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Introduction Results * Supercurrent in a long junction: L=2 pm
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Topological superconductivity could be realized in a 2D quantum | |
spin Hall insulator (QSHI) with proximity to conventional s-wave | | | Fig. 3: (top left) -V, (middle left) dV/dl vs |, and (bottom left) d\'//dl.vs V at 90 mK a.nd zero f|g|d for the
junction. These figures clearly demonstrate a supercurrent region in near zero excitations. (right) dV/dl vs |

SupercondUCtors' | _ _ traces at 90 mK for different magnetic fields. From bottom to top, field increases from -15 mT to 230 mT.
| | Curves are shifted vertically for clarity.
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Topological superconductor can host Majorana Fermions.

’ ive in high fields: ~1T
+ InAs/GaSb quantum well is a 2D QSHI. Supercurrent can survive in high fields: p H_
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Fig. 4: Magnetic field dependence of R at T = 30 mK. (left) R(H) traces at fixed dc | excitations. Curves are

| | i shifted vertically for clarity. (right) A contour plot of R(H, I) based on data in left panel. The lower central

° = 14 e — | black colored area shows the supercurrent region. Critical current values (I. ) from dc I-V measurements at
given H fields agree with the supercurrent region in the contour plot. |_* (green symbols) and -I_ (red
symbols) are absolute critical value of positive and negative excitation currents, respectively. A hand-drawn

white line outlines the lobes.
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oy s R L * Supercurrent can survive at high temperatures: T.=1.16 K

Fig. 5: Temperature dependence of |-V in zero field. (left) Each |-V trace at a given temperature includes
both up and down current scans. Curves are shifted vertically for clarity. (right) Inset: |-V trace at 141 mK is
shown as an example to demonstrate the definition of I_and |, which are critical current and retrapping
current, respectively. Main plot: Temperature dependence of I_and I. . Solid line shows a fit based on
proximity effect for high temperature data (T > 400 mK).

Fig. 1: (left) Energy band structure of InAs/GaSb quantum well bilayer. (right)
Theoretic calculations demonstrate the Dirac cone structure in energy band
where the quantum well width is at critical values. Figures credit: (left) Liu,
et. al., Phys. Rev. Lett. 100, 236601 (2008). (right) K. Chang, unpublished.

Experiment

* InAs/GaSb quantum well wafers were grown by Molecular beam Conclusions

epitaxy (MBE) technique.

A tantalum-InAs/GaSb-tantalum (superconductor-
nonsuperconductor-superconductor) junction was fabricated at
the CINT clean room on a wafer with critical guantum well

width.

Electrical transport measurement was performed in dilution
refrigerators at T=30 mK and 90 mK.

(a)

InAs 2 nm

AlSb 50 nm

GaSb 5 nm

InAs 10 nm

AlSb 50 nm

Substrate and buffer layers

T(K)

Fig. 2: (left) Layer structure of the Ta-InAs/GaSb-Ta junction. (center) Optical
image of the sample. Two terminal electrical transport measurement setup is
overlayed on top of the image. | and V are current sources and voltage
meters, respectively. (right) Resistance versus temperature (T) of the junction
shows a superconducting transition at T.=1.5 K.
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Induced supercurrent in a LONG S-N-S junction.

Both bulk and edge channels of the bilayer may attribute to the induced
superconductivity.

Supercurrent can be preserved in this junction in a surprisingly large
temperature and magnetic field parameter space.

Strong spin-orbital interaction, transparent junction interface, and long
mean free path (~ 800 nm) could be the reasons for such giant
supercurrent states.

Induced superconductivity can be enhanced by applying a small
magnetic field.
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