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What is Geo-Engineering?

+ Connotation vs. denotation
+ Ocean fertilization, aerosol albedo
+ CCS, O&G Exploration, Nuclear Waste Disposal, Mining
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CO, Facts and Figures

+ Pre-industrial concentration | county < cosemissions™ ¢ Emission per capita ¢ |

_ | World 133.376,327 |49
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+ World Emissions: 33 GtCO, /

yr (CDIAC for the UN)

+ 13.5 GtCO, from point sources(pcc AR)

+ Top 3 emitters >50% of total
emissions




CO, Facts and Figures

+ US Emissions: 5.4 GtCOzlyr (CDIAC for

the UN)
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+ IPCC Projected Total CCS
potential (215t century):
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+ (Less CCS =220 GtCO, stored) -> stabilize at
750ppm CO2 .

+ (Widespread Deployment CCS = 2200 GtCO,)  *]
-> stabilize at 450ppm
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+ What does Ca rbon Storage lCarbonDioxideEmissi::::romConsumpﬁon
capacity look like?

+ Depleted oil well vs. saline aquifer

China’ s growing emissions




An Appreciable Reduction in Carbon
Emissions is a "Heavy Lift”
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Current CCS projects:
Sleipner (Norway): 1 MtCO2 /[ yr
In Salah (Algeria): 1.2 MtCO2 / yr
Weyburn (Canada): 1.5 MtCO2 / yr
Snohvit (Norway): 0.7 MtCO2 [ yr Sleipner

= 4.4 MtCO2 [ yr

Leaving a balance of
185.9956 GtCO2 to
achieve 1 wedge

-.,:.! 2 ._ " = |1.
ol ey tﬂ-j-;_u -

Snohvit
In Salah




What is Carbon Sequestration or Carbon,
Capture, and Storage (CCS)?

. Overview of Geological Storage Options — Fduced ol Of gaL
1 Depleted oil ard gas rasangins sessess  [nimeted CO,

2 Uee ol 00, in enhanced ol and gas recovery EBEEsE oo
3 Deop saling formations — (a) offshars (b) onshore -

i Lo of OO in anhanond coal bed mathana wecovary




Public Perception may play a significant role

Fear of the Unknown
Less than 5% of US has even heard of CCS
Public skepticism, NIMBY -factor
The Lake Nyos Effect (Nuclear analogue — 3 Mile Island)
» Induced seismicity
How will this effect the requlatory process?
CA AB705 - leakage uncertainty central point of debate

Regulatory Path exists for CO, Storage in Depleted Oil
and Gas Reservoirs

Without a Global Framework (including $ / tCO2),
financial incentive is lacking
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Injected CO, is also buoyant and "wants” to
return to the surface

Injection Well Abandoned

CO2 Well e
1 Vadose Cluster of Producing Oil Wells BS8Se
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Anatomy of an Abandoned Wellbore

Interfaces between well cement / caprock and well cement/wellbore have high
potential as leakage pathways

Well Casing

Well cement / wellbore
Well interface
Cement
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Why not replace abandoned wells with
acid-resistant cement?

+ Typically, there are thousands of (known) abandoned
wells in a field

+ Re-completion 1s prohibitively expensive
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Leaky Wellbores — Key Questions

+ What will the leakage flow look like? (i.e., CO2-staurated
brine, humid supercritical CO2, multiphase flow)?

+ How reactive (i.e. what are the rates) is the well cement when
it encounters CO2/brine mixtures?

+ Will seal-healing/self-sealing mechanisms occur? e.q.,
calcium carbonate formation




Verticality Matters!

+ T, P will effect cement curing
+ Permeability, porosity

+ Solubility of CO2 varies w.r.t. T, P, and brine concentration

+ Phase of CO2 varies withT, P

+ Also can affecting mineral wetting properties
(more on this later)




“Verticality” illustrated ...
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Leaky Wellbores — Key Questions

+ What will the leakage flow look like? (i.e., CO2-staurated
brine, humid supercritical CO2, multiphase flow)?

+ How reactive (i.e. what are the rates) is the well cement when
it encounters CO2/brine mixtures?

+ Will seal-healing/self-sealing mechanisms occur? e.q.,
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Acid Neutralization Capacity Dominates for
Carbonated brine flow in small micro-annuli

Duguid 22°C, 0.1 MPa
Duguid 50°C, 0.1 MPa
Rimmelé 90°C, 20.7 MPa
Kutchko 50°C, 30 MPa

Annulus . - 50°C

/ \ ’ % 0.1
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Matteo and Scherer. IJGGC, 2012.




Leaky Wellbores — Key Questions

+ What will the leakage flow look like? (i.e., CO2-staurated
brine, humid supercritical CO2, multiphase flow)?

+ How reactive (i.e. what are the rates) is the well cement when
it encounters CO2/brine mixtures?

+ Will seal-healing/self-sealing mechanisms occur? e.q.,
calcium carbonate formation




Simulations imply possible kinetic
slow-down due to self-sealing
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Pore-Plugging Experiments

® pH=5.6,1Bar CO_(30 mM), 5.3 mM CacCl pH=5.6, 30 mM CO2,Ca/Si
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Wellbore Seal Repair Project

DOE NETL funded in collaboration with UNM

Novel Materials Development Test Matrix

Polymers Nanomaterials
CNTs Nanoclay Nanosilica Nanoalumina Graphene NP

Polysulfide siloxane epoxy C C C

Novolac epoxy C U C

Siloxane epoxy P P P

SBR latex/cement P P P
Reference repair material P (without nanomaterials)
(Microfine| cement)

C: Completed testing U: Undergoing testing P: Planned testing in coming quarter

Wellbore Mock-up Bench-scale Testing

Repair material access

Pore fluid
R

Cement sheath
Casing

Perforation Confining fluid

Pressure cell

Membrane

Casing fluid




3D Geomechanical Wellbore
Modellin

Individual sections that
could be cement, epoxy, or
void space

Shear
displacement
< along rock layer
interface
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when yu_eld stress of (neg. values)
cement is low

Steel Casing




Intregrating Well

Field Scale Modeling
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3 Trapping Mechanisms during
Geologic Storage of CO2

+ Structural
+ Top seal counteracts buoyant force

+ Wetting directly related to seal
integrity esp. in caprocks with smaller
pore throats (Wang et al. ES&T 2012)

Dependent on
wetting

~—— properties
+ Capillary/ Residual Trapping
+ CO2 “left behind” in pore space

+ Important for predicting plume
distribution and total storage capacity

_—/

+ Solubility
4+ CO2 dissolved in brine




Q: How are wetting properties
measured? A: Contact angles

http://soft-matter.seas.harvard.edu
30




Chemical and Physical Effects of Secondary Mineralization
on Contact Angle

+ Chemical
T pHp
f (P, T, ionic strength)

+ Surface hydroxyl functional groups
control surface chemistry of minerals
and, in turn, wetting properties a] »

+ Physical ”‘mm

r‘—[
©) d)
+ Surface topography (esp. surface ? @
roughening) can lead to changes in LA R] Ll ESTa 0
wetting behavior Figuae 3, Efecr of surkice strucuseon e wetiing bebaviorof ol st

strates. a) A liquid drop on a flat substrate (Young's mede). b) Wetted
contact between the liquid and the rough substrate (Wenzel's mode}.

H ¢} Mon-wetted contact between the liquid and the rough substrate (Cas-
+ C a SS I e B aXte r sie's mode). d) Intermediate state between the Wenzel and the Cassie
modes.

— pH of point of zero charge is

+ Wenzel Feng et al., Adv. Mater., 18 (2006), 3036-3078




Contact Angle Measurements across
scales

THE JOURNAL OF

PHYSICAL
CHEMISTRY
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Repository Designs contain Clay Minerals either as the host
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Radionuclide sorption behavior in clay minerals

Clay mineralogy

1:1 layer
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MY

Handbook of Clay Science, Eds.: Bergaya, F., Theng, B.K.G., Lagaly, G.; Elsevier, 2006.

Potential reasons for anion interactions

Interactions?... what interaction?
lodine redox -> oxyanions

Clays impurities
Nano-environments

Experimental conditions/results

Fluid-fluid
separatorl|




Clay particle proximity has the potential to change
observed reactivity
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s lodide interacting with negatively charged
interlayers?

Q: Who cares?

A: Performance Assessment (PA).

I

Altmann, 2008

10000
Time (years)




Anion Exclusion in Clays

E E —= 1
—— .
anion 3
= diffusion
4

increase of
ionic strength

1: TOT-layer

2 : interlayer water

3+4 : interparticle water
3 : double layer water
4 : free water

L.R.Van Loon et al. /| Applied Geochemistry 22 (2007) 2536—2552




Results | -- Mass Loss on Heating
Clay morphology matters
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Results I — Pore Size Distributions
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Results Il —CEC / SA vs. Temperature
Again, morphology matters
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Ongoing / Future Work, Pt. 1

+ Well cement durability
+ Degradation rates in cases where scCO2 flows through brine

+ Wellbore Seal Repair using Nanocomposite Materials

+ UNM -> Materials development — choose “winners” from experimental
matrix

+ SNL ->Wellbore and test modeling, geomechanical testing at in-situ
conditions




Ongoing / Future Work, Pt. 2

+ Contact Angle Measurement

+ Various brine conditions/ compositions relevant to carbon storage

+ Sorption on Heated Clays
+ Mechanical properties of heated, compacted systems

+ Diffusion behavior through heated and compacted clay systems




Overview — Index of Topics

Motivation

Carbon Mitigation Strategies and the Wedges Concept

Leaky Wellbores — Key Questions

Wellbore Seal Repair — 3D Geomechanical Modeling of Seal Repair
Subsurface Mineral Surface Properties (Contact Angle Studies)

Sorption of radionuclides in clay minerals

Conclusions




Conclusions

Carbon constrained paradigm would necessitate a diverse portfolio of low
carbon energy solutions (Truly effective carbon mitigation is a heavy lift!!!)

Wellbore leakage in the case of carbonated brine flow and scCO2 is
understood and in many cases predictable

Multi-phase wellbore leakage represents a complex problem, and is
potentially important to truly understanding the risk posed by leakage
along wellbores

Wellbore seal material properties are key to mechanical behavior

Mineral wetting properties play an important role in seal integrity and
plume distribution

Understanding mechanical behavior and sorption properties of heated of

clays is critical to nuclear waste repository design
45
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Secondary minerals are more widespread on surfaces
exposed to humid supercritical CO2




