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Megaamps, Megagauss and Megabars:
Using the Sandia Z Machine to Perform Extreme
Material Dynamics Experiments
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Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the United States
Department of Energy’s National Nuclear Security Administration under contract DE-AC04-94AL85000.
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« Jean-Paul Davis, Dan Dolan, Seth Root, Jim Asay, Clint Hall, Ray

Lemke, Matt Martin, Ryan McBride
— Experimental design, data analysis

 Mike Desjarlais, Thomas Mattsson
— Quantum Molecular Dynamics (QMD) calculaions

 Jean-Paul Davis, Ray Lemke, Heath Hanshaw, Matt Martin, Tom

Haill, Dave Seidel, William Langston, Rebecca Coats
— MHD unfolds, Quicksilver simulations, current analysis

 Jean-Paul Davis, Heath Hanshaw, Matt Martin, Devon Dalton, Ken
Struve, Mark Savage, Keith LeChien, Brian Stoltzfus, Dave

Hinshelwood
— Bertha model, pulse shaping

* Dustin Romero, Devon Dalton, Charlie Meyer, Anthony Romero,

entire Z crew...
— Experiment support

 LANL: Rusty Gray, Dave Funk, Paulo Rigg, Carl Greeff

A — Ta samples and equation of state
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Z has been used to address several interesting

i problems in the multi-Mbar regime
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2 Typical stripline load for multi-Mbar ramp
fixd F compression experiments on Z
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> Fully self-consistent, 2-D MHD simulations required
xwd H to accurately predict experimental load performance
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I Success requires integration of theoretical,

B computational, and experimental capabilities
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High-Stress Isentropic compression platform
— Tantalum: solid squeezed to two-fold compression

High-Velocity plate-impact platform

— Quartz: redefinition of a high pressure standard

Examples of interplay between experiment and theory

— Beryllium: evolution of the phase diagram

— Melting of diamond: existence of a triple point along the Hugoniot
— Water: support for a cooler Neptune core

Future directions
— Development of a double shock plate-impact platform
— Cylindrical implosion technique for ramp compression

@ Sandia National Laboratories
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2D deformation effects are much more
significant for coaxial geometry. Stripline
geometry provides much better lateral
uniformity

target
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% However the stripline geometry introduces additional
|5 complexities due to 3D current flow at the load

@ Sandia National Laboratories
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Design issues are handled through several iterative

2 1.D and 2-D MHD simulations
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The dc conductivity has dropped by a factor
of 25 for a factor of 4 drop in density

Note the pronounced separation
into liquid and void (vapor) regions

Conductivity calculations were performed
over a broad temperature and density regime
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, 1D MHD provides B-field needed on the anode
e i surface and evaluation of shock and reverberation
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Agreement between simulation
and experiment at the ~1% level
can be achieved
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*" Independently triggerable gas switches provide the
L2552 varlablllty necessary for pulse shaping
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High-Stress Isentropic compression platform
— Tantalum: solid squeezed to two-fold compression

High-Velocity plate-impact platform

— Quartz: redefinition of a high pressure standard

Examples of interplay between experiment and theory

— Beryllium: evolution of the phase diagram

— Melting of diamond: existence of a triple point along the Hugoniot
— Water: support for a cooler Neptune core

Future directions
— Development of a double shock plate-impact platform
— Cylindrical implosion technique for ramp compression

@ Sandia National Laboratories



With proper pulse shape and design the anode can

. 3 be launched as an effective high-velocity flyer plate

Anode/Flyer Plate

AN

R

/

Target

000N OOOOOOO

() sandia National Laboratores



Projectile Velocity km/s

12.0

10.0

=
=)

6.0 |-

4.0 |

2.0 -

0.0

2250 2500

=y
=

1
=

g
=}
Surface Velocity (km/s)

Time (ns)
Time (ms)

pre— 2 \ 3

2 Two-Stag

= Light G
- ~ Gu

o Propellant
- 2 Gun

o Air-G

10

Air Gun &
§ Propellant Gun
| Il Ll } (e |

| HII Ll |

Two-Stage
Light-Gas Gun

L 1 11
103 104 10°
Peak Acceleration, g

plate velocity (km/s)

30

- Energy required to "
25 launch the plateis  magnetic field *

i ~50 times the energy o
20 - required to vaporize .

- the plate .
15

10 {
5 / three-stage
two-stage

0 | IIIIIIII | IIIIIIII | IIIIIIII | IIIIIIII | IIIIIIII L1l L1llll

8 6 7 3 9 10

10 10 10 10 10 10 10

peak acceleration (g)

Peak pressures approaching 6 Mbar and peak
accelerations of 101° g used in launching of the
flyer plate — must control energy deposition

11

@ Sandia National Laboratories

R}

2



Current (MA)

Measured load current Measured flyer velocity

20 [

-y
()]
™1

-—h
o
T | T T T

no current shaping P, . =2.2 Mbar

no Shaping current shaping P =4.0 Mbar

(2.2 Mbar)

with shaping

N
o
rr|rrrrrrrrt

no shaping P, =2.2 Mbar -
shaped risetime P =4.0 Mbar 4

0)

£

X (no shock)

2

.6 :
shaped % I
(4 Mbar) > I

] i

b 10|

= [

78

no shaping
(shock)

2.3 2.4 25 2.6 2.7 2.3 2.4 2.5 2.6 2.7
Time (s) x1E-6 Time (s) x1E-6

Energy sacrificed to shape current; B-field optimized with geometry.J

@ Sandia National Laboratories

Lemke. et al.. J. Appl. Phys. 98. 073530 (2005 RK)



v The stripline geometry has enabled flyer plate

45 velocities to exceed 45 km/s (over 100,000 mph)

The flyer velocity on Z has now exceeded 45 km/s —
impacts to 41 km/s have generated Hugoniot data for
quartz and sapphire to 15.6 and 20.6 Mbar,
respectively with ~1% or less uncertainty in U, and
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Composite al/cu flyer plates are also being used to
provide a well defined loading/unloading
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Improved diagnostics are enabling very high fidelity
3 measurements that corroborate flyer plate integrity
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Quartz has been used as a transparent window

4E enabling multiple flyer velocity measurements

Quartz windows
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U, residuals with respect to the Z-fit indicate

| dissociative effects extend to ~10 Mbar pressure
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¥ 2 Outline

High-Stress Isentropic compression platform
— Tantalum: solid squeezed to two-fold compression

High-Velocity plate-impact platform

— Quartz: redefinition of a high pressure standard

Examples of interplay between experiment and theory

— Beryllium: evolution of the phase diagram

— Melting of diamond: existence of a triple point along the Hugoniot
— Water: support for a cooler Neptune core

Future directions
— Development of a double shock plate-impact platform
— Cylindrical implosion technique for ramp compression

@ Sandia National Laboratories



300 eV graded-
doped Be
design:

Beryllium and diamond are being
considered as ablator materials for ICF
capsules

Capsule implosion is an inherently unstable
process

Goal is to avoid any heterogeneities that
may seed instability growth during
implosion
— Understanding the melt properties of the
ablator material is critical

CVD grown, polycrystalline diamond
samples supplied through LLNL (both
microcrystalline and nanocrystalline)

Diamond studies resulted in a request for a
delay in the shutdown for the Z upgrade

@ Sandia National Laboratories
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Sin’ko and Smirnov, Phys. Rev. B 71, 214108 (2005
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£, Experiments clearly show solid-like behavior at low

| stresses and a liquid-like behavior at higher stress
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Further QMD study suggests a new picture for the

| phase diagram of Be and an hcp-bcc transition
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Several chemical picture
models for diamond
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222 Relatively large flyer plates enabled multiple,

| redundant measurements increasing accuracy

~— C targets (500, Quartz (or
750, and 1000 um)  gapphire) windows
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« Both the three and four
piece fits indicate
significant changes in
slope at ~9.1 and ~10.85
km/s

« Both suggest the onset of
melt just below ~700 GPa

* The three piece linear fit

would suggest completion
of melt below 900 GPa

— ~200 GPa below the
saturation in reflectivity

* The four piece fitis
consistent with Bradley, et
al. and suggest a TP at
~860 GPa
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» The breakpoints of the
four segment fit are in
excellent agreement
with those predicted by
QMD

» The slope of each
segment is also in
excellent agreement
with the slopes predicted
by QMD

« This level of agreement
strongly suggests the
presence of a higher
pressure solid phase of
carbon above ~860 GPa
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Modeling by

N. Nettelmann .
superionic wate

5400 K
7 Mbar

Previous models predicted for the core
Teore = 8000 K: Zharkov & Trubitsyn (1978)
Teore = 7000 K: Stevenson (1982)

From R. Redmer
Univ. of Rostock

Neptune and Uranus contain
about 10-15% C (in CH,):
High-pressure triple point
predicted in carbon between
diamond-bc8-liquid phases at
850 GPa and 7500 K

A.A. Correa et al., PNAS 103, 1204 (2006)
M.D. Knudson et al., Science 322, 1822 (2008)
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% Recent water Hugoniot data on Z consistent with
. QMD calculations — supports new Neptune model

Omega data
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QMD Hugoniots

QMD Reshock Hugoniot
QMD Isentropes
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High-Stress Isentropic compression platform
— Tantalum: solid squeezed to two-fold compression

High-Velocity plate-impact platform

— Quartz: redefinition of a high pressure standard

Examples of interplay between experiment and theory

— Beryllium: evolution of the phase diagram

— Melting of diamond: existence of a triple point along the Hugoniot
— Water: support for a cooler Neptune core

Future directions
— Development of a double shock plate-impact platform
— Cylindrical implosion technique for ramp compression

@ Sandia National Laboratories
N
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Al /Au/ Cu
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Impedance
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Low Impedance
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() sandia National Laboratores

62



—_— — —
o N +
| 1 1

Velocity (km/s)
)} oo

4 -

2 -

Al/Au/Cu

Quartz

VISAR

0
1250

D

1350

1450 1550
Time (ns)

T

1650

T

1750

() Sandia Natonal Laboratores



These data will also help constrain the fall-off of the

§ current pulse for future experiment design
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Be Liner Z-Pinch Implosion Two-frame 6151 eV x-ray radioqraphy

y I(y)

Abel inversion yields liner density vs. r

ljdln[[(y)/lo] dy
KT * dy \/y2_r2

p(r)=— K = opacity

() sandia National Laboratores
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Ensemble of radiographs and Lagrangian hydro

] equations used to calculate total pressure in liner

Liner Density vs. R (m; = 10 mg)
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- Technique has been successfully demonstrated on

'| Be to ~2.5 Mbar, with promise of higher stress

Measured / Simulated Density Pressure vs. Density
and Pressure vs. R (Be Lmer ICE)
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Z has been used to address several interesting

problems in the multi-Mbar regime
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« Jean-Paul Davis, Dan Dolan, Seth Root, Jim Asay, Clint Hall, Ray

Lemke, Matt Martin, Ryan McBride
— Experimental design, data analysis

 Mike Desjarlais, Thomas Mattsson
— Quantum Molecular Dynamics (QMD) calculaions

 Jean-Paul Davis, Ray Lemke, Heath Hanshaw, Matt Martin, Tom

Haill, Dave Seidel, William Langston, Rebecca Coats
— MHD unfolds, Quicksilver simulations, current analysis

 Jean-Paul Davis, Heath Hanshaw, Matt Martin, Devon Dalton, Ken
Struve, Mark Savage, Keith LeChien, Brian Stoltzfus, Dave

Hinshelwood
— Bertha model, pulse shaping

* Dustin Romero, Devon Dalton, Charlie Meyer, Anthony Romero,

entire Z crew...
— Experiment support
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