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Overview

 How can we extract the most information about ion temperature and 
time dependence from an nTOF dataset?

 What neutron diagnostic set (and signal-to-noise) is required to 
characterize the neutron spectrum and pulse shape?

 Several methods have been studied to unfold nTOF data:

 Maximum entropy method

 Monte Carlo algorithms

 Basis set expansion (BASEX) method

 Example of BASEX applied to a D2 gas puff z-pinch on Z (and pitfalls)

I. Tiseanu and T. Craciunescu, Nucl. Sci. Eng. 122, 384 (1996).

I. Tiseanu et al., Nucl. Instrum. Methods Phys. Res. A  373, 73 (1996).

B. Jones and C. L. Ruiz, RSI 84, 073510 (2013).
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 Technique proposed for an Abel inversion problem

 Define basis set and calculate analytic forward transforms G

 Define forward transform of source function P = CG

 Invert with Tikhonov regularization to solve (least-squares) for coefficients

C = PA               A = GT(GGT+q2I)-1

 We have added a propagation of errors calculation to the method

C
2 = (AT) 2 P

2

Measured data, projection of source onto detector Source function coefficients

Forward transformed 
basis set

– e.g. for Abel inversion,
consider a source built
of nested shells

Limb-brightened forward-
transformed image

The BASEX method turns an ill-posed inverse problem into a 
linear algebra transform between the source and data spaces

Dribinski et al., Rev. Sci. Instrum. 73, 2634 (2002).
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 Nested 65 on 32.5 mm 
diameter stainless steel wire 
array implosion (Z1861)

 Composite image shows 
277 eV photons from colder 
trailing mass and ~7 keV K-
shell photons from hot 
stagnating plasma on axis

 Projected image P is 
constructed by averaging 
axially, error bars represent 
difference between left and 
right sides

Abel Inversion Example: Multi-color gated x-ray pinhole 
camera imaging shows z-pinch stagnation on the Z machine
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 BASEX inversion at 250 m 
resolution of ~7 keV imager 
shows K-shell emission 
from inner edge of 
imploding shell

 Unphysical negative values 
near axis for
277 eV image may be 
systematic error due to 
spatial non-uniformity 

 Reducing BASEX bin size 
to 500 m resolution of 277 
eV imager reduces error 
bars and leaves only one 
unphysical negative bin on 
axis

A general feature of the BASEX method is the trade-off 
between resolution and signal-to-noise ratio
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 The neutron source emissivity is gridded in neutron energy and time

 Each bin is translated to a neutron detector, and convolved with instrumental 
response to populate the matrix G of forward transformed basis functions

Instrumental response is accounted for implicitly in the 
definition of the basis functions for nTOF inversion
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 A “true” neutron source coefficient set Ctrue is defined as in
Tiseanu et al., Nucl. Instr. Meth. Phys. Res. A 373, 73 (1996).

BASEX method is tested by application to synthetic data
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 A “true” neutron source coefficient set Ctrue is defined as in
Tiseanu et al., Nucl. Instr. Meth. Phys. Res. A 373, 73 (1996).

 Forward transform is calculated, Gaussian noise is added

BASEX method is tested by application to synthetic data
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P = CtrueG P → Pnoisy
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 A “true” neutron source coefficient set Ctrue is defined as in
Tiseanu et al., Nucl. Instr. Meth. Phys. Res. A 373, 73 (1996).

 Forward transform is calculated, Gaussian noise is added
 Data are inverted and compared to the “true” source

BASEX method is tested by application to synthetic data

C = Pnoisy ATime of neutron emission (ns)

P = CtrueG P → Pnoisy

White regions: 
omitted negative 
values
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 A “true” neutron source coefficient set Ctrue is defined as in
Tiseanu et al., Nucl. Instr. Meth. Phys. Res. A 373, 73 (1996).

 Forward transform is calculated, Gaussian noise is added
 Data are inverted; a value of regularization parameter q can be chosen as a best fit 

to the true source (lower q introduces more noise, too large a q introduces artifacts)
 Problem: BASEX with Tikhonov method admits unphysical negative values

BASEX method is tested by application to synthetic data

White 
regions: 
omitted 
negative 
values
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 Calculated error bars reasonably predict deviation between “true” source and 
lineouts of reconstructed source

 Highlights need for low-noise data (or more nTOF detectors)

Propagation of error calculation gives reasonable error bar 
estimates for inversion, fairly sensitive to noise
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Radial 25-m nTOF
@ LOS 50 (presently no  

collimation)

Radial nTOF’s
@ LOS 270

Beryllium activation 
detector (DD)

Indium activation 
detectors (DD)

Copper activation 
detector  (DT)

Lead shielding

Close-in 
collimator

Close-in axial 
collimator 
(tungsten + 
plastic)

7 m

8 m

Bottom axial 
nTOF’s

The Z neutron diagnostic suite characterizes yield (activation) 
and spectrum (nTOF)

 Neutron imager not shown
 No bang time diagnostics
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ICF neutron sources at Z can have very different implosion 
dynamics and plasma conditions

Yn(DD) Yn(DT) Te (keV) Ti (keV) ni (cm-3) t (ns) Diameter
MagLIF 2x1012 5x1010 ~3 2.5 ~ 1023 < 2 ~50 m
D2 gas puff 4x1013 <4x109 2.2 ~10 2x1020 ~30 6 mm

Axial magnetic field

Cold D2 gas (fuel)

Azimuthal drive field

Liner (Al or Be)

Laser entrance hole with CH foil

~1
 c

m

Laser beam

Compressed axial field

MagLIF: M. R. Gomez et al., accepted to PRL (2014).
D2 gas puff: C. A. Coverdale et al., PoP 14, 022706 (2007).
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Application of BASEX unfold to a D2 gas puff on Z shows two 
neutron pulses with downscatter from adjacent hardware

Reconstruction

Uncertainties

B. Jones and C. L. Ruiz, RSI 84, 073510 (2013).

 Unfold produces a good fit with 
experimental nTOF data

 Resolution is coarse, and limited by 
signal-to-noise

 Attempting the inversion with higher 
resolution leads to unphysical 
oscillations to negative values

 Inferred neutron pulse shape is 
consistent with x-ray measurement 
(PCD) showing main pulse and tail
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Data spread can be equally well interpreted as due to 
instantaneous emission with spectral broadening

 Uniqueness of the solution may be a 
significant pitfall for inversions

 More nTOF locations and analysis 
are required

Reconstruction

Uncertainties

B. Jones and C. L. Ruiz, RSI 84, 073510 (2013).

2.44±0.01 MeV peak
174±5 keV split
195±5 keV sigma
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Initial MagLIF experiments show that neutron production appears 
to be dominated by a thermonuclear process.

Axial detector
Axial detector

Radial detector
Radial detector

DD Neutron Spectra Inferred from nTOF

Gaussian fit
Tion = 2.5 keV

scatter

MagLIF sources may have too short of a time duration for 
inversion given the present Z nTOF diagnostic set
2 kJ laser preheat
10 T applied axial B field
19 MA drive current
5x1011-2x1012 primary DD yields
1-5x1010 secondary DT yields
Peak neutron energy ~2.45 MeV
2-3 keV ion temperatures
X-ray signal FWHM ~ 2 ns 
(implies burn time < 2 ns)
Near term improvements 
(increased laser coupling) may
increase DD neutron yield M. R. Gomez et al., accepted to PRL (2014).

K. D. Hahn et al., HTPD 2014.
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Summary
 Advanced analysis considering the entire set of nTOF (plus burn 

history) diagnostic data may enable inference of Ti and time evolution

 BASEX method presented here has strengths and weaknesses

 Instrumental response and perhaps scattering in the beamline can 
be accounted for implicitly during the inversion

 Admits unphysical negative solutions, which limits resolution and 
increases sensitivity to noise

 Application of this method to other sources could be interesting

 It will likely be easier to analyze longer duration neutron pulses with 
more structure in the nTOF waveforms

 Synthetic data studies can help to design the diagnostic set

 Other inversion methods should also be explored


