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Mechanistic Modeling Framework for Predicting Extreme
Battery Response: Multiphase transport in porous electrodes
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Objectives:

• Add partial saturation and solid mechanics models to CAEBAT to model 
gasification and stress-induced degradation phenomena

• E.g., Hydrogen gas evolution

• Some systems are two-phase initially, e.g. molten salt batteries

• Develop new models for thermal runaway processes that are based on 
consistent thermodynamics models.

• Develop consistent thermodynamic/transport models of the entire cell using 
CANTERA an open source constitutive modeling package



Overall Continuity of fluid phase in a Porous electrode

 Electrolyte and gas form two immiscible phases upon melting

 Saturation and capillary pressure related to 
DOFs (wetting and non-wetting pressures)
through model relations

 Coupling to other physics important!

 Required:

 Optional?:
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Capillary pressure (top) and
relative permeability (bottom)
depend on wetting phase
saturation and electrode pore
structure

Two-phase fluid system



Example: Molten Salt Batteries

Physical mechanisms in molten salt battery activation:

 Battery activation is a complicated, multi-step process

 Heat pellet burning

 Thermal diffusion

 Melting of the electrolyte

 Deformation of the separator

 Flow of the electrolyte

 Activation

 A true multi-physics problem

 Thermal

 Mechanical

 Fluid

 Electrochemical
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Demonstration: Thermo-porous flow

 Two-pressure porous-flow formulation enables stable solution of flow from the 
separator to the cathode and anode.

 Flow is “frozen” before activation by an artificially high viscosity.  As the 
electrolyte melts, the viscosity drops.
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Multiphase Electrolyte Transport
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Transport of species k in phase  (Ck): 

Two-phase fluid system
Blue: wetting phase

Whiite: nonwetting phase

Bulk phase velocity depends on phase concentration (C): 

Diffusion velocities (Vd) can be modeled by Stephan-Maxwell, or Fickian with Deff

Multiphase model introduces phase pressures (p) and phase saturations (S), but 
there are additional constraints: 
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Partial Equilibrium
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Some species can be in thermodynamic equilibrium and can partition between 
phases, e.g. in a aqueous system:

2 ( ) 2 ( )g lH O H O�

But thermodynamic equilibrium provides Neq relationships for those species:

l g
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And the number of equilibrium transport equations is also reduced by Neq by summing 
the phase transport equations:
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Mechanical deformation and swelling

A possible continuum formulation following poroelastic theory (Coussy):

 Conservation of momentum:

 Poroelastic constitutive theory:

 A similar model could be postulated for Lithiation
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Models:  Electrochemistry

 Cantera’s “Electrode Object” deploys multiple sub-grid models

 Infinite capacity

 Multi-plateau

 Newman reaction extend

 Finite capacity

 Primary electrochemical coupling is the temperature

 Cantera’s thermodynamics all temperature-dependent
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Shrinking Core Model

 Multiple plateaus can 
react simultaneously

 Diffusional losses with 
transport



Summary

Multiphysics coupling can provide higher-fidelity models, enabling a tool to 
investigate abnormal conditions in Li-ion batteries such as Lithiation cracking, 
thermal runaway, gas generation and leakage.   

 Future:

 Multiphase electrochemistry

 Thermo-poro-mechanics

 Couple electrochemistry 
to the thermo-poro-mechanics
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