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Abstract

We use machine learning (ML) to infer stress and plastic flow rules using data from representative

polycrystalline simulations. In particular, we use so-called deep (multilayer) neural networks (NN)

to represent the two response functions. The ML process does not choose appropriate inputs

or outputs, rather it is trained on selected inputs and output. Likewise, its discrimination of

features is crucially connected to the chosen input-output map. Hence, we draw upon classical

constitutive modeling to select inputs and enforce well-accepted symmetries and other properties.

With these developments, we enable rapid model building in real-time with experiments, and guide

data collection and feature discovery.
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1. Introduction

Our effort to produce viable models of plasticity from trusted data draws upon traditional

constitutive modeling theory and newly developed machine learning techniques.
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The theory of constitutive function representation has a long history, going back to the be-

ginnings of the Rational Mechanics movement. Much of the pioneering work was done by Rivlin,

Pipkin, Smith, Spencer, Boehler, and co-workers [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11]. Later, Zheng con-

tributed a notable monograph on the application of representation theory to anisotropy [12]. Much

of these results have been condensed in: Spencer's monograph [9], Truesdell and Noll's monograph

[13, Sec. 7-13], Gurtin's text [14, Sec. 37], and the recent text by Itskov [15, Ch.4,6,7].

The application of machine learning (ML) to engineering dates back to at least the 1980's

and covers a wide variety of problems. For instance, Adeli and Yeh [16] applied ML to design

of steel beams, Hajela and Berke [17] used a ML model as a surrogate for the exact response to

enable fast optimization, Cheu and Ritchie [18] applied ML to traffic modeling, and Theocaris and

Panagiotopoulos [19] used it to model fracture behavior and identification. For further bibliography

along these lines, a review of neural network applications in civil engineering appeared in 2001 [20].

Research on applying ML to constitutive modeling dates back to roughly the same time period.

In solid mechanics in particular, Ghaboussi et al. [21] applied a neural network (NN) to data

from experiments of beam deflection. They created a model which acquired increasing fidelity as

experiment progressed via hierarchical learning and adapting new hidden layers. Furukawa and

Yagawa [22] constructed an "implicit" model of linear viscoplasticity with a NN based on a state

space formulation, where the NN provided the driving term for plastic evolution and the elastic

response was assumed to be known. Notable in their work, they expressed a need for variety in the

training data.

More recently, a number of studies have appeared comparing NN plasticity models to other

models calibrated on experimental data for specific materials. Lin et al. [23] built a NN model

of the flow stress of low alloy steel based on only experimentally observable quantities. Bobbili et

al. [24] constructed a NN model of high strain rate Hopkinson bar tests of 7017 aluminium alloy

and compared it to Johnson-Cook model. For T24 steel, Li et al. [25] compared a NN model to a

modified Zerilli-Armstrong and strain-compensated Arrhenius-type model. They remarked on the

opacity of the NN model and the need for extensive data. Desu et al. [26] made flow stress prediction

of austenitic 304 stainless steel 304 with support vector machine construct and compared it to a

NN model. Asgharzadeh et al. [27] modelled the flow stress behavior of AA5086 aluminum using

NN with two hidden layers. (Also, in the realm of fluid mechanics, Ling et al. [28, 29], Duraisamy et

al. [30, 31], and Koumoutsakos et al. [32] have been particular active in applying machine learning
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techniques to model turbulence.) Unlike traditional models based on physical mechanisms and

intuition, these ML models are purely data-driven and phenomenological. Recently, mathematical

analysis has been applied to understanding the training and response structure of NNs, which have

traditionally been treated a black boxes. The work of Tishby and co-workers [33] and Koh and

Liang [34] is particularly illuminating.

In the wider context of data-driven modeling, a number of recent developments [35, 36, 37, 38, 39]

are also noteworthy. Alharbi and Kalidindi [35] constructed a database of Fourier transformed

microstructural data and used this spectral information to drive evolution of crystal plasticity

simulation. Kirchdoerfer and Ortiz [36] sought to subvert the traditional empirical model in the

data-to-model-to-prediction chain and replace it with a penalization of the prediction response

by its distance to closest experimental observation/data point. This approach of directly using

database is commendable but lacked data interpolation which appears, for example, in Ref. [40].

The optimization was constrained by conservation principles like a Newtonian force balance and

was applied to truss and elasticity problems. The authors explored the technique's robustness to

noise and convergence. Versino et al. [38] applied a genetic/evolutionary algorithm and a symbolic

regression to model Taylor impact test data. The symbolic regression machine learning technique

selects a best model composed of given analytic building-blocks and is especially attractive since the

resulting tree structure leads to a physically intepretable model based on the physic embedded in

the building-block sub-models. Lastly, Bessa et al. [39] integrated design of experiments, simulation,

and machine learning in materials discovery and design. It should be noted that Materials Genome

and similar material discovery and selection efforts [41, 42, 43] are a deep and active field of research

but this classification problem has little bearing on the constitutive modeling task at hand.

In the vein of designing the architecture NN suit to specific tasks, the method we adopt and

generalize, the Tensor Basis Neural Network (TBNN) [44], is not simply a feed-forward, deep neural

network. Unlike other NN mechanics models of components of output quantity e.g. stress, TBNN

models have built-in invariance properties. The TBNN formulation shifts the basis for the unknown

coefficient functions from the (arbitrary) Cartesian basis of the training data to an objective basis

made up of powers of the selected inputs, as representation theory [9, 13] suggests. This comes

with the cost that the coefficient functions and basis are not linearly independent i. e. they must

be trained simultaneously. This representation is akin to the Gaussian Approximation Potential

(GAP) with the Smooth Overlap of Atomic Positions (SOAP) basis [45] that is gaining popularity
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in molecular dynamics, in that this machine learning constitutive function uses a spectral basis

to preserve rotational and permutational invariance. It also has goals in common with image

transforms that embed invariance properties [46, 47].

Motivated by the goal of achieving on-the-fly model construction, directed sampling/experiments,

and discovery of features/trends in large datasets, in this work we show how classical constitutive

modeling is needed to obtain viable ML models of constitutive behavior. In Sec. 2, we provide the

fundamentals of representation and plasticity theories and connect them with our NN formulation

of the components of plasticity, namely the stress and flow rules. In Sec. 3, we discuss how the data

to train the models is obtained, the specifics of the learning algorithm, and the time integration

algorithm used to predict the plastic evolution. One of the data sets is obtained from the elastic-

plastic response of an ensemble of olgio-crystalline aggregates, and so the resulting NN model can

be considered a form of homogenization. The results of these developments are discussed Sec. 4

and include comparisons of various model architectures and inputs based on cross-validation errors

and evaluations of stability and prediction accuracy. Finally, in Sec. 5, we discuss results and in-

novations, such as the generalized tensor basis architecture, the novel ways of embedding physical

constraints in the formulation, and the exploration of data sufficiency, robustness, and stability.

2. Theory

In this section we provide a concise overview of representation theory and how we apply it in the

context of constitutive modeling by (artificial) neural networks (NNs). Specifically, we employ a

generalization of the Tensor Basis Neural Network (TBNN) [44] concept based on an understanding

of classical representation theory. With it we construct models that represent the selected output as

a function of inputs with complete generality and compact simplicity. This construction is distinct

from the predominance of component-based NN constructions, for example those mentioned in the

Introduction, in that basic symmetries, such as frame invariance are built in to the representation

and do not need to be learned.

2.1. Representation theory

Representation theorems for functions of tensors have a foundation in group theory [48, 49, 50,

51] with the connection being that symmetry is described as functional invariance under group

action. In mechanics, the relevant invariance under group action are rotations (and translations) of
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the coordinate system, which is known as material frame indifference, invariance under super-posed

rigid body motions or simply objectivity.' This is a fundamental and exact symmetry. Practical

applications of representation theory to mechanics are given in Truesdell and Noll's monograph

[13, Sec. 7-13] and Gurtin's text [14, Sec. 37] and address complete, irreducible representations of

general functions of physical vector and tensor arguments. For example, the scalar function f (A)

of a (second order) tensor A is invariant if

f(A) = f (GAGT) , (1)

and a (second order) tensor-valued function M(A) is objective if

GM(A)GT = M(GAGT) , (2)

for every member G of the orthogonal group.

Underpinning the representations of f and M are a number of theorems. The spectral theorem

states that any symmetric second order tensor A has spectral representation :

3

A = E ® , (3)

composed of its eigen-values {Ai} and eigen-vectors fail where i = 1, 3. The spectral representation

of A makes powers of A take a simple form An = Ei ai (and in particular A° I). The

equally important Cayley-Hamilton theorem states that the tensor A satisfies its characteristic

equation :

A3 — (Al + A2 + A3) A2 + (A, A2 + A2A3 + A3A1) A — (A1A2A3)I = 0 , (4)

Ji=tr A 3.2=1(tr2 A—tr A2) J3=det A

where are the principal (scalar) invariants of A. The (generalized) Rivlin's identities [53, 54]

provide similar relations for multiple tensors and their joint invariants.

Scalars that respect Eq. (1), such as {Ji}, are called scalar invariants and are formed from

(polynomials or, more generally, functions of) the eigenvalues of A. Hence, f(A) reduces to

f(A) = f(i) (5)

1Frame indifference is a special case of the more general principle of covariance with changes of the metric tensor

[52, Sec.3.3].
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where I is a set of scalar invariants of A, and hence f is also an invariant. A set of invariants Z is

considered irreducible if it each of its elements cannot be represented in terms of others and conveys

a sense of completeness and simplicity.2 Since the eigenvalues {A,} are costly to compute, typically

traces such as {tr A, tr A2, tr A3} = {E, Ai, Ei , Ei A3} are employed as scalar invariants. Joint
invariants of a functional basis for multiple arguments are formed with the help of Pascal's triangle.

For tensor-valued functions such as M(A) in Eq. (2), a power series representation

M(A) = E ei
i=o

(6)

is a good starting point. The coefficient functions c, are represented in terms of scalar invariants as

in Eq. (5). This power series representation can be reduced by application of the Cayley-Hamilton

theorem (4), in the recursive form A3+3 = J1A3+2 — J2A3+1 + A.A.3. The transfer theorem (as

referred to by Gurtin [14, Sec. 37]) states that isotropic functions such as M(A) inherit the

eigenvalues of their arguments and implies the fact that these functions are co-linear with their

arguments. Also Wang's lemma (I, A, A2 span the space of all tensors co-linear with A) is a

consequence of Eq. (3) and Eq. (4), and gives a sense of completeness of the representation:

M(A) = co MI (i)A c2 (/)A2 . (7)

Eq. (7) evokes the general representation a symmetric tensor function of an arbitrary number of

arguments in terms of a sum of scalar coefficient functions times the corresponding elements of

the tensor basis. The general methodology for constructing the functional basis to represent scalar

functions is given in Rivlin and Ericksen [55], and the corresponding methodology to construct

tensor bases is developed in Wang [56, 57].

Representation theory, like machine learning, does not determine the appropriate arguments/inputs

and output for the constitutive functions. In mechanics, there is a certain amount of fungibility

to both. For instance, the (spatial) Cauchy stress can easily be transformed into the (referential)

first Piola-Kirchhoff stress, and left and right Cauchy-Green stretch have same eigenvalues but

different eigen-bases. Also, any of the Seth-Hill/Doyle-Ericksen strain family [58, 59, 60] provide

equivalent information on deformation, and any of the objective rates formed from Lie deriva-

21n some sense, a complete set of invariants are coordinates on the manifold induced by symmetry constraints

and hence are clearly not unique in their ability to coordinatize the manifold.
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tives [61, 62, 63, 64] provide equivalent measures of rate of deformation; however, some choices of

arguments and output lead to greater simplicity than others.

Lastly, it is important to note that isotropic functions are not restricted to isotropic response.

The addition of a structure tensor characterizing the material symmetry to the arguments allows

isotropic function theory to be applied so that the joint invariants encode anisotropies [65, 66, 67,

68, 69, 12].

2.2. Plasticity models

Briefly, plasticity is an inelastic, history-dependent process due to dislocation motion or other

dissipative phenomena. We assume the usual multiplicative decomposition of the total deformation

gradient F into elastic (reversible) Fe and plastic (irreversible) Fp components

F = FeFp . (8)

As a consequence, the velocity gradient in the current configuration, 1 PF-1, can be additively

decomposed into elastic and plastic components :

1 = te171 + Fe tp1;1 F71 ,
\ --Ne--0.

(9)

1.4,

refer to [70, Sec. 8.2]. The assumption that Fp is pure stretch (no rotation) reduces Lp to Dp

sym L. The elastic deformation determines the stress, for instance the Cauchy stress T:

T = T(F,) = T(ee) ,

and the evolution of the plastic state is determined by a flow rule, e.g. :

Pp = DpFp where Dp = Dp (Fp, T) = Dp(bp, a) ,

(10)

where Fp quantifies the plastic state and T the driving stress. Invariance allows the reduction of

the argument of T to, for example, the objective, elastic Almansi strain ee = (I — be-1) based on

the left Cauchy-Green/Finger stretch tensor be = FeFeT. Similarly, the state variable in the flow

rule can be reduced by applying invariance, for example, bp = FpFT. The driving stress can be

attributed to the deviatoric part of the pull-back of the Cauchy stress T: a = dev (Fe' TFe—T)

which is also invariant and also coexists in the intermediate configuration with Dp. Furthermore, a

deviatoric tensor basis element generates an isochoric flow. Other choices of the inputs and outputs
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of the stress and flow functions are discussed in Results section. Typically both the stress and flow

are derived potentials to ensure elastic energy conservation for the stress and associative flow for

the flow rule; however, in this work we to allow for more general flow and non-differentiable NN

model (and experiments typically cannot measure potentials directly).3

A few basic properties are built into traditional empirical models that need to be learned in

typical NN models. First, zero strain, ee = 0, implies zero stress :

T(0) = 0 , (12)

and, likewise, zero driving stress should result in zero plastic flow :

Dp(Fp, 0) = 0 . (13)

Also there is a dissipation requirement for the plastic flow. Generally speaking, the Coleman-Noll

[71] argument, together with the first and second law of thermodynamics, applied to a free energy

in terms of the elastic deformation and a plastic history variable results in: (a) the stress being

conjugate to the elastic strain rate, and (b) the internal, plastic state variable, when it evolves,

reduces the free energy via M • Lp > 0 where M is the Mandel stress

This reduces to

M = det(F) Fe Fe F-1TF—T (14)

T • dp > 0 , (15)

refer to Ref. [70, Sec. 8.2]. Also, given the physics of dislocation motion, it is commonly assumed

that the plastic deformation is incompressible, det Fp = 1, which implies the flow is deviatoric

tr Dp = 0 (16)

For more details see the texts Refs. [70, 72, 73].

2.3. Application to neural network constitutive modeling

We generalize the Tensor Basis Neural Network (TBNN) formulation [44] to build NN repre-

sentations for the stress relation, Eq. (10), and the plastic flow rule, Eq. (11), that embed a number

3Also worth mentioning are the complex requirements for elastic stability, see Ref. [52, Sec. 5], that we do not

attempt to embed in the formulation mainly because they require a potential.
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of symmetries and constraints. Both T and Dp are required to be isotropic functions of their

arguments by invariance. As discussed, classical representation theorems give the general form

f(A)= fi(Z) Bi , (17)

where A {A1, A2, ...} are the pre-supposed dependencies/arguments of function f, I {1-3}

is an (irreducible) set of scalar invariants of A, and B = {B3} is the corresponding tensor basis.

In Eq. (17), only the scalar coefficient functions are {L} are unknown once the inputs have been

selected and hence each is represented with a standard (dense) NN using the selected scalar invari-

ants I as inputs. In the TBNN framework, the sum the NN functions {L} and the corresponding

tensor basis elements {Bi} in Eq. (17) is accomplished by a so-called merge layer, and the functions

{L} are trained simultaneously (refer to Fig. 1 and more details will be given in Sec. 3.2). This

formulation is in contrast to the standard NN formulation:

f (A) =
i,j

(18)

which is based on components of both the inputs {A1, A2, ...} and the output f.

For the stress, we assume a single symmetric tensor input selected from the Seth-Hill/Doyle-

Ericksen elastic strain family, in particular ee, is sufficient, so that representation Eq. (7):

T = + al (I)e, + cr2(/)e , (19)

is appropriate. Despite this formulation being based on strain, versus stretch, it does not embed

the zero stress property, Eq. (12), and, hence, o-0(/) will need to learn that zero strain implies zero

stress. Since we prefer to impose, rather than learn, physical constraints such as Eq. (12) since

this reduces the necessary training data [44] and the exact satisfaction leads to conservation and

other properties necessary for stability, etc. Exact satisfaction of Eq. (12) can accomplished a few

different ways: (a) shifting the basis with the Cayley-Hamilton theorem (4)

T = ale, + a2e2, o-3e , (20)

refactoring (b) some T = I + o- ee or (c) all T = /2 (o-P clee aN) of the

coefficient functions { ai} with /2 = tr e2e. In general, any of these representations can be expressed

on the spectral basis

3 3

T = EE adkijaj aj = E aj
•=1

9
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so there is a (weak) equivalence between coefficient functions of the various representations. Here,

ee = Ei ea,.
As mentioned, we assume that the inputs to the flow rule are (a) a history variable bp, and (b)

driving stress cr. . A general function representation from classical theory for an isotropic function of

two (symmetric) tensor arguments requires ten invariants [53] (see also [11, Ch.3, Eq. 9 and 11]):

= ftrbp,trbp2,trbp3,tro-, tr tr o-3, tr bpo-, tr bp2cr, tr bp cr2 , tr bp2a21 (22)

and eight tensor generators/basis elements

B {Bi} = {I, bp, bp2, Q, o-2, sym bpo-, sym bp2o-, sym bpo-2} , (23)

where sym A (A + AT). To satisfy the zero flow condition, Eq. (13), we can shift basis for

second, stress argument and eliminate all basis elements solely dependent on the first, plastic state

argument:

={Q, cr2 , cr3 , symbpu , symb p2 u , symbpu2} . (24)

Plastic incompressibility, in the form of deviatoric plastic flow, Eq. (16), can imposed by applying

the linear operator dev, dev A = A — A tr(A)I,

+ sym dev bpaDP = foi dev cr + fo2 dev a2

f2i dev sym bp2a + fi2 dev sym bpa2

Dissipation of plastic flow can be strictly imposed by requiring that the flow be directly opposed

to the stress in Eq. (15) which implies:

Dp = cr + h 3 (25)

and fi(Z) > 0 and h(i) > O. In this study we will rely on the learning process to ensure the
positivity of the coefficient functions fi and h but this could be accomplished exactly with the

Macauley bracket (ramp function) applied to fi and h, for example.

3. Methods

We train the NN models of plasticity with data from two traditional plasticity models. In this

section we give details of (a) the traditional models, (b) the training of the NNs, and (c) numerical

integration of the TBNN plasticity model.
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3.1. Plasticity models

In an exploration of the fundamental properties of NNs applied to plasticity, we seek to represent

response of two models: (a) a poly-crystalline representative volume element (RVE) with grain-wise

crystal plasticity (CP) response (an unknown closed form model since the poly-crystalline aspect

of the CP model obscures its closed form), and (b) a simple visco-plasticity (VP) material point (a

known closed form model). Both are finite deformation models so that invariance and finite rotation

are important; and both are visco-plastic in the sense of lacking a well-defined yield surface and

strictly dissipative character.

Briefly, crystal plasticity (CP) is a well-known meso-scale model of single crystal deformation.

Here we use crystal plasticity to prescribe the response of individual crystals in a perfectly bonded

polycrystalline aggregate. The theoretical development of CP is described in Refs. [74, 75, 76, 77, 78]

and the computational aspects in reviews [79, 80].

Specifically, for the crystal elasticity, we employ is a St. Venant stress rule formulated with the

second Piola-Kirchhoff stress mapped to the current configuration

T 
det F 

F ((CE,) FT (26)

where the elastic modulus tensor C = C11,11 + C42 (11 —11) + C44 (I ® — J) has cubic crystal symmetries

with C11, C12, C44 = 204.6, 137.7, 126.2 GPa, and Ee = 2(Fe Fe — I) is the elastic Lagrange strain.

Here [-1,13kl = 6/380/k63l, [kik/ = (5/03/ + SilSjk) and 6,3 is the Kronecker delta. Plastic flow can

occur on any of 12 face-centered cubic (FCC) slip planes. Each crystallographic slip system, indexed

by a, is characterized by Schmid dyads PŒ = sa Ono, composed of the allowed slip direction, sa, and

the normal to the slip plane, ricE. Given the set the plastic velocity gradient is constructed

via:

= ;YŒPŒ , (27)

which inherently volume preserving in the (incompatible) intermediate/lattice configuration. Fi-

nally, the slip rate •jf,„ is related to the applied stress through the resolved shear (Mandel) stress

T a = M • Pa, for that slip system. We employ a common power-law form for the slip rate relation

;ya = ;Yee()
Ta

ga

1/m

Ta (28)

where ji,o = 122.0MPa-s-1 is a reference strain rate, m = 20 is a rate sensitivity exponent, and

= 355.0MPa is a hardness value. These parameters are representative of steel.
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With this model in Albany [81], we simulate the polycrystalline response using a uniform mesh

20 x 20 x 20 with the texture assigned element-wise (via Dream3d [82]) and strict compatibility

enforced at the voxelated grain boundaries. Ten realizations with 15, 15, 17, 18, 18, 19, 19, 20,

20, 21, 22 grains were sampled from an average grain size ensemble and each grain was assigned a

random orientation. Minimal boundary conditions to apply the various loading modes ( tension,

shear, etc. ) were employed on the faces and edges of the cubical representative volumes. Also, we

limit samples to a single, constant strain rate 1.0 1/s.

The simple visco-plastic (VP) model consists of a St. Venant stress rule in the current configu-

ration with Almansi strain:

T = Cee , (29)

where C = M 0 I + 2µ11 isotropic parameters A = (l+v)(1-2v) and µ = 24,) with Young's modulus

E = 200 GPa and Poisson's ratio v = 0.3, together with a simple (associative) power law for the

flow rule:

DP = CHIPS

where c = 0.001 and p = 0.1 are material constants.

(30)

3.2. Neural network representation and machine learning algorithm

A typical NN, such as Eq. (18), is a two-dimensional feed-forward, directed network consisting

of an input layer, output layer and L x N intervening hidden layers where neighboring layers are

densely connected. Each layer fi consists of N nodes (ij). The output, yi, of a node (ij) is the

weighted sum of the outputs of the previous layer ti_1 offset by a threshold and passed through a

ramp-like or step-like activation function a(x):

xi = a(yi) with yi = wixi_1 + bi , (31)

where W, is the weight matrix for (hidden) layer fi of the state/output of nodes of the previous layer

and bi is the corresponding threshold vector. In our application the input layer consists of the

NE invariants / and the NB elements of the tensor basis B. The elements of Z form the arguments of

the coefficient functions, each having a L x N neural network representation, while the elements of

B pass through the overall network until they are combined with the coefficient functions according

to Eq. (17) to form the output via a merge layer that does the summation. After exploring the CO
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step- and ramp-like rectifying activation functions commonly used, we employ the ramp-like (C1

continuous) Exponential Linear Unit (ELU) [83] activation function:

a(x) =
exp(x) — 1 if x < 0

x else
(32)

to promote smoothness of the response and limit the depth of the network necessary to represent

the response relative to saturating step-like functions.

Training the network weights W, and thresholds 62 is accomplished via back-propagation of

errors [84, 85] which, in turn, drives a (stochastic) gradient-based descent (SGD) optimization

scheme to minimize the so-called loss/error. We employ the usual root mean square error (RMSE)

1
E =  E 2ND Ily(xk) — dk

(xk,dk)ED

12 (33)

where D is the set of training data composed of inputs xk = {/k, Bk} and corresponding output dk.

The gradient algorithm relies on: (a) the change in E with respect to each weight W,

OE OE Oxi Oyi

aw, Oxi Oyi OW,

and (b) each threshold bi

where

= Xi_1 0 Ai

OE OE Ox
z 
Oyi —

,
Obi Oxi Oyi Obi

oi

OZ = (WiT+1Ai+i) O at(yi) for i L with AL =

(34)

(35)

(Y(xk) — dk) 0 d(yL) (36)
(xk,dk)ED

Here a' is the derivative of weight function, [a ® b]ij = clib2 is the tensor product, and [a O b]i =

element-wise Hadamard-Schur product. The recursion seen in Eq. (36) gives back-propagation its

name. The gradient defined by these expressions is evaluated with random sampling of subset of

training data D called minibatches. Also, search for a minimum along this direction is governed

by a step size called the learning rate in the ML community. These standard results are trivially

generalized to the TBNN structure since the inputs B do not depend on Wi nor bi and are merely

scaled by the coefficient functions to form the output y, refer to Fig. 1. For more details of the SGD

algorithm, see Ref. [86, Ch.2].
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Merge: Bi

Figure 1: TBNN structure for M(A) = E, ci(Z)B, with 3 invariants = {/o, /1,12}, a 3 x 4 NN, 2 coefficient

functions {co (/), ci(T)1, and 2 tensor basis elements 8 = {Bo, B1}. The scaling operations described in Sec. 3.2 are

omitted for clarity.
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To begin the training, the unknown weights, {Wi}, and thresholds, {132}, are initialized with

normally distributed random values to break the degeneracy of the network and enable local op-

timization. Since multiple local minima for training are known to exist, choosing an ensemble of

initial weights which are then optimized improves the chances of finding a global minimum and the

distribution of the solutions indicates the robustness of the training. Also, the full set input data is

divided into a training set D, used to generate the errors for the back-propagation algorithm; a test

set T, for assessing convergence of the descent algorithm; and a third set V for cross-validation,

to estimate the predictive capability of the trained network. Ensuring that the errors based on T

are comparable to those on V reduces the likelihood over-fitting data with a larger than necessary

NN. We chose to divide the available data in aT:D:V= 20:72:8 ratio. In addition, we sample

individual stress-strain curves produced by the CP and VP simulators so to maintain approximate

uniform density of data based on curve arc-length (vs. based on strain) to capture high-gradient

(elastic) and transition (yield) regimes. Also, it should be noted that we allow ourselves to train

on inputs derived from the plastic deformation gradient, Fp, despite the fact that this quantity is

difficult to observe directly in experiments. A critical part of the training algorithm is normalizing

the data since having Wi, bz ,--, 0(1) will achieve better convergence if the NN maps 0(1) inputs to

0(1) outputs. We shift and scale the scalar invariants / so that they have a mean zero, variance one

distribution. We normalize the other set of inputs, the tensor basis B, using maximum Frobenius

norm of the basic generators, e.g. bp and a-, over the training set D. During training, the output

tensors are normalized similarly based on their maximum norms over D, so that

1 - -
(37)f = —L(/)sB, B, ,

sf

A(I)

where sf is the scaling of output f; 5B, is the scaling of basis element B, based on the powers of

principal generator (e.g. if B, = basb then = sZssb where sb is the scaling of b); and / =

is the set of scaled and shifted invariants. These scales have the added benefit of coarsely encoding

the range of training data so the extrapolation during prediction can be detected.

Convergence is assessed by averaging the error with respect to T over previous iterations of

the SDG (in this work we average over the last 4-10 iterations) and terminating when this average

converges, but not before performing a minimum number of iterations (1000 in this work). More

discussion of the training approach can be found in [44], although in that work the learning rate
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was held fixed rather than decaying as the training proceeds, as in this study.

3.3. Integration algorithm

We need a time-integration scheme to solve the differential-algebraic system Eq. (10) and Eq. (11).

We assume it is deformation driven so that F = F(t) is data. To form a numerical integrator, we

rely on the well-known exponential map

Fn+a = exp (a At [Dp]n) Fn (38)

which is an explicit/approximate solution to Eq. (11). In Table 1 we outline an adaptive scheme

based on a midpoint rate at tn+,, and interpolation of the deformation gradient:

log Fn+a = log Fn + a log AF = (1 — a) log Fn+1 + a log Fn (39)

with AF = Fn±iFy7,1 so Fn+e, = exp(a log AF) Fn. Since we do not rely on the NN models of stress

Eq. (10) and flow (11) being directly differentiable, we use a simple relaxation scheme to enforce

consistency:

1
[Fp]n±1 = exp (At Dp (FFT, dev T G (I — F—T [FpTFP] Th 1 F-1))) ) [FA, (40)

for [Fp]n+1 given [Fp],„ and F Fn+i = F(tn+i). Here we have simply substituted stress and

flow rules into Eq. (38) with the particular arguments T(ee) and Dp (b, s). If any step has is an

increase in error formed from the residual of Eq. (40) the step size is cut; and, conversely, when a

sub-step converges the remainder of the interval is attempted. This relaxation could be improved

by using the derivatives already computed by the backpropagation algorithm (as implemented in

Theano/Lasagne [87, 88]) in a Newton solver with a trust region based on the bounds of the training

data.

4. Results

In this section we cover our investigations of: (a) optimal network size, inputs, and representation

basis; (b) influence of training data on error and stability; and (c) the robustness and accuracy of

the model predictions. As mentioned, we employ data from an unknown-form CP model (Eq. (26)

and Eq. (27)) and known-form VP model (Eq. (29) and Eq. (30)). Training with the data from the

CP model illustrates the NN model's ability to represent and homogenize the response of a complex

system and the VP model is particularly useful for exploring NN representations since we know the

true response and generating samples is computationally inexpensive.
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For step Ts + 1

• Initialize F = FTh and AF = Fr,,FV-Ei

• Sub-step: while a < 1

• Try a = 1, Fn-ka = exp (a log (AF)) Fn

Relaxation: loop over k, initialize [Fp]k̀=0 = Fp:

1. b = FFT and b: = F [(FTFp) 1* FT

2. T* = T(bn deltF and s* =  dev T*

3. [Dp]i: = f(b, s*)

4. [Fp]m±a, = exp (aAt D;) [FATh

5. if [Dp]k' — [DP]k-1  < c  [Dp]k—i

else if [Dp]k — 
[Dp]t_111 > [DP] Z-1

else a += Aa

— Update Tn+i = T* and [Fp]m+1 = [Fp]*

then exit, converged

— [Dp]k_2 then diverging, cut step a = 1/2a

Table 1: Time integration algorithm with adaptive time-stepping.

4.1. Constructing and training the neural networks

We begin our numerical investigations with: (a) a survey of the possible representations for the

models of stress and flow, (b) optimizing the structure and meta parameters of the NN represen-

tations. To assess improvements in performance we used the traditional metric for evaluating NN

performance, cross-validation error, where the training dataset D replaced by the validation dataset

V in evaluating the RMSE formula, Eq. (33).

For this study we use data from the CP model to train the stress and flow TBNNs. In particular,

we collect data using 3 tension and 6 simple shear loading modes averaged over 570 random textures

for each of the 10 polycrystalline realizations. As mentioned in the Methods section, we give

ourselves access to the (average) plastic state variables of the CP simulations and so we train the

stress and flow TBNNs independently (and not simultaneously). Fig. 2 and Fig. 3 shows typical

training data for the 13 stress and IF flow representations (refer to Table 2 and Table 3) with 3 x 4

and 5 x 8 NNs, respectively. The left columns show the tension response and the right columns

show the shear response. The upper panels show the (input) invariants and the (output) coefficient

functions. In general, the inputs and outputs are smooth and correlated, and all coefficient functions

contribute. The notable exception is the stress model in shear, only the coefficient function of the
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linear basis element ee appears to contribute. Note that all invariants are arguments to each

coefficient function. Note in Fig. 3 the zero invariant, tr a 0, that becomes noise upon the input

scaling described in Sec. 3.2. Apparently, the NN training learns to ignore this input since the

outputs are smooth and regular. The lower panels show: (a) the correspondence of the model

(lines) and the data (points), and (b) the error as a function of strain. The errors for each of the

components are of comparable magnitude and tend to have an irregular pattern in the elastic region

of the loading. Note that with a CO activation function (e.g. , the Rectifying Unit a(x) = max(0, x))

we observed distinct scallops and cusps in error curves (not shown for brevity). Also it is remarkable

that the errors of the flow model in shear are distinctly linear.

These results are typical for a wide range of NN structures and (meta) training parameters.

Fig. 4 shows the cross-validation errors of the stress and flow (scaled by ST and spp , respectively)

using the full representations 13 and IF (refer to Table 2 and Table 3, respectively). As Schwartz-Ziv

and Tishby [33] remark, trying to interpret the behavior of network from a single training tends to

be meaningless; hence, we evaluate parametric and structural changes with an ensemble of at least

30 replicas models Mk E .A4 in this and the following studies. (The replicas are obtained by using

different random seeds to produce the initial weights and thresholds.) The insets show that the

(initial) learning rate can have a strong effect on the errors, but once a small enough (< 10-3) rate

is selected the final errors are relatively insensitive to this parameter. The main panels show the

typical trends in error ranging from under-representation (too small a network) to over-fitting (too

large a network).4 For the stress TBNN, N = 4 nodes appears to be an optimum even for relatively

shallow networks (N < 4) but the optimal number of nodes is relatively insensitive for L > 4.

The flow TBNN shows analogous behavior but with a trade-off between nodes and layers, e.g. for

L > 6, N = 4 appears to be best, while N > 4 is better for shallower networks. These findings

are somewhat obscured by the noise in the trend lines, which persists despite using the average of

150 replica networks. Also, the convergence window (described in Sec. 3.2) is an important meta

parameter. We obtained these results with a 4 iteration convergence window, a longer convergence

window (e.g. 10 iterations) shifts the best cross-validation to smaller networks (but also induces

larger variance in error between replicas). Since we want reliable error from the each replica, we

4As mentioned, we require that in the training procedure that the error on the training D and the testing T data

be comparable as failure to achieve parity in the errors is indicative of bad predictions and over-fitting.
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use a 4 iteration convergence window throughout the remainder of this work. Lastly, we do not

believe cross validation is sufficient for determining completeness of network; however, these results

indicate that optimal number of nodes is less than the number of input invariants for flow but greater

than this matrix rank-based criterion for the stress representation. Apparently, with respect to the

training data, the NN is compressing the input for the flow network. We conjecture that the NN is

forming lower dimensional set of (alternate) invariants internally.

Fig. 5 shows cross-validation error for the CP training data for various basis representation of

the stress and flow functions, refer to Table 2 and Table 3 for the definition of the labels. For the

stress TBNNs, all (overall) errors are comparable with the exception of the component-based rep-

resentation and the one term El representation (with tensor basis B = { ee}). Clearly, the El basis

is not sufficient since it akin to a one parameter Navier model of stress. From the results of the two

truncated bases, 12 and ID, it appears that correlated inputs, B = {I, ee} (I2), train comparably to

linearly independent inputs, {I, dev ee} (ID, which uses a volumetric/deviatoric split). Also, the up-

per panel of Fig. 5a shows that the representations without embedded satisfaction of the zero-stress

at zero-strain constraint, Eq. (12), generally violate this constraint by about 1% of the maximum

stress. For the flow TBNNs, all (overall) errors are comparable with the exception of the reduced

scalar and tensor basis representation sl. Also the other reduced representations (R3,R1,T3,T1)

achieve slightly higher errors than the full representations (UF,IF,IR,SF,DS,DS,DR,DZ) albeit with

reduced variance. The consistency of the representations with the zero-flow-at-zero-stress condition

Eq. (12) generally follows whether powers of b are included or not. Clearly, cross-validation based

on this limited dataset is not sufficient for decisive model selection but it does eliminate some repre-

sentations. Clearly the component-based representations, Eu and CM, display higher errors, larger

variance in the performance and poor zero-input-zero-output results. Beyond the fundamentally

different functional representation, these models are likely suffering from an insufficiency of data to

learn the necessary properties accurately, as demonstrated in Ref. [44]. Lastly, as discussed in the

Theory section, we have embedded a number of properties in the representations, e.g. symmetry,

deviatoric flow, dissipation, and, generally, the violation of the learned properties is on par with

what we illustrate with the zero-stress and zero-flow conditions.

In preliminary studies we also trained networks with different inputs and outputs. In general, the

cross-validation errors were comparable over a variety of choices, for example using a symmetrized

— 1Mandel stress for the driving stress input to the flow rule. We considered the rate Cp of the
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inverse of the plastic right Cauchy-Green deformation tensor Cp = FpTFp (as in Simo and Hughes

[72, Ch. 9]) as the output of the flow rule and obtained similar cross-validation (and prediction)

performance. Also noteworthy, we employed both the elastic and the full left Cauchy-Green stretch

tensors as history inputs and the full Cauchy stress as a driving stress input. These inputs resulted

in similar cross-validation albeit for when we paired the elastic Cauchy-Green stretch with the

highly correlated Cauchy stress we observed slightly higher errors (and less variance among the

errors).

Fig. 6 and Fig. 7 show the response of the NN coefficient functions to tension and shear, for

stress and flow, respectively. In the plots, each coefficient is scaled according to Eq. (37) so that

coefficient functions of higher order terms can be plotted on par with those of lower order terms.

First, we notice that the E3 basis achieves zero-stress at zero-strain satisfaction exactly at the

expense of a more complex, larger magnitude per component response than 13, as the higher order

term ee apparently needs compensation by the component functions, refer to Eq. (21). Also, we

see more evidence that the truncated representations, 12 and ID, have almost indistinguishable

response despite ID having a linearly independent tensor basis. For the flow representation we

only compare the DZ and T1 representations for clarity. Note that T1 is much simpler in form

(one tensor basis element versus ten) than DR, which has a complete basis, and its response is

simpler while achieving comparable cross-validation error to DZ. Also evident from both tension

and shear response, DR builds similar response to T1 by letting all/most components contribute.

Also significant, the coefficient of cr2, C2, is essentially zero throughout the shear trajectory but not

the tension, which implies that the NN may not be learning dissipation is an important property.

This is in contrast with the DR representation (not shown) where the corresponding coefficient is

essentially zero for both tension and shear. For both the stress and flow models, the coefficient

responses generally resemble the trends in the stress and flow data, with large changes up to the

elastic-plastic transition at strain > 0.002 and then relatively constant. This is consistent with the

expectation that in fully developed plastic flow (in a constant direction with negligible hardening)

the elastic state and the plastic flow are constant.

4.2. Validation

Our validations studies include tests of: (a) completeness of representation and training data,

and (b) robustness to perturbation/continuity.
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scalar tensor

Ei3 component [ee],3 component e 0 e3

I3 full { tr ee, tr e, tr e2 } full {I, ee, q}
E3 full { tr ee, tr q, tr .2} full, shifted fee, q,.D.
12 full ftr ee, tr q, tr eD. reduced {I, ee}

ID full { tr ee, tr q, tr q} reduced, independent {I, dev ee}

El full ftr ee, tr q, tr en reduced {ee}

Table 2: Stress representations

As we already have indications that a training set composed of only tension and shear may be

insufficient, we computed the (E3) TBNN and (E,3) component-based NN stress models' response

to biaxial stretch ee = Elle 1 el + €22e2 0e2. Fig. 8 shows that the model responses are significantly

different away from the training data, the limits of which are denoted by the blue box outline on

the contour plots.5 In particular, the component model does not give a symmetric response and

both models have regions of negative stress (for positive stretch) and particularly large stresses.

To further investigate how much data and what variety of data is needed sufficiently train the

constitutive models we employed the simple VP underlying model to generate data for loading

modes that are symmetric and monotonic: F(t) = t EL, Azei In particular, the training

datasets D, , the components of F, Ai for n trajectories (of 100 state points each), were uniformly

sampled on the 2-sphere (using minimum energy points [89]) and the testing dataset T consisted

of 10 trajectories given by random samples on the 2-sphere.6 Fig. 9 shows the change in accuracy

of the model relative to a random sample test T set and the information gain with increasing the

size of the training Dn dataset. The decreasing errors in Fig. 9a,b with more training indicate

completeness of the representations. The decreasing errors in Fig. 9a,b with more training suggests

completeness of the representation, and the slightly higher rate of convergence for the larger network

indicate the complexity of the underlying function. Also the variability of the models is decreasing

with more data, which gives context for the variability of the models trained only with the CP

5Note, simple shear F(t) = I+ aei e2, with stretches csc(-yt)±tan(ryt), forms a rectangular hyperbola in stretch

space.

6Note the uniform sampling points nest, in the sense that a larger set Dm contains all the points of a smaller set

Dn, m > n.
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CM component basis

UF full: {tr b, tr b2, tr b3, tr s,trs2,trs3,trsb,trsb2,trs2b,trs2b2}

unsymmetric,full: {I, b, s, b2, s2, bs, s2b, bs2}

IF full: {tr b, tr b2, tr b3, tr s,trs2,trs3,trsb,trsb2,trs2b,trs2b2}

full: {I, b, s, b2 , s2 , sym bs, sym s2b, sym bs2}

IR no tr s: {tr b, tr b2, tr b3 , tr s,tr s2,trs3,tr sb,trsb2,trs2b,trs2b2}

full: {I, b, s, b2 , s2 , sym bs, sym s2 b, sym bs2 }

SF full {tr b, tr b2, tr b3, tr s, tr s2, tr s3,trsb,trsb2,trs2b,tr s2b2}

shifted, full {b, s, b2, s2, sym bs, b3, sym s2b, sym bs2}

SR no tr s: {tr b, tr b2, tr b3,tr s, tr s2,trs3,tr sb,trsb2,trs2b,trs2b2}

shifted,full: {b, s, b2, s2, sym bs, b3 , sym s2b, sym bs2}

DS full: {tr b, tr b2, tr b3, tr s, tr s2 , tr s3, tr sb, tr sb2 , tr s2b, tr s2b2}

deviatoric,shifted,full: {dev b, dev s, dev b2 , dev s2, dev sym bs, dev s3, dev sym s2b, dev sym bs2 }

DR no trs: {trb,trb2,trb3, tr s2, tr s3, tr sb, tr sb2, tr s2b, tr s2b2}

deviatoric,shifted,full: {dev b, dev b2 , dev s, dev s2, dev s3, dev sym bs, dev sym s2b, dev sym bs2 }

DZ no tr s: {tr b, tr b2,trb3, tr s2, tr s3, tr sb, tr sb2, tr s2b, tr s2b2}

deviatoric,dissipative: {dev s, dev s2 , dev s3, dev sym bs, dev sym s2 b, dev sym bs2 }

R3 full: {tr b, tr b2, tr b3, tr s, tr s2 , tr s3, tr sb, tr sb2 , tr s2b, tr s2b2}

reduced, dissipative: {s, dev s3}

R1 full: {tr b, tr b2, tr b3, tr s, tr s2 , tr s3, tr sb, tr sb2 , tr s2b, tr s2b2}

reduced, dissipative: {s}

T3 no trs: {trb,trb2,trb3, tr s2, tr s3, tr sb, tr s2b, tr sb2, tr s2b2}

reduced, dissipative: {s, s3}

T1 no trs: {trb,trb2,trb3, tr s2, tr s3, tr sb, tr s2b, tr sb2, tr s2b2}

reduced, dissipative: {s}

S1 reduced: {tr 13}

reduced, dissipative: {s}

Table 3: Flow representations sym has I (zero error) is dev has tr a (noise invariant) has bp in tensor basis full scalar

basis
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Figure 2: Stress training data: (a) tension and (b) shear stress evolution with strain for CP model. Top panels:

scaled input invariants. Second panels: scaled trained tensor basis coefficient functions. Third panels: stress T

response (lines: model, points: data). Bottom panel: error as function of strain scaled by sT.

data. The decrease rate is relative slow (nx, where n is the number of curves that each contain

100 points) but the variability in response is also decreasing with more data.

To measure of how much information has been gained by training the NN (relative to its un-
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Figure 3: Flow training data: (a) tension and (b) shear flow evolution with strain for CP model. Top panels: scaled

input invariants. Second panels: scaled trained tensor basis coefficient functions. Third panels: flow Dp response

(lines: model, points: data). Bottom panel: error as function of strain scaled by spp .

trained state), we use the Kullback-Leibler (KL) divergence:

(TID
gi(D.) = f 13(7113n) log

P 
p(T)

n)d 
y3

(41)

evaluated with the assistance of standard kernel density estimators. Here D7, is a training set,
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Figure 5: Error as a function of representation for (a) stress, (b) flow for CP data. Errors are scaled by sT and spp,

respectively. Refer to Table 2 for stress representations and Table 3 for the flow representations.

T is the independent test data, and p(71,0,) is the probability density function (PDF) of the

predictions yj using an ensemble of models Mk E M and the (fixed) data inputs xj, j indexes state

and prescribed strain, and p(T) p(T1D0). In Fig. 9c,d we see that: (a) both the stress and flow

models are steadily differentiating themselves with increased from their untrained state, (b) the

largest changes appear to occur in the initial increases in training data and yet KL convergence is

not reached, and (c) the stress is gaining more information from the low strain data and the flow
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Figure 7: Flow Tensor basis coefficients in shear and tension using DZ and T1 bases.

model is gaining the most information from the post-yield data, which is physically intuitive.

As a prelude to studying the dynamic stability of our plasticity TBNN model, we test the TBNN

formulations sensitivity to noise by randomly perturbing the inputs by 1% using the CP training

data. As Fig. 10 shows, the output variance for most of the models is on-par with the input variance,

the exceptions being tied to the presence of the noise invariant tr o. Clearly, pruning ill-conditioned

invariant is crucial for stability.
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Figure 8: Stress response of component and TBNN E3 models to biaxial stretch. Note blue box outlines limit

of tension and simple shear training data.

4.3. Prediction

Generally speaking, errors in prediction of the proposed TBNN plasticity models come from

errors in the elastic model, those in the flow rule, and those engendered by the integration scheme.

We integrated the rate given by training data to tune the tolerances of the integration scheme and
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model and the convergence rates are reported in terms of number training sets (not number of state samples).

ensure the integrator error is negligible.

In Fig. 11 we show Lyapunov-like stability tests using a E3(3x 4)/T1(5 x8) TBNN model trained

on a D64 dataset from the known closed form VP model. First, we perturb the initial conditions

of state Fp(0) for a random loading mode F(t) and compare the response of the underlying model

(gray lines) to that of a TBNN model (colored) to this ensemble of initial conditions. The TBNN

response is on par with that of the true model albeit with a distinct bias toward higher stress.

Second, we compare the same models with a Fp(0) = I initial condition but with an imperfect

stress model enacted by perturbing the Youngs modulus E. Here again, the TBNN response is on

par with the true model and yet artifacts in the trajectories are clearly present. Third, we repeated
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the first investigation with at TBNN with both a ML flow and a ML stress model. The results

are largely similar to the response of the TBNN with the true stress model albeit with additional

artifacts in trajectories. Lastly, we explore the sensitivity of the trajectory errors to flow model

network size. Fig. lld show that the trajectory errors for the flow model trained on VP data are

relatively insensitive to the NN dimensions. Also since variance of the results does not increase

with time the errors are apparently primarily due to the stress representation. The inset of Fig. lld

demonstrates the necessity of sufficient variety of training data. Here we plot the fraction of the

models that reach double the training strain stably. Apparently, training on at least 25 dataset is

necessary to achieve robust predictions.

Lastly, we return to models trained on the tension and shear CP data Fig.12. Fig.12 shows

the predictions of a TBNN 3x4 E3 stress model with NN flow models of various sizes. Fig. 12a,b

demonstrate that the predictions are essentially self consistent with the training data. Also the

fanning out of the trajectories is generally consistent with accumulation of errors from integrating

an inaccurate model. It appears that as the plastic flow develops non-smooth transitions occur

that make the trajectories jump to paths neighboring the true/training path. Fig.12c,d show

the results for bona fide predictions: (c) illustrates a combined simple shear and tension loading

mode, [F (On = (1 + t), [F(t)]21 = 1/2t, and the other directions have traction-free boundary

conditions; and (d) illustrates a non-monotonic tension then compression mode at a different rate,
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[F(t)]11 = (1 + 3t) for t E [0, 0.02] and [F(t)]11 = (1.06 - 3t) for t E [0.02, 0.06]. For these modes the

results are considerably less stable, especially in the mixed tension-shear mode which points to the

stress model being the main issue (as discussed in the previous section). Even the tension phase of

the non-monotonic loading leads to decreased stability and accuracy compared to the tension only

case, apparently due to the change in strain rate. Lastly, in these modes none of the larger 5x 12

network flow models tested were stable, which gives more evidence that the main issue is a lack of

variety in the training data.
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Figure 11: Lyapunov bundle of trajectories for models on VP (known model) data: (a) a perfect stress model and a

NN flow model with perturbed initial conditions, (b) imperfect stress models (modulus E random) and a NN flow

model, (c) a NN stress model and a NN flow model with perturbed initial conditions. (d) ensemble of NN stress

and NN flow models. Deviation is with respect to an unperturbed trajectory, gray lines: exact model, colored lines:

TBNN. Inset of (c) shows the fraction of the models that reach the double duration of the training data as a function

of the amount of training data.
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5. Discussion

In this work we generalized the TBNN framework to fully take advantage of classical repre-

sentation theory. By embedding constraints and properties directly in the formulation the NN for

stress and plastic flow we were able to reduce the amount of training required for valid models

compared to current component-based NN models. The constraints of plasticity phenomenology

and the trade-offs between learning and embedding them lead to a variety of models and hence a

model selection process. We showed that that traditional cross-validation errors are not sufficient

for the down-selection process and, for example, stability with respect to perturbation needs to be

31



considered for a viable model. We also illustrated the fact that, given limited data, the formulations

are insensitive to a number of variable, in particular the selected functional inputs. Using a known

underlying data model, we demonstrated that the enhanced TBNN framework can provide robust

and accurate predictions given sufficient data. Lastly, we demonstrated that tension (and shear)

experiments are likely insufficient to fully train NN model, as formulated in the TBNN framework

or via a component formulation that generally displayed worse performance.

In future work we will develop an implicit time integrator based on derivatives of the neural

network and explore means of obtaining sufficient variety of training data from experiments, for

example using digital image correlation to obtain full-field data.
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