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Why Cross-section Control?

 Mode-selection

 Polarization control

 Beam-shaping

Top-Down Technique for Nanowire Fabrication

Experimental Setup

Summary

• The ability to precisely control the cross-section of nanowire lasers offers 
interesting advantages, such as mode selection, polarization control, and 
beam shaping.

 GaN nanotube lasers : Annular emission

 Rectangular GaN nanwire lasers: Linear polarization with controlled 
polarization direction

GaN epitaxial film               EBL patterning                            ICP Etch                   AZ400K wet etch

Structure 1: GaN Nanotube Lasers 
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(a) The SEM image and (b) scheme of the cross-section of the as fabricated
GaN nanotube laser. CCD images of the GaN nanotube laser excited (c) below
and (b) above lasing threshold

0 2x10
3

4x10
3

6x10
3

8x10
3

0.0

2.0x10
5

4.0x10
5

6.0x10
5

P
ea

k
 I

n
te

n
si

ty
 (

C
o

un
ts

/s
)

Pump power (kW/cm
2
)

350 355 360 365 370 375 380

10
2

10
3

10
4

10
5

10
6

In
te

ns
it

y
 (

C
o

un
ts

/s
)

Wavelength (nm)

7100kW/cm
2

4900 kW/cm
2

1800 kW/cm
2

0
30

60

90

120

150
180

210

240

270

300

330
0

30

60

90

120

150
180

210

240

270

300

330

366 368 370 372 374

0

1x10
3

2x10
3

3x10
3

4x10
3

5x10
3

6x10
3

In
te

n
si

ty
 (

C
o

u
n

ts
/s

)

Wavelength (nm)

 = 80
o

 = 170
o

(a)

(b)
(c)

(a) Light-light curve and (b) spectra of the
GaN nanotube laser. when the GaN
nanotube is excited over a pump power
density of approximately 4500 kW/cm2, the
peak intensity increases with a much larger
slope as the pump power density increases,
implying that stimulate emission dominates
and the nanotube is excited above lasing
threshold.
(c) Peak intensities of the lasing peak groups
versus polarization angle. The two groups
show different polarization property,
indicating multi-mode lasing.

(f)

Simulation results of the GaN nanotube laser: Transverse
mode profile of (a) “solid” mode and (b) “hollow” mode,
Far-field pattern of (b) the “solid” mode and (b) the “hollow”
mode, and (e) the far-field pattern of multi-transverse
modes. (f) shows the CCD image of the far-field pattern of a
GaN nanotube laser.
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Structure 2: Rectangular GaN nanowire laser
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The asymmetric cross-section of the rectangular nanowire
laser breaks the degeneracy. The “y polarized transverse
modes” are cut-off. Only the “x polarized transverse modes”
survive.
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