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• Topological superconductivity could be realized in a 2D quantum 
spin Hall insulator (QSHI) with proximity to conventional s-wave 
superconductors.

• Topological superconductor can host Majorana Fermions.

• InAs/GaSb quantum well is a 2D QSHI.

Fig. 1: (left) Energy band structure of InAs/GaSb quantum well bilayer. (right) 
Theoretic calculations demonstrate the Dirac cone structure in energy band 
where the quantum well width is at critical values. Figures credit: (left) Liu, 
et. al., Phys. Rev. Lett. 100, 236601 (2008). (right) K. Chang, unpublished.

• InAs/GaSb quantum well wafers were grown by Molecular beam 
epitaxy (MBE) technique.

• A tantalum-InAs/GaSb-tantalum (superconductor-
nonsuperconductor-superconductor) junction was fabricated at 
the CINT clean room on a wafer with critical quantum well 
width.

• Electrical transport measurement was performed in dilution 
refrigerators at T=30 mK and 90 mK.

Fig. 2: (left) Layer structure of the Ta-InAs/GaSb-Ta junction. (center) Optical 
image of the sample. Two terminal electrical transport measurement setup is 
overlayed on top of the image. I and V are current sources and voltage 
meters, respectively. (right) Resistance versus temperature (T) of the junction 
shows a superconducting transition at Tc=1.5 K.

Fig. 3: (top left) I-V, (middle left) dV/dI vs I, and (bottom left) dV/dI vs V at 90 mK and zero field for the 
junction. These figures clearly demonstrate a supercurrent region in near zero excitations. (right) dV/dI vs I 
traces at 90 mK for different magnetic fields. From bottom to top, field increases from -15 mT to 230 mT.
Curves are shifted vertically for clarity.
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• Supercurrent in a long junction: L=2 m

• Supercurrent can survive in high fields: 0Hc ~ 1 T

• Supercurrent can survive at high temperatures: Tc = 1.16 K

Fig. 4: Magnetic field dependence of R at T = 30 mK. (left) R(H) traces at fixed dc I excitations. Curves are 
shifted vertically for clarity. (right) A contour plot of R(H, I) based on data in left panel. The lower central 
black colored area shows the supercurrent region. Critical current values (Ic ) from dc I-V measurements at 
given H fields agree with the supercurrent region in the contour plot. Ic

+ (green symbols) and -Ic
- (red 

symbols) are absolute critical value of positive and negative excitation currents, respectively. A hand-drawn 
white line outlines the lobes.

Fig. 5: Temperature dependence of I-V in zero field. (left) Each I-V trace at a given temperature includes 
both up and down current scans. Curves are shifted vertically for clarity. (right) Inset: I-V trace at 141 mK is 
shown as an example to demonstrate the definition of Ic and Ir , which are critical current and retrapping
current, respectively. Main plot: Temperature dependence of Ic and Ir . Solid line shows a fit based on 
proximity effect for high temperature data (T > 400 mK). 
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• Induced supercurrent in a LONG S-N-S junction.

• Both bulk and edge channels of the bilayer may attribute to the induced 
superconductivity.

• Supercurrent can be preserved in this junction in a surprisingly large 
temperature and magnetic field parameter space.

• Strong spin-orbital interaction, transparent junction interface, and long 
mean free path (~ 800 nm) could be the reasons for such giant 
supercurrent states.

• Induced superconductivity can be enhanced by applying a small 
magnetic field.
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