

Multiphase Electrolyte Transport in Porous Electrode Batteries

Mario J. Martinez, Harry Moffat

Engineering Sciences Center
Sandia National Laboratories, Albuquerque, NM
mjmarti@sandia.gov

EERE Battery Project Meeting

October 15, 2014

Sandia
National
Laboratories

*Exceptional
service
in the
national
interest*

U.S. DEPARTMENT OF
ENERGY

Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.

Mechanistic Modeling Framework for Predicting Extreme Battery Response: Multiphase transport in porous electrodes

Sandia
National
Laboratories

Objectives:

- Add partial saturation and solid mechanics models to CAEBAT to model gasification and stress-induced degradation phenomena
 - E.g., Hydrogen gas evolution
 - Some systems are two-phase initially, e.g. molten salt batteries
- Develop new models for thermal runaway processes that are based on consistent thermodynamics models.
- Develop consistent thermodynamic/transport models of the entire cell using CANTERA an open source constitutive modeling package

Overall Continuity of fluid phase in a Porous electrode

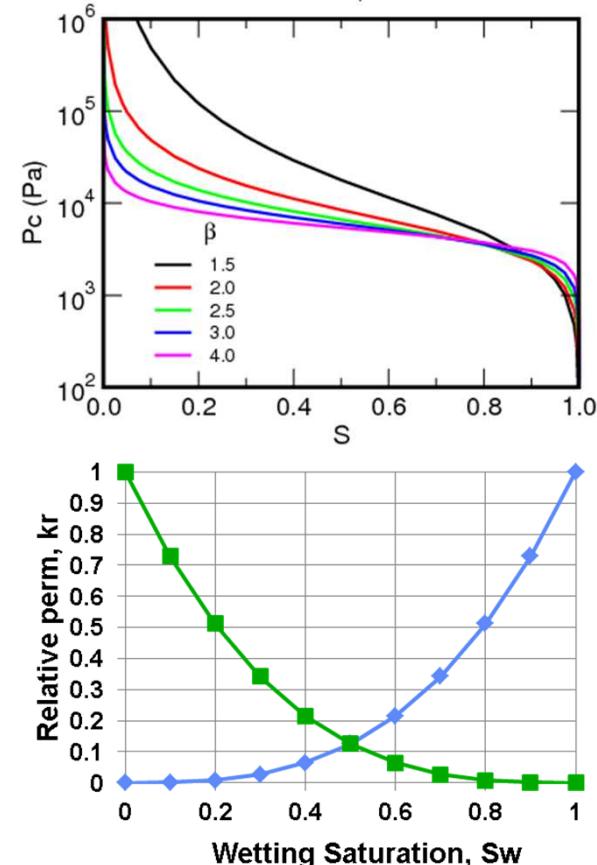
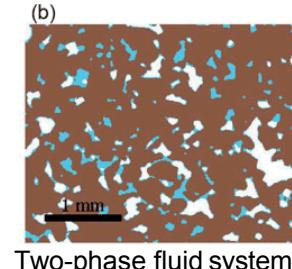
- Electrolyte and gas form two immiscible phases upon melting

$$\frac{\partial(\rho_w \phi S_w)}{\partial t} = \nabla \cdot \left(\rho_w \frac{k_{rw}}{\mu_w} \underline{K} \cdot (\nabla p_w - \rho_w \underline{g}) \right) + Q_w$$

$$\frac{\partial(\rho_n \phi S_n)}{\partial t} = \nabla \cdot \left(\rho_n \frac{k_{rn}}{\mu_n} \underline{K} \cdot (\nabla p_n - \rho_n \underline{g}) \right) + Q_n$$

- Saturation and capillary pressure related to DOFs (wetting and non-wetting pressures) through model relations

$$S = S(p_c); \quad p_c = p_n - p_w$$

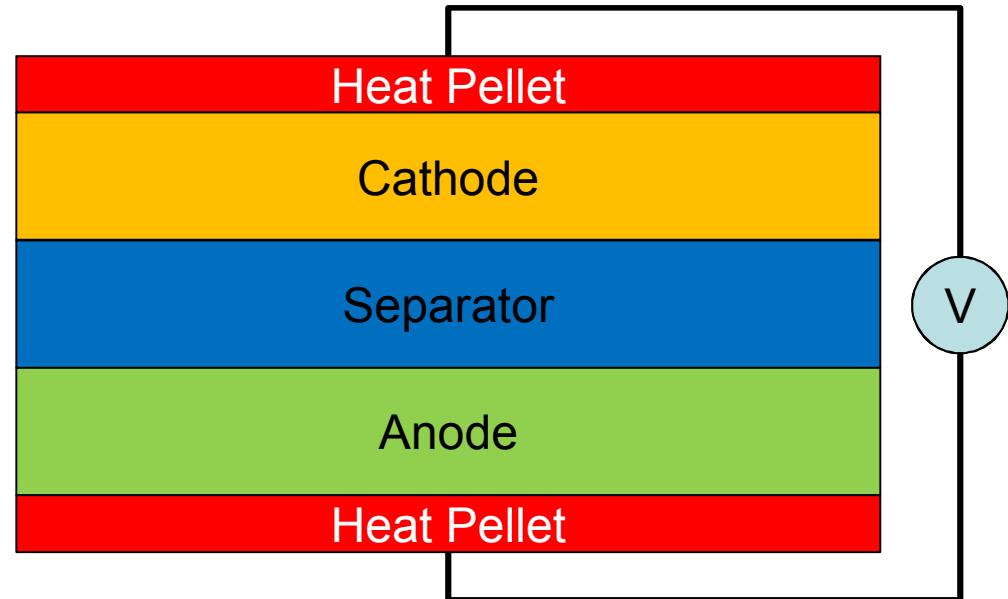


- Coupling to other physics important!

- Required:

$$\phi = \phi(\underline{d}); \quad \mu_i = \mu_i(T)$$

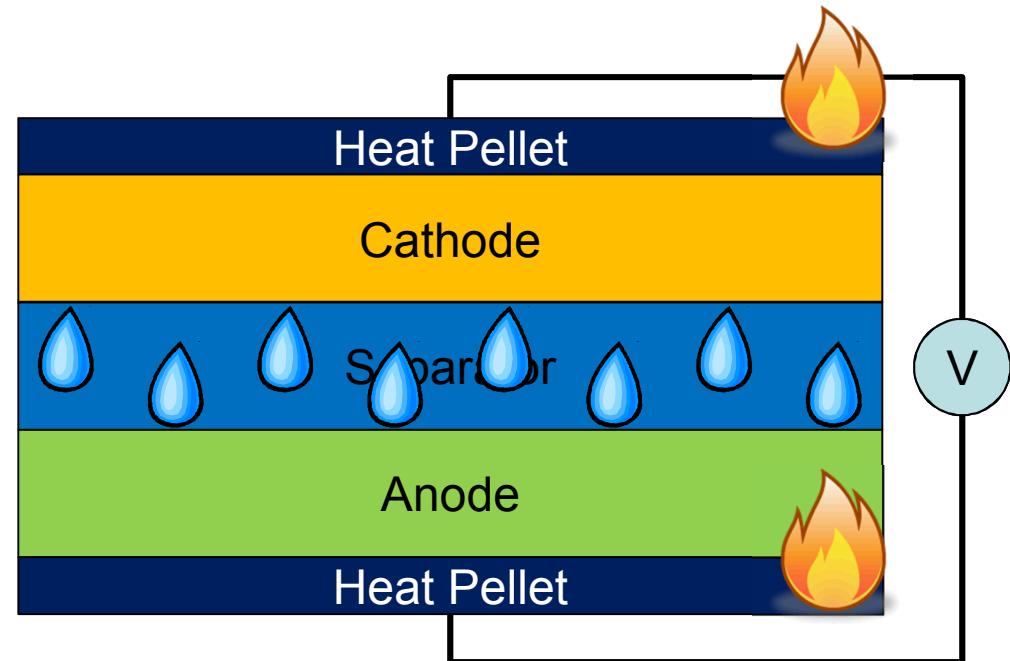
- Optional?:

$$S_i = S_i(p_c, \underline{d}); \quad \underline{K} = \underline{K}(\underline{d})$$



Capillary pressure (top) and relative permeability (bottom) depend on wetting phase saturation and electrode pore structure

Example: Molten Salt Batteries


Physical mechanisms in molten salt battery activation:

- Battery activation is a complicated, multi-step process
 - Heat pellet burning
 - Thermal diffusion
 - Melting of the electrolyte
 - Deformation of the separator
 - Flow of the electrolyte
 - Activation
- A true multi-physics problem
 - Thermal
 - Mechanical
 - Fluid
 - Electrochemical

Example: molten salt battery activation

- Battery activation is a complicated, multi-step process
 - Heat pellet burning
 - Thermal diffusion
 - Melting of the electrolyte
 - Deformation of the separator
 - Flow of the electrolyte
 - Activation

Demonstration: Thermo-porous flow

- Two-pressure porous-flow formulation enables stable solution of flow from the separator to the cathode and anode.
- Flow is “frozen” before activation by an artificially high viscosity. As the electrolyte melts, the viscosity drops.

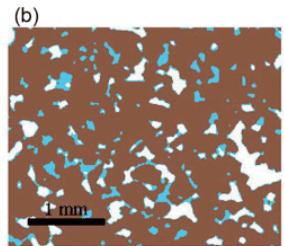
Multiphase Electrolyte Transport

Transport of species k in phase β ($C_{\beta k}$):

$$\frac{\partial(\phi S_\beta C_{\beta k})}{\partial t} + \nabla \bullet \left[C_{\beta k} (\mathbf{v}_\beta + \mathbf{V}_{\beta k}^d) \right] = \dot{r}_{\beta k} + Q_{\beta k}, \quad \beta = l \text{ or } g$$

Bulk phase velocity depends on phase concentration (C_β):

$$\mathbf{v}_\beta = -\frac{\mathbf{k}k_{r\beta}}{\mu_\beta} (\nabla p_\beta - C_\beta \mathbf{g}) \quad C_\beta = \sum_k C_{\beta k}$$


Diffusion velocities (\mathbf{V}^d) can be modeled by Stephan-Maxwell, or Fickian with D_{eff}

Multiphase model introduces phase pressures (p_β) and phase saturations (S_β), but there are additional constraints:

- Fluid-saturated pore space: $S_l + S_g = 1$
- Unit sum of mole fractions: $\sum_k X_{\beta k} = 1, \quad \beta = l \text{ or } g$
- Electroneutrality: $\sum_k z_k^\beta C_{\beta k} = 0, \quad \beta = l \text{ or } g$

Pressure or saturation usually solved from overall continuity equation:

$$\frac{\partial(\phi S_\beta C_\beta)}{\partial t} - \nabla \bullet \left(C_\beta \frac{\mathbf{k}k_{r\beta}}{\mu_\beta} (\nabla p_\beta - C_\beta \mathbf{g}) \right) = Q$$

Two-phase fluid system
Blue: wetting phase
White: nonwetting phase

Some species can be in thermodynamic equilibrium and can partition between phases, e.g. in a aqueous system:

But thermodynamic equilibrium provides N_{eq} relationships for those species:

$$\mu_k^l = \mu_k^g$$

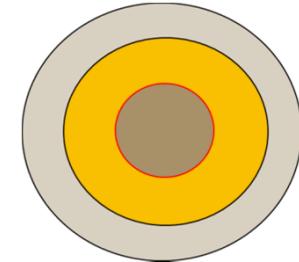
And the number of equilibrium transport equations is also reduced by N_{eq} by summing the phase transport equations:

$$\frac{\partial}{\partial t} \phi (S_l C_{lk} + S_g C_{gk}) + \nabla \bullet \left[C_{lk} (\mathbf{v}_l + \mathbf{V}_{lk}^d) + C_{gk} (\mathbf{v}_g + \mathbf{V}_{gk}^d) \right] = Q_k$$

Mechanical deformation and swelling

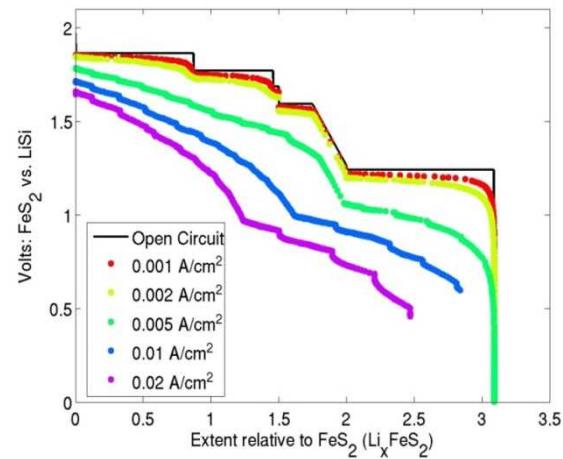
A possible continuum formulation following poroelastic theory (Coussy):

- Conservation of momentum: $\underline{\nabla} \cdot \underline{\underline{\sigma}} = \underline{0}$
- Poroelastic constitutive theory:


$$\sigma - \sigma_0 = K(\varepsilon - 3\alpha(T - T_0)) - b(p - p_0)$$

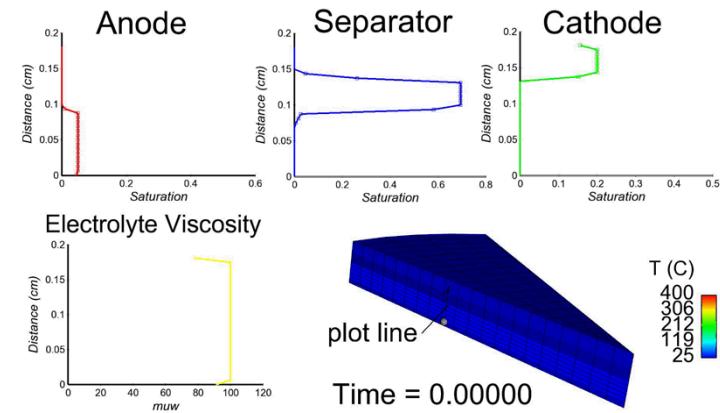
$$\phi - \phi_0 = b\varepsilon + \frac{1}{M}(p - p_0) - 3\alpha_\phi(T - T_0)$$

- A similar model could be postulated for Lithiation $\varepsilon_{Li} \square \beta(C_{Li} - C_{Li}^0)$


Models: Electrochemistry

- Cantera's "Electrode Object" deploys multiple sub-grid models
 - Infinite capacity
 - Multi-plateau
 - Newman reaction extend
 - Finite capacity
- Primary electrochemical coupling is the temperature
 - Cantera's thermodynamics all temperature-dependent

Shrinking Core Model


- Multiple plateaus can react simultaneously
- Diffusional losses with transport

Summary

Multiphysics coupling can provide higher-fidelity models, enabling a tool to investigate abnormal conditions in Li-ion batteries such as Lithiation cracking, thermal runaway, gas generation and leakage.

- Future:
 - Multiphase electrochemistry
 - Thermo-poro-mechanics
 - Couple electrochemistry to the thermo-poro-mechanics

