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1. Formation of 3D Carbon Scaffolds 

 

2. Physical Properties of 3D Carbon Scaffolds 

 

3. Conversion to few-layer 3D Graphene 

 

4. Application: Non Enzymatic Glucose Sensor 

 

5. Application: SERS Substrate 
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Synthesis Route to Amorphous Carbon: 

Pyrolysis of Organic Polymers 
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Interferometric Lithography 
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Burckel et al, JVST B, 28, C6P14 (2010). 



Sub-Micron 3D Resist Patterns 

Via Interferometric Lithography 
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Raman Spectroscopy of Pyrolyzed Resist 

1622 cm-1 

1591 cm-1 

1367 cm-1 

1344 cm-1 

J. Non Cryst Solids 396 (2001) 36-43 

Comparison To 

Literature Values 

HOPG 

Disordered 

C 



Nearly Atomically Smooth Surface 

Ultra small, uniform NP formation 
Smoothness of bare carbon –  

no preferential nucleation sites  

Burckel et al, Small, 5, pp2792-2796 (2009). 
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Modification of Carbon Scaffold: PVD 
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3D Carbon Electrodes 

Burckel, et. al. “Lithographically defined porous carbon electrodes,” Small, 5, 2792-2796 (2009). 
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Enhanced Mass Transport 
(Fluidic Impact of mm Pores) 

Xiao, et. al. “Increased mass transport at lithographically defined 3D porous carbon 

electrodes,” ACS Applied Materials and Interfaces, 2, 3179-3184 (2010). 
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Non-Limiting Hydrogen Electrosorption 
(Gas/Fluid Phase Impact of Hydrophobicity) 
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Xiao, et. al. “Nonlimiting hydrogen electrosorption properties of asymmetric palladium nanoparticle-

modified porous carbon electrodes,” Electroanalysis, 24, 153-157 (2012). 



Spoerke, et. al. “Rapid thermal pyrolysis of interferometrically patterned resist,” Carbon, 50, 2894-2898 (2012). 
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3-D Few-Layer 

Graphene 

Xiao et al, ACS Nano, 6, pp. 3573-3579 (2012). 



Chemical Conversion to Graphene 
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Xiao et al, ACS Nano, 6, pp. 3573-3579 (2012). 



SEM Images of 3D Graphene 



Confirmation 3D Graphene: XPS 

X-ray photoelectron spectroscopy – surface measurement technique 



3D Graphene: Micro-Raman 



Xiao, et. al. “Three dimensional nickel-graphene core-shell electrodes,” J. of Mat Chem, 22, 23749-23754 (2012). 
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Nickel-Graphene Composite Scaffolds 
(Morphology vs Electrochemical Performance) 



Hierarchical Nano-Microporous Au-C 

Sattayasamitsathit, et. al. “Highly ordered tailored 3D hierarchical nano-microporous Au-C architectures,” J. of Mat Chem, 22, 11950 (2012). 



Pd Nanoparticles : Effect of Dep Time 
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Sattayasamitsathit, et. al. “Highly ordered multilayered 3D graphene decorated with metal NPs,” J. of Mat Chem A, 1, 1639 (2013). 



Superconducting Film Properties 
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Cobaleda, et. al. “Superconducting properties in Ta decorated 3D graphene and 

carbon structures,” APL, 105, 053508 (2014). 
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3-D Carbon Electrode 

Application: 

Non-Enzymatic Detection of 

Glucose 

Xiao et al., Biosensors and Bioelectronics, 26, pp 3641-3646 (2011) 



Why is Glucose Oxidation Important? 
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Electrodeposition of Pd Nanoparticles 
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Xiao et al., Biosensors and Bioelectronics, 26, pp 3641-3646 (2011) 
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Linear scan voltammograms of Pd/Porous in 0.1 M NaOH + x M glucose. Pd deposition: 100s, 
Scan rate: 20 mV/s. 

1.28 mM 
1.60 mM 
1.92 mM 
2.56 mM 
3.20 mM 
3.84 mM 
5.12 mM 
6.40 mM 
7.68 mM 
8.96 mM 

Electrode Response to Glucose Additions 
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Potential was cycled hundreds of times without noticeable 

current decay – SEM images indicate no change in Pd particles. 



Plots of corresponding current and peak potential vs. glucose concentration. Pd 
deposition: 100s, Scan rate: 20 mV/s (A) and typical amperometric response of a 
Pd/Porous towards successive additions of glucose in 0.1 M NaOH with continuous 
stirring. The inset figure shows the current-concentration relationship (B).  
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Xiao et al., Biosensors and Bioelectronics, 26, pp 3641-3646 (2011) 



Response of 3mM glucose in the 

presence of 0, 0.1, 0.2, 0.4 and 0.6 

mM ascorbic acid 

Electrode Response vs Ascorbic Acid 

B A 

0 

0.4 mM 

Typical ascorbic acid concentration in blood - ~0.1mM 

0, 0.1, 0.2, 

0.4 and 0.6 mM 



3-D Carbon Electrode 

Application: 

Surface Enhanced Raman 

Scattering (SERS)  

Sensor Platform 

Xiao et al, Chem. Commun., 47, pp. 9858-9860 (2011). 
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Xiao et al, Chem. Commun., 47, pp. 9858-9860 (2011). 
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Sputtering coats bottom side too! 

Xiao et al, Chem. Commun., 47, pp. 9858-9860 (2011). 



SERs Signals for 3 Organic Molecules 

planar carbon with  

sputtered Ag islands x 100 

Only a 4x increase 

in surface area between 

planar carbon and 3D carbon with 

identical sputtering times. 

Increase in signal not 

due to surface area. 

Xiao et al, Chem. Commun., 47, pp. 9858-9860 (2011). 
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• Lithographically structured pyrolyzed carbon provides a path toward 

    leveraging inherent physical properties of elemental carbon in  

    technologically relevant applications. 

 

• Lithographically patterned carbon structures can be modified either 

electrochemically or through PVD to create a variety of sensor platforms. 

 

• 3D amorphous carbon can be converted to 3D few layer graphene chemically 

 

• Demonstrated 10 mm detection limit for glucose with fast response times (~5s 

95% response). 

 

• Demonstrated SERS platform with spatially homogeneous enhancement factor of 

~ 5x109. 
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3D Graphene From Nickel Foam 

Chen et al. Nature Materials, 10, pp 424-428 (2011) Cao et al. Small, 7, pp 3163-3168 (2011) 



Lithographically Patterned Carbon 



Electrode Characterization –  

Pd Catalytic MeOH Oxidation 
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Cyclic voltammograms of Pd/Porous at variable Pd loading in 0.1 M 
NaOH + 5 mM glucose. The dashed line is from Pd/GC for comparison. 
Scan rate: 20 mV/s.   
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3-D Resist Structure 


