
746.425
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Flow	
  Inside	
  the	
  Wing	
  Cavity 



High	
  Mach	
  number	
  flight	
  is	
  more	
  easily	
  achieved	
  in	
  rarefied	
  
condi7ons	
  (non-­‐con7nuum).	
  
Non-­‐con7nuum	
  condi7ons	
  prevail,	
  leading	
  to	
  flows	
  out	
  of	
  
thermodynamic	
  equilibrium.	
  
This	
  flight	
  regime	
  results	
  in	
  high	
  temperatures	
  (more	
  than	
  
10,000K),	
  chemically	
  reac7ng,	
  ionizing	
  flows.	
  
	
  
	
  
	
  



The	
  Non-­‐con7nuum/Non-­‐equilibrium	
  Regime	
  

High	
  Mach	
  number	
  flight	
  is	
  more	
  easily	
  achieved	
  in	
  rarefied	
  
condi7ons	
  (less	
  drag).	
  
This	
  flight	
  regime	
  results	
  in	
  high	
  temperatures	
  (more	
  than	
  
10,000K),	
  chemically	
  reac7ng,	
  ionizing	
  flows.	
  
Non-­‐con7nuum	
  condi7ons	
  prevail,	
  leading	
  to	
  flows	
  out	
  of	
  
thermodynamic	
  equilibrium.	
  
	
  
	
  
	
  

High	
  Mach	
  number	
  flight	
  is	
  more	
  easily	
  achieved	
  in	
  rarefied	
  
condi7ons	
  (non-­‐con7nuum).	
  
Non-­‐con7nuum	
  condi7ons	
  prevail,	
  leading	
  to	
  flows	
  out	
  of	
  
thermodynamic	
  equilibrium.	
  
This	
  flight	
  regime	
  results	
  in	
  high	
  temperatures	
  (more	
  than	
  
10,000K),	
  chemically	
  reac7ng,	
  ionizing	
  flows.	
  
	
  
	
  
	
  



Con7nuum	
  but	
  Non-­‐equilibrium	
  in	
  MEMS	
  
Heated	
  Microbeam	
  Near	
  Substrate	
  

 
 
Solid regions: silicon  
§  Geometry: 2-micron gap  
§  Beam temperature: ~900 K 
§  Substrate temperature: ~300 K 
Gas region: nitrogen 
§  Pressure: atmospheric 
§  Initial temperature: ~300 K 

Micro Electro Mechanical Systems (MEMS) reawakened interest in gas 
flow through long thin channels/tubes 



1 atm 
~0.1 m/s 

DSMC microbeam simulations 
•  Steady gas motion is induced by 

temperature differences 
 Not buoyancy, not transient 

•  Noncontinuum effects cause motion  
 Not seen in NSSJ simulations 

0.1 atm 
~2 m/s 

0.01 atm 
~1 m/s 

Heated	
  Microbeam	
  makes	
  Gas	
  Move	
  



Collision 

Collision 

Molecular 
Diameter 
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Gradient Scale 

Quantum scale 
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Hydrodynamic scale 

Temperature 

Length	
  Scales	
  for	
  Dilute	
  Gases 



Simula7ng	
  the	
  Kine7c	
  Regime	
  
§  “In	
  general,	
  the	
  field	
  or	
  rarefied	
  gas	
  flow	
  problems	
  is	
  

s7ll	
  largely	
  unclarified”	
  last	
  sentence	
  from	
  Elements	
  
of	
  Gasdynamics	
  (1956)	
  by	
  H.	
  W.	
  	
  Liepmann	
  and	
  A.	
  
Roshko.	
  

§  The	
  Direct	
  Simula7on	
  Monte	
  Calro	
  (DSMC)	
  originated	
  
in	
  1963*	
  by	
  Graeme	
  A.	
  Bird,	
  encouraged	
  by	
  	
  H.	
  
Liepmann.	
  	
  
*	
  “G.	
  A.	
  Bird,	
  'Approach	
  to	
  transla7onal	
  equilibrium	
  in	
  a	
  rigid	
  
sphere	
  gas',	
  Phys.	
  Fluids,	
  6,	
  p1518	
  (1963)”.	
  

§  The	
  objec7ve	
  of	
  DSMC	
  is	
  to	
  simulate	
  complicated	
  gas	
  
flows	
  using	
  only	
  collision	
  mechanics	
  of	
  simulated	
  
molecules	
  

§  Today,	
  DSMC	
  is	
  the	
  dominant	
  numerical	
  algorithm	
  at	
  
the	
  kine7c	
  scale	
  

§  DSMC	
  applica7ons	
  are	
  expanding	
  to	
  mul7-­‐scale	
  
problems	
  crea7ng	
  new	
  challenges	
  and	
  opportuni7es.	
  

	
  
	
  
	
  
	
  
	
  
	
  



Direct	
  Simula-on	
  Monte	
  Carlo	
  
How DSMC works 

Computational molecules move ballistically, collide statistically, and interact 
statistically with surfaces like real molecules 

Molecular movement, surface-interaction, and collision are implemented 
sequentially in the algorithm 

Cell-based molecular statistics (“moments”) are sampled and averaged over 
many time steps for steady flow 

DSMC issues 
Statistical aspect requires O(109) samples for flows (~1 m/s) 

DSMC is inherently a transient method 
Steady state is the ensemble average of unsteady state moves 

Deterministic ballistic move Stochastic binary collisions 

+ = 



Boltzmann	
  Equa7on	
  and	
  the	
  
Direct	
  Simula7on	
  Monte	
  Carlo	
  Method	
  

molecules move molecules collide 

   
∂ f
∂t

+ v ⋅ ∂ f
∂x

+ F
m
⋅ ∂ f
∂v

= f * f1
* − ff1( ) v − v1 σ dΩdv10

4π

∫−∞

∞

∫

Graeme Bird 
(1963, 1994) 

Ludwig 
Boltzmann 

James Clerk 
Maxwell 

molecular motion and  
force-induced acceleration 

pairwise molecular collisions  
(molecular chaos) 



DSMC	
  vs.	
  Boltzmann	
  Equa7on	
  
•  Instead	
  of	
  solving	
  Newton’s	
  laws	
  of	
  mo7on	
  (Molecular	
  Dynamics),	
  DSMC	
  

replaces	
  explicit	
  intermolecular	
  forces	
  with	
  stochas7c	
  collisions	
  
•  It	
  has	
  been	
  shown	
  that	
  DSMC	
  is	
  equivalent	
  to	
  solving	
  the	
  Boltzmann	
  equa7on	
  

(Nambu	
  1980,	
  Babovsky	
  1989,	
  Wagner	
  1992)	
  
•  DSMC	
  has	
  been	
  shown	
  to	
  reproduce	
  exact	
  known	
  solu7ons	
  (Chapman-­‐

Enskog,	
  Moment	
  Hierarchy)	
  of	
  the	
  Boltzmann	
  equa7on	
  (Gallis	
  et	
  al.	
  2004,	
  
2006)	
  for	
  non-­‐equilibrium	
  flows	
  

•  In	
  fact,	
  DSMC	
  is	
  superior	
  to	
  solving	
  the	
  Boltzmann	
  equa7on	
  
•  DSMC	
  can	
  model	
  complicated	
  processes	
  (e.g.,	
  polyatomic	
  molecules,	
  chemically	
  

reac7ng	
  flows,	
  ionized	
  flows)	
  for	
  which	
  Boltzmann-­‐type	
  transport	
  equa7ons	
  are	
  
not	
  even	
  known	
  (Struchtrup	
  2005)	
  

•  DSMC	
  includes	
  fluctua7ons,	
  which	
  have	
  been	
  shown	
  to	
  be	
  physically	
  realis7c	
  
(Garcia	
  1990)	
  but	
  which	
  are	
  absent	
  from	
  the	
  Boltzmann	
  equa7on	
  

	
  

The objective of DSMC is to simulate complicated gas flows using  
only collision mechanics of simulated molecules in the regime described  
by the Boltzmann equation 



Chapman-­‐Enskog	
  (CE)	
  Theory	
  

§  Chapman	
  and	
  Enskog	
  analyzed	
  Boltzmann	
  collision	
  term	
  
§  Perturba7on	
  expansion	
  using	
  Sonine	
  polynomials	
  
§  Near	
  equilibrium,	
  appropriate	
  in	
  con7nuum	
  limit	
  

§  Determined	
  velocity	
  distribu7on	
  and	
  transport	
  proper7es	
  
§  Thermal	
  conduc7vity	
  K,	
  viscosity	
  m,	
  mass	
  self-­‐diffusivity	
  D	
  
§  Prandtl	
  number	
  Pr	
  from	
  “infinite-­‐to-­‐first”	
  ra7os	
  K∞/K1,	
  m∞/m1	
  

§  Distribu7on	
  “shape”:	
  Sonine	
  polynomial	
  coeffs.	
  ak/a1,	
  bk/b1	
  
§  Values	
  for	
  all	
  Inverse-­‐Power-­‐Law	
  (IPL)	
  interac7ons	
  

§  Maxwell	
  and	
  hard-­‐sphere	
  are	
  special	
  cases	
  

Sydney 
Chapman 

David 
Enskog 
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Extrac7ng	
  CE	
  Parameters	
  from	
  DSMC	
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DSMC	
  moments	
  of	
  velocity	
  distribu7on	
  func7on	
  
§  Temperature	
  T,	
  velocity	
  V	
  	
  
§  Heat	
  flux	
  q,	
  shear	
  stress	
  t	


§  Higher-­‐order	
  moments	
  

DSMC	
  values	
  for	
  VSS	
  molecules	
  (variable-­‐sok-­‐sphere)	
  
§  Thermal	
  conduc7vity	
  and	
  viscosity:	
  Keff	
  and	
  meff	


§  Sonine-­‐polynomial	
  coefficients:	
  ak/a1	
  and	
  bk/b1	
  
§  Applicable	
  for	
  arbitrary	
  KnL,	
  Knq,	
  Knt	
  



Fourier	
  and	
  CoueDe	
  Flow	
  

Joseph 
Fourier 

Tq
x

K ∂= −
∂

Maurice 
Couette 

v
x

τ µ ∂=
∂

	
  
Investigate transport in gas between parallel plates 

§  Fourier flow: heat conduction in stationary gas 
§  Couette flow: momentum transport in isothermal shear flow 

	
  
Apply	
  DSMC	
  to	
  Fourier	
  flow	
  and	
  CoueDe	
  flow	
  

§  Heat	
  flux,	
  shear	
  stress:	
  one-­‐dimensional,	
  steady	
  
Compare	
  DSMC	
  to	
  analy7cal	
  “normal	
  solu7ons”	
  

§  Normal:	
  outside	
  Knudsen	
  layers	
  
§  Solu7ons:	
  Chapman-­‐Enskog	
  (CE),	
  Moment-­‐Hierarchy	
  (MH)	
  

Verify	
  DSMC	
  accuracy	
  at	
  arbitrary	
  heat	
  flux,	
  shear	
  stress	
  
§  Thermal	
  conduc7vity,	
  viscosity;	
  velocity	
  distribu7on	
  
	
  



Temperature	
  and	
  Velocity	
  Profiles	
  

Low	
  heat	
  flux	
  and	
  shear	
  stress:	
  Knq	
  =	
  0.006,	
  Knt	
  =	
  0.003	
  
§  Argon-­‐like:	
  ini7al	
  T	
  =	
  273.15	
  K,	
  p	
  =	
  266.644	
  Pa,	
  l	
  =	
  24	
  mm	
  
§  Walls:	
  L	
  =	
  1	
  mm	
  =	
  42l,	
  DT	
  =	
  70	
  K,	
  DV	
  =	
  100	
  m/s	
  
§  Nc	
  =	
  120, Dt	
  =	
  7	
  ns,	
  Dx	
  =	
  2.5	
  mm,	
  ~109	
  samples/cell,	
  32	
  runs	
  

Small	
  velocity	
  slips,	
  temperature	
  jumps,	
  Knudsen	
  layers	
  



DSMC	
  Reproduces	
  Infinite-­‐Approxima7on	
  	
  
Chapman-­‐Enskog	
  Transport	
  Coefficients	
  

Thermal conductivity (left) and viscosity (right) away from walls 
•  Maxwell and hard-sphere results bound most gases 
•  Agreement with Chapman-Enskog theory verifies DSMC 
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DSMC	
  Reproduces	
  Infinite-­‐Approxima7on	
  	
  
Chapman-­‐Enskog	
  Velocity	
  Distribu7on	
  

Sonine polynomial coefficients for temperature (left) & velocity (right) gradients 
•  Hard-sphere values are shown, other interactions have similar agreement 
•  Higher-order (k > 5) coefficients (not shown) also have similar agreement 

Gallis M. A., Torczynski J. R., Rader D. J., “Molecular Gas Dynamics Observations of Chapman-Enskog 
Behavior and Departures Therefrom in Nonequilibrium Gases”, Physical Review E, 69, 042201, 2004. 



Maxwell	
  Sonine-­‐Coefficient	
  Profiles	
  

DSMC	
  and	
  CE	
  Maxwell	
  coefficients	
  ak/a1	
  and	
  bk/b1	
  
§  Low	
  heat	
  flux,	
  low	
  shear	
  stress:	
  Knq	
  =	
  0.006,	
  Knt	
  =	
  0.003	
  
§  Good	
  agreement	
  in	
  central	
  region:	
  normal	
  solu7on	
  
§  Knudsen	
  layers	
  easily	
  observed:	
  ~10%	
  of	
  domain	
  



Moment-­‐Hierarchy	
  Method	
  

 
Moment-Hierarchy (MH) normal solution 

§  Santos and co-workers: theory, computer algebra 
§  Maxwell molecules: collision term quadratic in moments 
§  MH solution extends CE solution to finite Knq and Knt  

Compare DSMC to MH for Maxwell molecules 
§  Dependence of Sonine coefficients on Knq known 
§  Thermal conductivity and viscosity independent of Knq 

§  Thermal conductivity and viscosity decrease with Knt 
       Apply DSMC for Maxwell molecules 

 
Gallis M. A., Torczynski J. R., Rader D. J., Tij M., Santos A., “Normal Solutions of the Boltzmann Equation  
for Highly Nonequilibrium Fourier and Couette Flow”, Phys. Fluids, 18, 017104, 2006.  

 

Andres Santos 



Maxwell	
  Normalized	
  Sonine	
  Coefficients	
  

DSMC and MH Maxwell normal solutions for ak/a1 and bk/b1 

§  Four DSMC simulations: DT = 70, 200, 300, 400 K 
§  MH: VSS-Maxwell (solid) and IPL-Maxwell (dashed) differ 
§  DSMC and MH VSS-Maxwell normal solutions agree  



Maxwell	
  Normal	
  Transport	
  Coefficients	
  

DSMC	
  and	
  MH	
  Maxwell	
  normal	
  solu7ons	
  for	
  K	
  and	
  m	


§  DSMC	
  profiles	
  look	
  like	
  low-­‐Knq	
  profiles	
  
§  MH	
  values	
  for	
  Knt	
  =	
  0	
  are	
  independent	
  of	
  Knq	
  
§  DSMC	
  values	
  approach	
  MH	
  values	
  as	
  Knt	
  →	
  0	
  
§  DSMC	
  values	
  increase	
  very	
  slightly	
  with	
  Knq	
  	
  

Agree	
  to	
  within	
  DSMC	
  discre7za7on	
  error	
  



Hard-­‐Sphere	
  Normal	
  Transport	
  Coefficients	
  

DSMC	
  hard-­‐sphere	
  normal	
  solu7on	
  for	
  K	
  and	
  m	
  	
  
§  No	
  theore7cal	
  results	
  available:	
  MH	
  does	
  not	
  apply	
  
§  DSMC	
  values	
  decrease	
  slightly	
  with	
  Knq	
  	
  
§  Difference	
  apparently	
  greater	
  than	
  discre7za7on	
  error	
  

Hard-­‐sphere	
  gas:	
  “flux-­‐insula7ng”	
  and	
  “flux-­‐thinning”	
  



Maxwell	
  Normal	
  Transport	
  Coefficients	
  

DSMC	
  and	
  MH	
  Maxwell	
  normal	
  solu7ons	
  for	
  K	
  and	
  m	


§  Finite	
  Knt	
  (shear	
  stress),	
  low	
  Knq	
  (heat	
  flux)	
  
§  Eight	
  DSMC	
  simula7ons:	
  DV	
  =	
  100,	
  …,	
  800	
  m/s	
  
§  Thermal	
  conduc7vity	
  from	
  viscous	
  hea7ng,	
  larger	
  errors	
  
§  Offset	
  MH	
  by	
  DSMC	
  discre7za7on	
  error	
  

Agree	
  to	
  within	
  DSMC	
  discre7za7on	
  error	
  



Hard-­‐Sphere	
  Normal	
  Transport	
  Coefficients	
  

DSMC	
  hard-­‐sphere	
  normal	
  solu7on	
  for	
  K	
  and	
  m	


§  Finite	
  Knt	
  (shear	
  stress),	
  low	
  Knq	
  (heat	
  flux)	
  
§  No	
  theore7cal	
  results	
  available:	
  MH	
  does	
  not	
  apply	
  
§  DSMC	
  values	
  decrease	
  with	
  Knt	
  (like	
  Maxwell)	
  

Hard-­‐sphere	
  gas:	
  “shear-­‐insula7ng”	
  and	
  “shear-­‐thinning”	
  



DSMC	
  Numerical	
  Error	
  

Four parameters control DSMC error:  
Statistical error (1) 

  Samples per cell (Sc)  
Discretization error (3) 

•  Particles per cell (Nc) 
•  Cell size (Δx) 
•  Time step (Δt) 

molecules move molecules collide 



Sta7s7cal	
  and	
  Par7cle-­‐Number	
  Errors	
  

Not enough particles 
to capture physics 

Error related to sample size 
•  Statistical error   
•  Cell sample size Sc = Nc×Nt 
•  Nc = particles per cell; Nt = time steps 

Strategies for overcoming statistical error 
•  Use large number of samples  
•  For steady flows, use time and/or 

ensemble averaging 
•  Computational expense ~ Sc 

Error related to local number of particles 
•  Error  
•  Systematic – persists even as Scà∞ 

Limited number of 
samples per time step 

 ∼1/ Nc



DSMC	
  Convergence	
  

•  Curves are best fits 
•  Error bars represent 95% confidence intervals 
•  Quadratic convergence for Δx, Δt 
•  First-order convergence O(1/Nc), as  
•  Higher-order for long time steps 
•  For Nc = 7 and Dt/to = 0.493, convergence rate 

appears linear in Dx/lo 

Nc →∞



Func7onal	
  Form	
  of	
  Error	
  

Functional form that represents DSMC data 
•  Ad hoc series expansion in Dx, Dt, and 1/Nc  
•  Perform least-squares fitting of entire data set	
  

 

 
Cross terms show convergence behavior is complex 
 
	
  
	
  
	
  
	
  
 
Rader D. J., Gallis M. A., Torczynski J. R., Wagner W., “DSMC Convergence Behavior of the  
Hard-Sphere-Gas Thermal Conductivity for Fourier Heat Flow”, Phys. Fluids, 18, 077102, 2006.  
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DSMC	
  Numerical	
  Error	
  

Traditional DSMC rule-of-thumb guidelines: 
§  Take enough samples to drive statistical error down to “acceptable” level 
§  Keep time step smaller than ~1/4 mean collision time 
§  Keep cell size smaller than ~1/3 mean free path 
§  Use a minimum of ~20 particles per cell 
 

These guidelines give 2% error, which is similar to the uncertainty in 
measured transport properties for most gases 

 
§  DSMC	
  is	
  subject	
  to	
  the	
  same	
  constraints	
  as	
  other	
  numerical	
  methods.	
  
§  DSMC	
  is	
  correct	
  to	
  the	
  limit	
  of	
  vanishing	
  discre7za7on.	
  

 



Infinite-­‐Par7cle	
  Convergence	
  

§ Finite-particle error removed: 
values “extrapolated” to Nc →∞ 

§ 63 extrapolated data points 

§ Error bars: fitting uncertainty 

§ Quadratic convergence in time step 
and cell size 

§ Qualitative agreement with  
Green-Kubo theory,  
but slopes are different 

§ Lines are best fits of data 



Could	
  the	
  N-­‐S	
  Equa7ons	
  be	
  extended	
  ?	
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•  Velocity-slip and Temperature jump 

 
•  Modified transport coefficients  
    (viscosity, conductivity, diffusivity) 

•  Hybrid Schemes (NS-DSMC) 

  



Gas Flow in a Microscale Tube 

Investigate steady isothermal gas flow in microscale tube 
§  Tube is long and thin (L >> D) with circular cross section 
§  Tube joins gas reservoirs at different pressures (p1∞ ≥ p2∞) 
§  Tube and reservoirs have same temperature (T) 
§  Molecules partially accommodate (a ≤ 1) when reflecting 
§  Flow speed << molecule speed, laminar, no turbulence 

Determine the mass flow rate and the pressure profile 
§  General physics-based closed-form expressions 
§  Free-molecular to continuum (arbitrary mean free path l) 
§  Theory and molecular-gas-dynamics simulations 

L 

D = 2R 

p1∞, T p2∞, T 

Ṁ 

T, a	

l1	

 l2	



p2 p1 



Extending	
  the	
  Navier-­‐Stokes	
  equa7ons	
  

§  Mean free path at STP is 0.06 mm, large enough to matter 
§  Silicon channels of <10 µm height and >10 µm length 

§  Accurate mass flow rate needs accurate velocity profile 
§  Slip boundary condition improves prediction by Navier-Stokes 

equations 
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Boundary Conditions for Accurate  
Transport 

§  Transport rates are of primary importance 
§  Mass, momentum, energy 

§  Fields are of secondary importance 
§  Concentration, velocity, temperature 

Construct boundary conditions to give accurate transport 
§  When used with Navier-Stokes equations 
§  For free-molecular, transition, slip, continuum 

Resulting fields are only qualitatively correct  
§  Fields are accurate in continuum limit 
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shear stress 



Mass Flow Rate Has Correct Limits 

Expression reproduces known limits correctly 
Continuum   Not affected by e, b0, b1, b2 

Slip   Determined by b1 

Free-Molecular  Determined by e, b0 	


Orifice/Short-Tube  Determined by e, b0  
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Approximate Closed-Form Expression 

Continuum 

!MC =
D4 pm p1 − p2( )
16µc2L

Slip 
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8pλ
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Free-Molecular Orifice 

!MOF = πR
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4
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Continuum Orifice 

!MOC =
R3ρm∞
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Free-Molecular Short Tube 

!MTF = !MOF 1+ αL D( )( ),   αL D <<1



Ewart et al. (2006) Tube Experiments 

Mass flow rate measured for silica microscale tube 
§  D = 25.2 mm, L = 53 mm, a = 0.9, N2, T = 296.5 K, p2/p1 = 0.2 

Expression and simulations agree well with experiment 
§  Lowest experiment pressure is above Knudsen minimum 
§  Highest simulation pressure reaches experiment 

Same values of e, b0, b1, b2 used for all circular tubes 
 Values are unchanged from previous cases (no adjusting) 
 Relative to diameter, this tube length is essentially infinite 
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Ewart et al. (2007) Channel Experiments 

Mass flow rate measured for silicon microscale channel 
§  H,W,L = 9.38, 492, 9390 mm, a = 0.9, He, T = 295.5 K, p2/p1 = 0.2 

Expression and simulations agree with experiment 
§  2D simulation overpredicts 3D experiment at low pressures 
§  b2 and e in channel expression are fit to experiment 

Channel-flow expression correlates experiment values well 
 Derived for L×W×H rectangular channel just like for tube 
 b0 from Kennard infinite-length free-molecular flow 
 b1 = 0.15 as before to match slip regime for most gases 
 b2 and e selected to match transition regime: L/W = 19.1 
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Parallel-Plate Applications 

This philosophy works well for parallel-plate geometry 
§  Heat flux (Fourier flow): heat transfer  
§  Shear stress (Couette flow): momentum transfer  

Accurate for free-molecular through continuum 
§  Low to high pressures, all accommodations 



Parallel	
  Efficiency:	
  The	
  Unfair	
  Advantage	
  
•  The advantages of DSMC come at a cost  
•  DSMC is computationally efficient but computationally intense  
•  Its successful application to real problems depends heavily on its parallel 

performance 
 
•  1000x speedup required for some problems of interest 
•  Monte Carlo methods usually have good parallel performance  

•  The workload depends mainly on the simulators within a cell 
•  Relatively less need to communicate information between cells 
•  Trivial to parallelize in velocity space 

 
The necessary speedup can be achieved without any loss of accuracy  
or convergence characteristics through parallel computing  
 

= 



Top	
  5	
  Supercomputers	
  (2014)	
  

Rank Site System Cores Rmax  
(TFlop/s) 

Rpeak 
(TFlop/s) 

1 National Super Computer 
Center in Guangzhou 

Tianhe-2 (MilkyWay-2) - TH-IVB-FEP Cluster, 
Intel Xeon E5-2692 12C 2.200GHz,  
TH Express-2, Intel Xeon Phi 31S1P 

3,120,000 33,862.7 54,902.4 

2 DOE/SC/Oak Ridge National 
Laboratory 

Titan - Cray XK7 , Opteron 6274 16C 2.200GHz, 
Cray Gemini interconnect, NVIDIA K20x 560,640 17,590.0 27,112.5 

3 DOE/NNSA/LLNL Sequoia - BlueGene/Q, Power BQC 16C 1.60 
GHz, Custom 1,572,864 17,173.2 20,132.7 

4 RIKEN Advanced Institute for 
Computational Science (AICS) 

K computer, SPARC64 VIIIfx 2.0GHz, Tofu 
interconnect 705,024 10,510.0 11,280.4 

5 DOE/SC/Argonne National 
Laboratory 

Mira - BlueGene/Q, Power BQC 16C 1.60GHz, 
Custom 786,432 8,586.6 10,066.3 



Programming	
  for	
  Next	
  Genera7on	
  	
  
and	
  Exascale	
  Machines	
  
•  Millions of nodes likely 
•  Reduced memory per node 
•  Parallelism within node: 

•  Multi-core: 16 and growing 
•  Many-core: Intel Xeon Phi, 240 threads 
•  GPUs: NVIDIA/AMD, 1000 warps 

•  Example: 
•  LLNL BG/Q: 96K nodes, 16 cores/node + 4 MPI tasks/core 

Programming model: MPI + X 
•  Goal is to decouple the science  
     code from the hardware details  
Necessary elements 
•  Adaptive gridding 
•  In-situ visualization 
•  Efficient communications 
•  Load balancing 



Aiming	
  for	
  MPI+X	
  via	
  Kokkos	
  
•  What	
  is	
  Kokkos:	
  

•  Programming	
  model	
  in	
  development	
  at	
  Sandia	
  
•  C++	
  template	
  library	
  
•  Open-­‐source	
  
•  Stand-­‐alone	
  

•  Goal:	
  write	
  applica7on	
  kernels	
  only	
  once,	
  and	
  run	
  them	
  efficiently	
  on	
  a	
  
wide	
  variety	
  of	
  hardware	
  plaxorms	
  

•  Two	
  major	
  components:	
  
•  Data	
  access	
  abstrac7on	
  via	
  Kokkos	
  arrays	
  op7mal	
  layout	
  &	
  access	
  

paDern	
  for	
  each	
  device:	
  GPU,	
  Xeon	
  Phi,	
  etc.	
  
•  Parallel	
  dispatch	
  of	
  small	
  chunks	
  of	
  work	
  auto-­‐mapped	
  onto	
  back-­‐end	
  

languages:	
  CUDA,	
  OpenMP,	
  etc.	
  

	
  	
  



Developing	
  an	
  Exascale	
  DSMC	
  Code	
  

SPARTA = Stochastic PArallel Rarefied-gas Time-accurate Analyzer 
 
General features 
•  2D or 3D, serial or parallel 
•  Cartesian, hierarchical grid 

•  Oct-tree (up to 16 levels in 64-bit cell ID) 
•  Multilevel, general NxMxL instead of 2x2x2 

•  Triangulated surfaces cut/split the grid cells 
•  3D via Schwartzentruber algorithm 
•  2D via Weiler/Atherton algorithm 
•  Formulated so can use as kernel in 3D algorithm 

•  C++, but really object-oriented C 
•  Designed to be easy to extend 
•  New collision/chemistry models, boundary conditions, etc. 

•  code available at http://sparta.sandia.gov 



Adap7ve	
  Gridding	
  
•  Create/adapt grid in situ, rather than pre-process & read in 
•  Examples: Generate around surface to user-specified resolution, 

 adapt grid based on flow properties 
•  Algorithms should be efficient if they require only local communications 

•  Another setup task: label cells as outside/inside  
•  Simple if pre-processing, in situ easier for large problems 



Simula7on	
  of	
  Complicated	
  Shapes	
  

Grid generation (107 cells) completed in 0.3 seconds on 16 processors 
Geometry comprises multiple “water-tight” bodies 



In-­‐Situ	
  Visualiza7on	
  

Not a replacement for interactive viz, but ... 
Quite useful for debugging & quick analysis 
At end of simulation (or during), instant movie 
 
Render a JPG snapshot every N time steps: 
•  Each processor starts with blank image (1024x1024) 
•  Processor draws its cells/surfaces/molecules with depth-per-pixel 
•  Merge pairs of images, keep the pixel in front, recurse 
•  Draw is parallel, merge is logarithmic (like MPI Allreduce) 
 
Images are ray-traced quality 



Load	
  Balancing	
  

Balance across processors, static or dynamic 
Granularity = grid cell with its molecules 
Geometric method: recursive coordinate bisection (RCB) 
Weighted by cell count or molecules or CPU 
 

                                         RCB is fast 
                                         Bigger cost is data move 

  Example: 
        1B cells on1024 BG/Q nodes 
  Worst case: move all cells 
  Balance time = 15 s: 
  (RCB=2, move=12, ghosts=1) 



Efficient	
  Communica7on	
  

§  One processor = compact clump of cells via load balancing 
§  Ghost region = nearby cells within user-defined cutoff 
§  Store surface information for ghost cells to complete move 

§  Efficiently distributes grid information across processors 
§  With sufficient cutoff, only one communication per step 
§  Multiple passes if needed (or can bound molecule move) 

§  Communication with modest count of neighbor processors 



SPARTA	
  Benchmarking	
  

2 test cases: 
•  Free-molecular  

•  Stress test for communication 
•  3D regular grid, 104-1011 (0.1 trillion) grid cells 
•  10 molecules/cell, 105-1012 (1 trillion) molecules 

•  Collisional  
•  About 2x slower (sorting, collisions) 
•  Same grid cell & molecule counts 

•  Effect of threading 
•  4 threads/core = 2x speed 



SPARTA	
  Benchmarking	
  
16 cores/node 
 1 task/core 

16 cores/node 
 4 tasks/core 

•  Weak scaling indicates, 10% peak performance reduction from 1 to 106 cores 
•  2 tasks/core gives 1.5x speedup, 4 tasks/core gives 2x speedup 
•  A total of 1 trillion simulators can be simulated on one third of the BG/Q 
•  Maximum number of tasks is 2.6 million 

16 cores/node 
 2 tasks/core 



SPARTA	
  Benchmarking	
  (FM)	
  

16 cores/node, 1 task/core 16 cores/node, 4 tasks/core 

•  Free-molecular (FM) calculations stress communications  
•  2x speedup compared to collisional 
 



Richtmyer-­‐Meshkov	
  Instability	
  (RMI)	
  

Applications include Inertial Confinement Fusion (ICF),  
stellar evolution models, interaction of shocks with flames 
 
RMI combines multiple compressible phenomena 
•  Shock interaction, refraction, reflection, transmission 
•  Hydrodynamic instability, including: 
•  Nonlinear growth  
•  Subsequent transition to turbulence 
•  Range of Mach numbers 
•  Chemical reactions (combustion) 

ICF target compression 



RMI	
  in	
  He/Ar	
  Mixture:	
  Mach	
  1.2	
  Shock	
  
He=1.2 

Ar 

Non-dimensional amplitude for an initially 
small amplitude perturbation compared to 
Richtmyer’s model for early time evolution 



RMI	
  in	
  Air-­‐SF6	
  Mixture:	
  Mach	
  =	
  1.2	
  Shock	
  

Non-dimensional amplitude for an 
initially small amplitude perturbation 
compared to theoretical/empirical models 

    DSMC         Experiment  Navier-Stokes 



Conclusions	
  
DSMC	
  yields	
  exquisite	
  agreement	
  with	
  
analy7cal	
  results,	
  where	
  available	
  

§  Chapman-­‐Enskog,	
  Moment-­‐Hierarchy	
  theory	
  
§  Discre7za7on	
  &	
  sampling	
  errors	
  understood	
  

DSMC	
  scales	
  extremely	
  well	
  &	
  can	
  take	
  full	
  
advantage	
  of	
  massively	
  parallel	
  plaxorms	
  

§  Can	
  simulate	
  unprecedented	
  flow	
  regimes	
  
§  Hydrodynamic	
  instabili7es,	
  lower	
  al7tudes	
  


