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Overview of U.S. Assignments 

Four PHENIX assignments after the PSI Conference (June 9-13): 

 

• Robert Kolasinski & David Donovan: Shizuoka University 

• Chase Taylor: JAEA/Tohoku University 

• Masa Shimada: Toyama University 
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Analysis of bubble formation on 

ITER grade W surfaces 

exposed in TPE 

 

Positron annihilation 

spectroscopy characterization of 

neutron-damaged materials 

1 

2 



Motivation: Analysis of bubble growth in 
ITER-grade W samples exposed in TPE 
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exposure 

type 

ion energy 

[eV] 

duration 

[min] 

flux (Γi) 
[m-2 s-1] 

fluence (Φ) 

[m-2] 

LF 100 60 4.9×1021 1.8×1025 

HF 100 120 1.5×1022 1.1×1026 

• Precipitation affects 

migration through material 

• Bubble growth depends on 

microstructure 

• Growth mechanisms critical 

to developing realistic 

models 

• TPE plasma 

exposures at INL 

• Microscopy at 

Shizuoka 

TPE target during plasma exposure 



Retention measurements correspond closely 
with those obtained in other laboratories 
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Previous work by Alimov et al: 

 

• ITER-grade W 

• E = 38 eV 

• Φ = 1022 D m-2 s-1 

 

Comparable exposure conditions 
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Retention measurements correspond closely 
with those obtained in other laboratories 
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Previous work by Alimov et al: 

 

• ITER-grade W 

• E = 38 eV 

• Φ = 1022 D m-2 s-1 

 

Comparable exposure conditions 

V. Kh. Alimov, et al. J. Nucl. Mater. 420 (2012) 519. 

TPE retention measurements: 

 

• Correspond closely with 

Toyama/IPP meas. 

• Confirm accepted retention 

temp. dependence. 
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XPS analysis shows that implanted C 
impurities in TPE have been reduced 
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Fig. Atomic concentration for W12H annealed sample 

• Impurity 

 Surface: C (C-C) and O (O-C, -OH, WO3) 

 Inner: O (WO3) 

Sputtering time 

/ s 

depth  

/ nm 
C O W 

0 0.0 49.9 38.0 12.0 

5 0.8 11.2 19.4 69.3 

30 5.1 6.5 19.3 74.2 

90 15.2 0.4 18.8 80.8 

180 30.3 6.2 16.9 76.8 

C 1s O 1s W 4f 



Surface morphology variation  
with temperature 
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Key features: 

 

• Non-uniform 

coverage 

 

• Bubbles are 

small (<10 μm 

dia.) 

compared with 

warm-rolled W 

material. 

 

• Absent at 

temperature 

extrema. 

 



EBSD measurements reveal  
dependence on grain orientation 
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• Grain orientation indicated by inverse pole plot. 

• Bubbles visible on grains with <111> and <110> directions 

aligned normal to surface 

• Considerable distortion within individual grains 

• Un-annealed sample showed increased distortion 

 

SEM image of the same area 



Atomic force microscopy reveals 
details of surface structure 
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• Atomic force microscopy provides 

information on the shape of the 

deformed surface. 

 

• Individual bubbles identified and 

analyzed automatically. 

corresponding 

bubble size 

distributions 
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What bubble growth mechanisms are active 
in W during plasma exposure? 
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near-surface plastic 

deformation 
dislocation loop punching vacancy clustering 

Figures from: J. B. Condon & T. Schober, J. Nucl. Mater. 207 (1993) 1. 



Far from the free surface,  
dislocation loop punching is favored 
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Three bulk precipitate growth 

mechanisms considered: 

– Dislocation loop punching 

 

 

– Griffith nano-crack extension 

 

 

 

– Dislocation dipole expansion 
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Near the free surface, bubbles  
may grow by crack extension 
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Stress calculations based on 

calculations by K. Wan & Y. Mai, Acta 

metall. mater. 43 (1995) 4109. 

Crack extension competitive 

with loop punching near 

surface: 

 

 

 

Limitations: 

– Correction for thick blisters 

– Effect of plasticity (blunting of 

crack tip) 

– Hydrogen effects 
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Bubble volumes measured with AFM 
correlate well with blister model 
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K. Wan & Y. Mai, Acta metall. mater. 43 (1995) 4109. 

Volume modeled using blister test 

for thin film adhesion: 



Bubble volumes measured with AFM 
correlate well with deflection model 
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for thin film adhesion: 



Summary of surface morphology findings 
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• ITER-grade W sample exposed in TPE show similar 

retention to Toyama/IPP studies. 

• Analysis performed at Shizuoka: 

– XPS shows implanted C reduced considerably 

– SEM/EBSD illustrate non-uniform bubble growth over surface 

– Bubble grow on (110) and (111) crystal planes 

– AFM analysis provide bubble volumes 

• Modeling of bubbles: 

– Thin film adhesion model adapted to model blister grown on 

tungsten. 

– Model reproduces bubble sizes observed with AFM 



Outline 
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Analysis of bubble formation on 

ITER grade W surfaces 

exposed in TPE 

 

Positron annihilation 

spectroscopy characterization of 

neutron-damaged materials 
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Results from JAEA/Tohoku University 
assignment 
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• Two positron annihilation spectroscopy techniques:  
– PALS: Positron annihilation lifetime spectroscopy. 

– CDB-PAS: Coincidence Doppler-broadening PAS. 

• Samples 
– Single crystal W 

– ITER grade W 

– Y104, 0.025 dpa neutron damage 

– Y111, 0.3 dpa neutron damage 

• Experiment details 
• PALS requires sandwich of two identical samples. 

• First sandwich: Cu-Na-W 
– Cu lifetime is similar to W 

• Second try: Si-Na-W 

 



Positron Annihilation Lifetime Spectroscopy 
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Positron lifetimes 

133.5 ±0.5 ps 

129.4 ±0.3 ps 

202.1 ±0.9 ps 

216.6 ±0.3 ps 

In tungsten, positron lifetime is 
115-120 ps (bulk) 
150-180 ps (mono-vacancy) 

Larger lifetime = more defects 



Coincidence Doppler Broadening PAS 
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Preliminary Conclusions 
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Single 
crystal W 

ITER W 
Y104  

(0.025 dpa) 
Y111  

(0.3 dpa) 

Defect concentration 

216.6 ±0.3 ps 202.1 ±0.9 ps 129.4 ±0.3 ps 133.5 ±0.5 ps 

In tungsten, positron lifetime is 
115-120 ps (bulk) 
150-180 ps (mono-vacancy) 

• Anticipated relative defect concentrations verified. 
• Defects in Y104 and Y111 are likely larger than mono-

vacancies.  
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