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Silicon Photonics At Sandia
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Outline

1. Formation of 3D Carbon Scaffolds

2. Physical Properties of 3D Carbon Scaffolds
3. Conversion to few-layer 3D Graphene

4. Application: Non Enzymatic Glucose Sensor

5. Application: SERS Substrate o




Faces of Carbon

sp3 bonds
Diamond

&

Hardest material

Good abrasive
Electrical insulator
Good thermal conductor
Optically transparent

Images from Wikipedia

Amorphous

* Highest elemental melting point
(sublimes at ~3900K)

* Forms ~ 10 million different compounds

* Resistant to acids, bases and all but the
strongest oxidizers

iologically compatible

sp? bonds
Graphite

One of the softest materials
Good lubricant
Electrical Conductor

Tunable DC Conductor Can act as thermal insulation
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Synthesis Route to Amorphous Carbon:
Pyrolysis of Organic Polymers

Organic Polymer =» Pyrolysis =» Amorphous Carbon
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Visual History and
Properties of Pyrolyzed Resist

-
£

w———1985———
] Resistivity 2004

J ElectroChem Society 147 (1277-282(2000)
11.8 mg

-
(]
I

=
A

Residual
Weight

104

RESISTIVITY (Ohm ~-cm)

=]

e
L

Residual Weight of the Sample (mg)
L= <]

l6mg

o-d A A A 4 A i i d ol A
] 200 400 600 800 000

J. NonCryst Sol. 70, 99-109 (1985)

(]

0 200 400 600 BOO 1000 1200 1400
Temperature {DC)

199 J Electro€hem Society 149 (3), E78-E83 (2002)
z 04 -
& - e .
£ Resistivity
2
2 02
@
3
0@
Electrochemical and Solid State Letter PR
W 7, (11) A435-A438 (2004)
A\ 0 T T T T
600 700 800 900 1000 1100

Adv. Mater. 9. (6) 477-480 (1997) Temperature (°C)



Interferometric Lithography
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Sub-Micron 3D Resist Patterns
Via Interferometric Lithography
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onversion of 2-D Resist Structure to
2-D Carbo ture
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Conversion of 3-D Resist Structure to
3-D Carbon Structure
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Properties of 3-D Carbon
Scaffolds




Raman Spectroscopy of Pyrolyzed Resist
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Nearly Atomically Smooth Surface

Smoothness of bare carbon —
no preferential nucleation sites

| I EHT= 500Ky WD= 3mm  Signal A=InLens

Ultra small, uniform NP formation

File Nar

Burckel et al, Small, 5, pp2792-2796 (2009).
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Electrodeposition Conditions
Impact Nanoparticle Morphology
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Impact of Carbon Hydrophobicity

3D carbon
IS hydrophobic
Deposition from Deposition from

Agqueous Solution ___Organic Solvent
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Vertical vs. Horizontal Shrinkage
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Modification of Carbon Scaffold: PVD

Pt deposition occurs ¢ Pt deposition occurs
even in non-line-of-sight throughout entire thickness
Iocatlons of scaffold

50 mm L 12 v T.:; i 000 %V S0 mm [ 12
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Pyrolyzed Carbon GaN Growth Masks
(High Temperature Stability)
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3D Carbon Electrodes

= Bare Carbon

Electrodeposited

Scaffold , Au Nanoparticles
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Enhanced Mass Transport
(Fluidic Impact of pum Pores)

. _ Electrodeposited Conducting
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Non-Limiting Hydrogen Electrosorption
(Gas/Fluid Phase Impact of Hydrophobicity)
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How Fast Can We Pyrolyze?

(Morphology vs Electrochemical Performance)

L. Electrochemical
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3-D Few-Layer
Graphene

Xiao et al, ACS Nano, 6, pp. 3573-3579 (2012).




Chemical Conversion to Graphene




SEM Images of Conversion Steps

Amorphous » | Conformal
Carbon ‘ Sputtered
| Nickel
Acidic High
Washing Mag
Of Nickel Image
3D Graphene

Xiao et al, ACS Nano, 6, pp. 3573-3579 (2012). ) Natona




SEM Images of 3D Graphene
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Confirmation 3D Graphene: XPS
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C1s
1541 Porous carbon
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—— Porous graphene
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X-ray photoelectron spectroscopy — surface measurement technigue
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3D Graphene: Micro-Raman
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Nickel-Graphene Composite Scaffolds

(Morphology vs Electrochemical Performance)
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Hierarchical Nano-Microporous Au-C
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Deposition Condition Control Over
Nanostructure Morpholog

Au Nanoparticles :
Effect of Au Conc

Pt Nanoarticles :
Effect of Pt Conc.
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Superconducting Film Properties

Resistivity
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Interferometrically Patterned Carbon
2;2 Carbon

S s W Photonics
Structured
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3-D Carbon Electrode
Application:
Non-Enzymatic Detection of
Glucose

Xiao et al., Biosensors and Bioelectronics, 26, pp 3641-3646 (2011)
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Why 1s Glucose Oxidation Important?
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Electrodeposition of Pd Nanoparticles

Xiao et al., Biosensors and Bioelectronics, 26, pp 3641-3646 (2011)Fj P'aﬁ}‘o?'a??ém



Electrode Response to Glucose Additions

um concentrations mm concentrations
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Linear scan voltammograms of Pd/Porous in 0.1 M NaOH + x M glucose. Pd deposition: 100s,
Scan rate: 20 mV/s.

Potential was cycled hundreds of times without noticeable
current decay — SEM images indicate no change in Pd particles.
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Current and Potential Response

to Glucose Concentration

Both current and peak potential
respond to glucose concentratigon
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Plots of corresponding current and peak potential vs. glucose concentration. Pd
deposition: 100s, Scan rate: 20 mV/s (A) and typical amperometric response of a
Pd/Porous towards successive additions of glucose in 0.1 M NaOH with continuous
stirring. The inset figure shows the current-concentration relationship (B).
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Xiao et al., Biosensors and Bioelectronics, 26, pp 3641-3646 (2011)
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Electrode Response vs Ascorbic Acid

Typical ascorbic acid concentration in blood - ~0.1mM

0.5 ' 0.0
E/V vs Ag/AgCI

0.5

£ |

B 0,0.1,0.2,
0.4 and 0.6 mM

-0|.5 | 0:0 | 0.5
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Response of 3mM glucose in the
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3-D Carbon Electrode
Application:
Surface Enhanced Raman
Scattering (SERS)
Sensor Platform

Xiao et al, Chem. Commun., 47, pp. 9858-9860 (2011).
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PVD Ag Scaffold Modification

Islands

Sputtered Ag (1 Ns)

| Sputtering Time
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Xiao et al, Chem. Commun 47 pp 9858-9860 (2011).




Sputtering coats bottom side too!
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SERs Signals for 3 Organic Molecules

Rhodamine 6G
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Enhancement Factor: 4-aminothiophenol

Measure # of molecules
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No Spatial Hotspots
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Conclusions

» Lithographically structured pyrolyzed carbon provides a path toward
leveraging inherent physical properties of elemental carbon in
technologically relevant applications.

« Lithographically patterned carbon structures can be modified either
electrochemically or through PVD to create a variety of sensor platforms.

3D amorphous carbon can be converted to 3D few layer graphene chemically

» Demonstrated 10 mm detection limit for glucose with fast response times (~5s
95% response).

» Demonstrated SERS platform with spatially homogeneous enhancement factor of
~ 5x10°.
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~ 3D Graphene From Nickel Foam

Intensity (a.u.)
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Chen et al. Nature Materials, 10, pp 424-428 (2011)
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Lithographically Patterned Carbon
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Electrode Characterization —

Pd Catalytic MeOH Oxidation
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Electrode Response vs Pd Particle Size

1

Pd deposition
10s
20 s
40 s
80s
160s

j/ mA.cm’

0:5 | 010 | -0'.5
E/Vvs SCE
Cyclic voltammograms of Pd/Porous at variable Pd loading in 0.1 M

_— Glassy Carbon

NaOH + 5 mM glucose. The dashed line is from Pd/GC for comparison.

Scan rate: 20 mV/s.
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