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The metallurgy of Fe-Co alloys )

Equiatomic or near-equiatomic Fe-Co alloys that undergo a y-FCC — a-BCC— a, (B,)
transformations.

=  Poor composition-driven workability, binary Fe-Co difficult to process.

=  Commercialized as Fe-Co-2V (Hiperco®) in bar, sheet, strip, coil, and rod forms.

Hiperco® is a tradename of Carpenter Technologies, Reading, PA.

1700 :
Excellent magnetic properties: Liqu:icl
=  Highest saturation induction of all 1500 ~ |

engineering soft ferromagnetic alloys :

=  High curie temperature (> 900 °C) U 1300 - 0 ¥

=  High permeability > :

=  Low core loss % 100 o : -
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Atomic ordering is a big issue! =
F




What are the problems with Hiperco? @&,

= Forged (conventional) Hiperco is weak, brittle, and has inhomogeneous
microstructures.
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= Goal: achieve uniform microstructures with controlled atomic ordering.

= |s Additive Manufacturing the processing solution?
3




Additive manufacturing: the processing e
solution?

Hypothesis: The unique thermal history of layer-by-layer AM will inhibit atomic ordering in a
controlled and predictable way.

Through AM, avoid workability issues that arise in conventional thermomechanical processes
through a solidification-based processing solution.
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Will AM be an enabling process for these materials? 4




Laser Engineered Net Shaping (LENS)
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Laboratory-scale LENS in
Tormach CNC 770 frame.

YLS-2000 Laser from IPG
Photonics with 2 kW
maximum output at 1064
nm.

Control the powder feed
through feed wheel and
carrier gas (independently)
to fluidize the powder.



LENS processed soft ferromagneticiis.
alloys

Conditions S
Fe-Co-1.5V
Laser power = 150-450 W
Build speed = 150-600 mm/min
Interlayer interval time = 0.3-10 s

Machined
Fe-Co-1.5V

Feature Result
Fe-Co and Fe-Si alloys were
processed via LENS — including
Fe-Co-1.5V, Fe-Co, and Fe-6%Si1.

Fe-Co

Fe-6%$S




Thin walls for measuring ordering ) S,

Varied laser power, build speed, and time between subsequent layers (interlayer interval time) to:
1. Control the degree of retained heat within LENS thin walls.
2. Impose near order of magnitude variation in predicted cooling rate.

Rosenthal Model: 97 ~ ﬁ(T Ty
dt aQ " 7
Processing Parameters Output Parameters
Specimen Laser Power, Q Build Speed, Interlayer Interval | Rosenthal Predicted
P (W) vy (mm/s) Time, ¢ (s) Cooling Rate (K/s)
1 150 3 03 3.6 E3
2 150 7 03 95E3
3 300 4 0.3 2.7E3
4 300 8 0.3 59E3
5 450 10 0.3 4.8 E3
6 150 3 10 3.6 E3
7 150 7 10 9.5 E3
8 300 3 10 1.8 E3
9 300 4 10 2.7E3
10 300 8 10 59E3




Thin walls for measuring ordering ) S,

Characterization of ordering:

* Tracked (100) superlattice peak count intensity relative to (200). Relative

* Ratios were normalized to an annealed condition for relative ordering. %ﬁer Si =
* Used Cobalt X-ray radiation to characterize samples - Cobalt source ‘

required to see superlattice!

00-044-1433> Wairauite - CoFe

(110)

200
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Connect the atomic ordering
parameters with the LENS
processing conditions
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Reduced ordering via LENS! e
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» Hypothesis validated: X-ray measurements suggest AM samples 40-70% ordered compared to annealed sample.

» The interlayer interval time had significant effects on ordering. With increased interval time, ordering dropped due to
increased cooling rate and sharper thermal gradient. 9



Columnar-type structures are common in ..

Columnar grain morphologies often
observed in materials processed by
LENS/AM.

Similar structures have been noted in
simulations - Theron Rodgers, et al.,
Comp. Mater. Sci., 2015. uniairectonsl oldiractonal

&) Bulld 1: Low-power b) Bulld 2: Low-power ) Bulid 3: High-power
bldirectional
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Fine equiaxed grain structure in as-built e,
Fe-Co-1.5V thin walls

Build
Direction

‘ PoWEr IaOWE St e
Build speed: 400 mm/min- o
Interlayer iterval time: 4s m

Build
Direction

Power: 150W-
Build speed: 400 mm/min ~|
Interlayer intetval time: 1 ls@

11




» Fine equiaxed grains
throughout the cylinder.

» Crystallographic texture was
weak (near-random).

Can we compare with

microstructure predictions using
conventional solidification theory?

Build Direction




Analysis using columnar-to-equiaxed 7

Laboratories
» First-order analytical analysis of solidification microstructures applied to
conventional castings.
» Utilized in some AM literature (ORNL, Wright State/AFRL, CMU).
Small-Scale (LENST™): 2-D Rosenthal Small-Scale (LENSTV): 2-D Rosenthal
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CET model analysis ) =,

Laboratories
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CET model analysis ) =,

Laboratories

13 (AT, )3 _ . ATy = undercooling at the heterogeneous
G <0.617 (N 0) 1- A ]iv ¥ (AT,)  Fully Equiaxed Condition nucleation temperature
AT, = dendrite tip undercooling
AT,)’ y ,
G>0.617(100N )" | 1- (AT,) AT ) Fully Columnar Condition N, = number of heterogeneous nucleation sites
’ (AT ) ¢ ’
100000 ¢ . Measured thermal conditions for thin
’é\ : LENS conditions walls were in the ‘fully columnar’
é) regime of Hunt’s CET theory!
\G 10000 3 Reasons for the discrepancy?
o [ Columnar
= I 1. Cyclic thermal conditions of AM:
L 1000 £ a. Reduced thermal gradient or
Fg - increase in solidification rate in
(5' subsequent layers
— b. Repetitive solid-state YFCC-aBCC
< .
100 . phase transformations

g F Equlaxed c. Double recalescence
<=

= 2. High density of inoculants (e.g.,

10 (Fe,Co)V; particles, oxides inclusions).
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Layer-by-layer reheating/remelting may @i
induce change

Reasons for the discrepancy?

Build _ s 2
Direction __'COI_u%T_mar IR s v | 1. Cyclic thermal conditions of AM:
T o e a. Reduced thermal gradient in
Power: 150 SRR subsequent layers
Build spééd:-ﬁll()()_'mir'l/min 5 b. Repetitive solid-state YFCC-aBCC
Interlayer interval time: 3s 40 VRV phase transformations
c. Double recalescence
2. High density of inoculants (e.g.,
(Fe,Co)V; particles, oxides inclusions).
Columnar region
Build
Direction

Power: 150W

Build speed: 400 mm/min
Interlayer intetval time: 10s RAUYLL
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Unusual annealing behavior

» Applied ‘standard’ Hiperco anneal at 838°C (1111 K) for 2 hrs. in a high vacuum
(<1E-5 Torr)

Highly heterogeneous recrystallization behavior — large grains consumed fine, as-built
microstructure.




A unique bimodal grain structure

» Heterogeneous recrystallization
also in cylinders.

» Crystallographic texture was
near-random.

Why abnormal grain growth?

Selective grain boundary pinning
processes promoted by:

1. Process-induced residual
stress/strain pattern from LENS
thermal history.

2. High density of precipitates that
inhibit normal grain growth.




Magnetic Properties Characterization

Quasi-static Hysteresis Loop

+B, +M

Key Properties:

- . _ . .
" |~saturation B, ..— full-field induction
P M
_H +H H_.— coercivity
Minor loop

u = B/H — permeability (slope of virgin
Major loop magnetization curve) — here, focus on y,, .

—B,—M




Magnetic Properties Characterization b
KJS Associates, Indianapolis, IN
ASTM A773: Direct Current Magnetic Properties of Low Coercivity
Magnetic Materials Using Hysteresigraphs

— /?:j‘\
L * E

f v ¥
?

properties characterization
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Typical soft ferromagnetic behavior
observed in specimens

3. Annealed

As-built

As-built condition exhibited a
more ‘sheared’ hysteresis
loop — magnetically harder

Magnetic Induction, B (T)

Applied Field, H (kA/m)

21




Magnetic properties were within reported@1

ranges

Goal is high permeability, low coercivity, and high full-

field/saturation induction

» Annealed LENS condition: higher
permeability and lower coercivity

» Values were within extremes of
conventionally processed Fe-Co alloys.

» Tuning of post-processing annealing

will continue to improve performance.

Sandia
National
Laboratori
Condition Specimen Full-field Induction, Coercivity, Maximum
P By, (T) H., (A/m)  Permeability, um
. 1 2.23 1013 511
. ﬁéﬂﬂstv 2 2.24 966 532
' 3 2.21 1006 512
Average -- 2.23 +/- 0.5% 995 +/- 2% 518 +/- 2%
1 2.30 383 1639
Annealed 2 2.28 351 1733
Fe-Co-1.5V 3 2.26 439 1571
4 2.30 431 1517
Average -- 2.29 +/- 0.7% 401 +/- 9% 1615 +/- 5%
Fe-Co -- 2.4[25]* 150[25] 5000-8000[25]
90-200[62]
Fe-Co-2V -- 2.3[25]* 95-160[63]  4000-8000[25]
393[25]
Fe-Co-2V (as- 22251 2900[25] -

rolled, 90%)




Conclusions ) 2=,

1. LENS was successfully demonstrated on Fe-Co and Fe-Si soft ferromagnetic alloys at
conventional and close to ideal compositions.

2. X-ray measurements on thin walls suggest reduced atomic ordering in as-built conditions,
the degree of which was a function of cooling rate and thermal gradient sharpness.

3. Fe-Co specimens developed a fine equiaxed grain structure following layer-by-layer
solidification, which evolved abnormally during annealing.

4. Magnetic properties of LENS Fe-Co competed with or exceeded conventionally processed
Hiperco.

AM 1s an enabling process for low workability alloys at compositions
that are difficult or impossible to process conventionally.
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Great.... but build strategy matters! @

Defects from cross-hatch pattern.
(@) (o)

Defectslikely due

Defectslikely due to poor overlap

to poor overlap

1
1
1
1
1
1
3
Step 2

BUT with a concentric build pattern, no defects and long continuous chips during
machining, often a feature in cutting ductile metals (e.g., Al, Cu, Fe, etc.).

“...ductile metals tend to
form long, continuous
ribbon-shaped coils... such
long continuous chips tend
to form tangled nests...”

pg. 479 in 27 edition of
Metal Cutting Principles by
Milton Shaw
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Thermal measurements give some hints
on the ordering results

Sandia
m National
Laboratories

A -

Power: 150W Power: 450W
Build speed: 150 mm/min Build speed: 600 mm/min
Interlayer interval time: 10s Interlayer interval time: 10s
Sample 6
N Sample 1 /S/Sa =0.49
g 800rs/s,=0.68 Fe-Co-1.5V _ _,
S 750ty o o--m7 7T e
. . . . . = 700 73041
> Builds with faster interlayer interval time had ~ § 5,1 ,°
sharper thermal gradients — less retained heat 'g 500 R
and less ordering. @) I
= 3507 e
£ 500 .
=
450 . 1 L 1 L 1 L 1 L 1 L )
=% 2 4 6 8 10 12

Interlayer Interval Time (s)
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Ongoing collaboration with Lehigh =

U nive rS|ty (John Curry and Tomas Babuska (SNL), Prof. Brandon Krick)

Renishaw AM400 laser powder » Go/No-go again accomplished: successfully
bed system processed binary Fe-Co using powder bed.
» Fe-Co too brittle for conventional
processes!
B
ENISHAW AM 401

Lehigﬁ University powder bed Fe-Co

< structures




Same fine equiaxed grain structure in
powder bed samples

& s

25 pm

» Fine, equiaxed grain morphology found in as-built AM powder bed specimens.
» Currently assessing the crystallographic texture.
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Excellent mechanical properties for binar\@m
Fe-Co

800 -

AM binary Fe-Co

700 +

600—- /

500

400 - .
rentional

C1'CO

300

200—_ ]
100 -

Engineering Stress (MPa)

0

o 5 10 15 20 25 30 35
Conventional Fe-Co ductility Engineering Strain (%)

Alloy Condition Elongation
Fe-50Co Ordered (2 h at 800 °C + 4%

101 at 550 °C) Higher strength and ductility
Fe-50Co Disordered (2 h a 0% .
800 °C + IBQ) t fOI' AM blnaI y FC-CO.

Fe-49.3Co Ordered (heat-treatment 1.6%
details unknown)

Fe-49.3Co Disordered (as above) 0% WOl’ld l’ecord ductllllj/?
Sourmail, 2005, Prog. Mater. Sci. 28




Extensive necking and microscale oo
plastic flow!!

200 um L 10 pm - J
EHT=1000kV  WD=156mm  Signal A= SE2 =4971 mm EHT=1000kV  WD=143mm  Signal A= SE2 Width = 100.0 ym

Extensive necking and micro-void Microscale plastic flow on the
formation fracture surface

New deformation attributes for Hiperco/Fe-Co!
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