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Molecular Dynamics of Octane
In a Gas Liquid Solution
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FIG. 1. The pressure dependence of the viscosity® (4) and the
diffusion constant of octane compressed by helium (o) and argon

(0).

Il. EXPERIMENTAL

A. Instrumentation

The NMR relaxation measurements were performed
on a Bruker SXP wideband spectrometer with a Varian
V-3800-1 high resolution magnet. Operating frequencies
were 90 and 14 MHz for the hydrogen and deuterium
nuclei, respectively.

The pressure vessel was constructed of a beryllium -
copper alloy, Berylco-25. Inside this vessel, the ociane
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178 COMMUNICATIONS

to NMR circuitry

Ground plane

FI1G. 1. A sketch of the semitoroidal coil showing the oppositely wound sections connected in parallel and
the necessary slot in the ground plane. A coordinate frame labeling scheme is also shown.

E. Fukushima of Los Alamos National Laboratory holds mode! of coil that enhances remote
sensing capability of NMR devices.






29Si nuclear magnetic resonance study of plasma-polymerized*
hexamethyldisiloxane®

R. A. Assink, A. K. Hays, and R. W. Bild
Sandia National Laboratories, Albuquerque, New Mexico 87185

B. L. Hawkins
Colorado State University, Fort Collins, Colorado 80523

(Received 29 April 1985; accepted 16 May 1985)

angle spinning and cross-polarization techniques (MAS/
CP). *°Si NMR is expected to be a sensitive probe of the film
structure since the siloxane moiety
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Sol-Gel Structure and Kinetics
Bruce Kay, Jeff Brinker

Si-(OCH,),

SiOR + HO — SiOH + ROH (1)
SiOH + SiOH —Si-O-Si + H0 (2)
SiOR + SiOH — Si-O-Si + ROH (3)

The *°Si spectra were recorded at 39.6 MHz on a Chemagnetics console
interfaced to a General Electric 1280 data station and pulse programmer. The
silicon-free probe and 20 mm polytrifluorochloroethylene sample tubes were
purchased from Cryomagnetics. The 4.7 T wide bore magnet was constructed
by Nalorac Cryogenics. From 4 (during the early stages of the reaction) to 64
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Figure 3. The #Si NMR spectrum of an acid-catalyzed tetramethoxysilane (TMOS) sol-gel
which has reacted for 1 hour.
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The experimental results are also shown.
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Figure 1. The 15 possible nearest neighbor functional group distributions in a silicate sol-gel.

Q? simulation components

Figure 4. The 2Si NMR spectrum of an ammonia catalyzed TEOS sol-gel reacted for 24 hours.
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“Therefore, we can draw the conclusion that long-term expaosure to
high magnetic fields has no known harmful physical effect’”



Density Profiles of a Draining Foam by
Nuclear Magnetic Resonance Imaging

R. A. Assink
Sandia National Laboratories
Albuquerque, NM 87185

A. Caprihan, E. Fukushima
Lovelace Medical Foundation
Albuguerque, NM 87108
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Figure 4. Experimental density profiles of a draining
foam vs. those predicted by a basic foam model
for drainage times of: a) 20 s; b) 15 min; ¢) 30
min; d) 50 min; and e) 90 min.



Power-Law Relaxation of Spin-1 Nuclei in Solids *

R. A. ASSINK, M. B. BOSLOUGH, AND R. T. CYGAN

Sandia National Laboratories, Albuquerque, New Mexico 87185

Received April 5, 1993; revised June 22. 1993

JOURNAL OF MAGNETIC RESONANCE, Series A 106, 116-118 (1994)
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S.A. Myers - R.T. Cygan - R.A. Assink
M.B. Boslough

29gi MAS NMR relaxation study of shocked Coconino Sandstone

from Meteor Crater, Arizona

Phys Chem Minerals (1998) 25:313-317
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Intercalation of molecular species into the interstitial sites
of fullerene

Roger A. Assink,” James E. Schirber, Douglas A. Loy, Bruno Morosin, and Gary A. Carlson
Sandia National Laboratories, Albuquerque, New Mexico 87185

(Received 10 January 1992; accepted 20 April 1992)

J. Mater. Res., Vol. 7, No. 8, Aug 1992
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need to be kept un-
der moderate pres-
sure to prevent
leakage.

“Perhaps a more
interesting applica-
tion 1s to separate
gases,” he says. Hy-
drogen, for example,
diffuses into a bucky-

Buckyball crystals might

 be useful for storing or

separating gases. Comput-
er graphics show a crystal
in which oxygen molecules
(red) are trapped in the
spaces between buckyball
molecules (green).

The spaces between buckminsterfullerene molecules, or
“buckyballs,” can accommodate molecules of oxygen or
hydrogen. As a result, scientists think buckyballs could be
useful in storing, releasing or separating gases.

a2y

Buckyball

Gas
molecule

Source: Sandia National Laboratories

..........................................................................................................................................................................................

The New Yort Tmes

‘Buckyballs’ as Filters:



Researchers Give
Fullerenes Gas

The Buckminsterfullerene talent
show seems destined for a long run.
The material’s latest trick, a re-
markable ability to sop up and store
lots of gas molecules selectively,
was revealed at Sandia Na-
tional Laboratories in New
Mexico, when NMR
spectroscopist Roger
Assink performed
aroutine analy-
SIS On C6O
crystals
car-
marked
as polymer
ingredients.

A minor peak
in Assink’s NMR
spectrum showed con-
tamination in the crystals.
The culprits were oxygen mol-

ecules, which had snuggled into
about 1% of the octahedral voids

that form between Cg, molecules
when thev nack into crvstals.

SANDIA

Science 256, 1 May 1992, p 611



Polymer Degradation

Insulation of Control Cables In
Nuclear Power Plants

. Condition Monitoring
- Degradation Mechanisms & Prediction
- Oxygen Consumption

Ken Gillen, Mat Celina, Todd Alam,
Dan Mowery, Robert Bernstein,
Roger Clough, Doug Harris



Condition Monitoring
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Figure 1. Normalized values of the tensile elongation

and 'H NMR relaxation times as a function of aging time
in days at 95°C.
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Figure 4. The 'H spin-echo decay curves of unaged
HTPB and HTPB aged for 14, 36, and 63 days at 95°C.
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Figure 5. Dependence of the '"H NMR T, as a function
of the solvent:sample ratio.
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Figure 6. The 'H NMR relaxation times of HTPB swollen
in CDCI, as a function of aging time and temperature.
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Figure 10. A comparison of the 'H spin-echo decay
curves of EPDM for 8 scans of a 10 mg sample and a
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Degradation Mechanisms (& Predictions)

Polyethylene

Selective 13C Labelling

crystalline amorphous
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Figure 1. 13C MAS NMR spectrum of unaged 13C-polyethyl-
ene showing the crystalline and amorphous components of the
main chain. SSB = spinning sideband.
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Figure 2. 3C MAS NMR spectra of *C-polyethylene y-ir-
radiated for 7 days at 25 and 80 °C. Resonances corresponding
to ketones, acids, esters, hydroperoxides, and alcohols are

identified.
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Figure 3. Distribution of functional groups vs irradiation time
at (a) 25 and (b) 80 °C. The percents shown represent the
percent carbons associated with each degradation species
compared to the total carbon population.



Polypropylene

31%
- - - 13 - -
CHs; FH3 F;H;;
[
+~C-CH,+  TC —‘-’tsz +  T-CYeH
_H ln L H e%l, LH In
C(2) C(1,3) C(1)
labeled labeled labeled
Scheme 1.
Table 1

Relative carbon-13 abundances® of chain carbons in selectively
labeled PP materials

PP material CH CH, CH;

C(1) 1.0+0.2 96.7+0.5 23403
C(1,3) 0.9+0.1 68.34+0.7 30.8+0.6
C(2) 98.5+0.3 0.8+0.1 0.8+0.1

“Determined with high-temperature, solution '*C NMR
spectroscopy. Samples of the PP powder were dissolved in
1,2,4-trichlorobenzene at 130 °C.
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868 D.M. Mowery et al. /| Radiation Physics and Chemistry 76 (2007) 864-878

Table 2
13C Resonances of oxidation-induced functional groups observed in solid-state NMR spectra of selectively labeled polypropylene

samples

13C chemical shift (ppm) Oxidative functional group PP position of Aging conditions
origin observed*
CH3 CH3 & o
~215 (broad) e C=C=Cnr in-chain ketone C(1) / 80 DC)
- ¥ (109°C)
HoH
~207 (broad) (|3H3 * methyl (chain-end) cQ) 7 (24°C, 80°C)
“’"g“ﬁ"ﬁ“CH:i ketone Y (22°C-109 °C)
20
CH3 o
~185 (broad) mé_c_é_ OH carboxylic acid C(2) y/ (24 OC)
H H, .C.) Y (22°C)
CH3 o o
~179 (broad) SRAG I o *_ ester C(1 Y (24 C’ 80 C)
v 96 OR 5 Y (22°C, 109°C)
CHy
w~C-C-C-0R ester
H Hz g 24°C, 80°
CHs Y (22°C-109 °C)
~~C=-C-C-00R perester
H H g
4
A OQ-C-Q v ketal
2 C(l) o o
_ 7 (24°C, 80°C)
- ral
100117 (several peaks) ) ' (22°C109°C)
~0-C-0OH hemiketal
3
CHj3
~HoC —*'c—Csz tertiary hydroperoxide
! o Q
3 OOH 7 (24°C, 80°C)
85.3 CQ2) J (22°C-109°C)
HsC -*é—O—O—*C—CH:; dialkyl peroxide
3 3
CH3 [} o
” i . 7 (24°C, 80°C)
74.2 ~vH,C _*CI:‘CHz” tertiary alcohol C(2) S (22°C-109°C)
OH

*y = exposure to y-radiation in air; ¥ = exposure to y-radiation in 24 °C argon followed by post-irradiation thermal aging in air.
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Radiation Sterilization - Not
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Fig. 9. Comparison of the kinetic accumulation of tertiary
peroxide groups in solid C(2)-labeled polypropylene samples
exposed to y-radiation (240kGy) in 24 °C argon followed by
post-irradiation thermal aging in air () versus samples
thermally aged in the absence of y-radiation (M), at two
different aging temperatures, (a) 80 °C and (b) 109 °C.



Oxygen Consumption
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Fig. 5. (a) Curve fitting with two processes for PP [12], (b) relative
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Correlate Oxygen Consumption
to Physical Properties

Suppose
1 month @ 160°C
50% reduction in elongation
1% gain in Oxygen content

1 months @ 25°C
0.05% reduction in elongation
0.001% gain in Oxygen content
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Fig. 1. The respirometer recording of the oxygen deficit trace of 0.207 g carbon
filled natural rubber that has been aged for 16 h at 80 °C.
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Fig. 2. The respirometer recording of the oxygen deficit trace of 1.07 g
polyurethane foam that has been aged for 555 h at 23 °C.
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