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What Are FRP Composites? () i

Laboratories

= Composite material: “Composite materials are materials made from two or
more constituent materials with significantly different physical or chemical
properties, that when combined, produce a material with characteristics
different from the individual components.” (Wikipedia)

= Matrix Material = Reinforcement Styles
» Thermoplastics = Continuous Fiber
= Epoxies = Woven Fibers
= Vinylesters = Chopped Fibers
= Carbon = Particulates
= Metals Continuous Fibers Discontinuous Fibers, Whiskers

= Concrete

= Reinforcement Material
= Carbon
= Glass
= Aramids (Kevlar)
= Polyethylene

= Cellulose

=  Aluminum

= Boron
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General Composite Properties () e

Laboratories

= Highly conformable during manufacturing process
= Composite materials do not yield
= Very fatigue resistant

= Age based one humidity conditions
= Can absorb up to 2 wt% water

= Corrosion resistant, except for carbon and
aluminum via galvanic corrosion

= Not sensitive to most standard chemicals
= Solvents, oils, hydraulic fluids, grease

= Have low to medium impact resistance

= Better fire resistance than light alloys

CFRP panel after 20 Joule
impact
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Material Performance Comparison () s

Laboratories

Material Steels Al12024 | Ti6Al4V | Carbon/ Glass/ Kevlar/ Boron/
Epoxy! Epoxy! Epoxy Epoxy?

Density 7800 2800 4400 1530 2080 1350 1950
[kg/m?]

Spec. Elastic

Modulus 26.3 26.8 23.9 87.6 21.6 63.0 107.7
[MPa]/p

Poisson
Ratio

0.3 0.4 0.3 0.25 0.3 0.34

Spec. Tensile
Strength 205 161 273 830 601 1044 718
[kPa] /p

Spec. Comp.
Strength 397 220 739 289 207 1333
[kPa] /p

CTE.
[ppm°C]

Temﬁ,&‘m“ 800 350 700 90 90 90 90

13 22 8 -1.2 7 -4 5

1Fiber Volume Fraction = 0.6
2Fiber Volume Fraction = 0.5



Usage of Fiber-Reinforced Composites () &

Laboratories

= Over the past 50 years, increased usage of composite materials

M"ﬁw .:.chg.

gt r R"n"‘;
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Military aircraft

Naval structures Wind turbine blades CFRP cable stay bridge




Boeing 787

Sandia
National
Laboratories

=  Composites
= Predominantly CFRP

= Fuselage
= Wings
= GFRP for certain lower-load
bearing and impact resistant
applications

= Benefits
= Weight savings
= Fuel savings
= Higher fuselage hoop strength
= Higher cabin pressure in-flight
= Higher humidity
= No corrosion, except Al to CFRP
= Larger windows

Other

B Carbon laminate i Steel 50,

[ carbon sandwich 10%

M Fiberglass Titanium

B Aluminum 15% Composites

50%
] Aluminum/steel/titanium pylons Aluzrgi:;um
Boeing 787 material composition
(Boeing)

7th Asia Pacific Summer School on Smart Structures Technology | July 5%, 2014



Laboratories

Boeing 787 Wing Flex () s

Ultimate-Load ~26ft

1G Flight ~12ft

Cn-Ground 0 ft

COPYRIGHT © 2010 THE BOEING COMPANY Smith, T-April-2011, ESASI-Lisbon | 7

7th Asia Pacific Summer School on Smart Structures Technology | July 5%, 2014 7 of 78




Boeing 787 Wing Flex () s

Laboratories

Boeing 787 wing on the ground Boeing 787 wing at cruising altitude (~34,000 ft)
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Boeing 737 Wing Flex () s

wereny

= ,".,....,.-.-af\-egev ’.

Boeing 737 wing on the ground Boeing 737 wing on the ground
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Space Structures () i

= Benefits
= Low CTE
= High temperature gradients in
space

= Weight reduction

= Increased cargo capacity

= Tailorable mechanical properties

Spaceship Two mounted on White Knight Two

= Tailorable thermal properties (Scaled Composites)

= Conduct heat from hot to cold side
of spacecraft

= Typical composite materials
= Carbon fiber/epoxy
= Carbon fiber/phenolic
= Kevlar fiber/epoxy

James Webb Space Telescope carbon fiber
backplane (Hexcel)

7th Asia Pacific Summer School on Smart Structures Technology | July 5%, 2014 10 of 78




c o Sandia
Civil Structures @ priid..

= Benefits = Typical composite materials
= Corrosion resistance = Glass fiber/epoxy
= Fatigue resistance = Carbon fiber/epoxy

= Conformable fabrication

Totally Tubular
A technology that uses fiber-reinforced COMPOSITE GRAVEL
plastic arches filled with concrete may be DECKING FILL
a solution for replacing some of the | L
nation's deteriorating bridges.

' 2
W, ;
. £/ ¢ y :
CONCRETE \ /4 , -.I | v | %

“r | 3 £ | {4 ;

Workers applying GFRP warp to concrete column
(Department of Transportation)

e
>

Carbon fiber/glass fiber bridge construction in Pittsfield,
Maine (NY Times
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Wind Turbines () i

Laboratories

. Structural Carbon
]
Benefits UD Laminate
= Tailorable laminate properties Sandwich-Foam Adhesive Getgot
PVC Glass TX
= Cheaper (E-glass) LE Band l
= No corrosion l

= Low maintenance

Adhesive Sandwich-Foam

PMI Glass BX Adhesive
\SEE 2 = 7 Sandwich-Foam Structural Carbon
Y PVC Glass TX UD Laminate
Adhesive Source: Gamesa Technology Corp. & Sandia National Laboratories

Cross-section of a Gamesa G87/G90 wind turbine blade
(Gamesa / Sandia National Laboratories)

= Typical composite materials
= Glass fiber/epoxy (current)

= Carbon fiber/epoxy
= Reinforcement for GFRP

= Entire construction

Vestas turbine blade mold
MIT Tech Review
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Composite Damage Modes () i

Laboratories

= Susceptible to damage due to:

= Strain, impact, chemical
penetrants, multi-axial fatigue

};@Jé“&@
= Damage modes: f&*‘:h*j;": ";;-"»
= Matrix cracking s | AR
" Fibel‘-bl‘eakage Visual inspection ' C-SCAN ultrasound 1mage
= Delamination CFRP panel after 20 Joule impact

= Transverse cracking

= Fiber-matrix debonding
= Matrix degradation

= Blistering

=  Difficult to detect
= Internal to laminate structure
= Nearly invisible to naked eye

= Current methods are laborious
Aircraft ultrasonic inspection (Composites World)
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SHM Design Considerations () i

Current NDE limitations:
= Labor intensive
= Expensive equipment
= Structures must come out of service

= Experience technician required to
interpret results

o :-?1: !-'I-'- “ -
SRS E s

.~

-

Boeing 787 (Boeing)

Laboratories

Successful SHM systems:

1.

O LN

Directly detect and measure damage
Determine the damage location
Ascertain the size of the damage
Quantify the severity of the damage

Achieve multi-modal sensing
capabilities (i.e., delamination, cracking,
and chemical penetration)

Golden Gate Bridge (Wikipedia)
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Fiber Optic Sensors () s

Optical Fiber _,|A|<_ n,

= Light-based method

= Reflection/refraction of light used
for sensing

() ]:IZZZZZZZZ :; 1
Fiber Core o,

Core Refractive Index

=  Sensors : s
= Fiber bragg gratings '
= Strain/temperature Spectral Response 2,
. P P P
= Brouillon sensors m If_\/\ ‘ /\
* Strain/ temperature Input 4 Transmitted 4+ Reflected 4
* Plain Explanation of a fiber bragg grating sensor
= Crack detection (Wikipedia)
Benefits .‘.'.gg:..ooooo.
= Embeddable ..0:::’.::::::.
T . el p @@ @9
= Radiation insensitive o0 0009/ ..:'o.::
i i TX XD 000!
g ?I};gh density of sensors along one 1390 o0 0o : Seel
1ber ° °
000388000000

Density/refractive index changes that cause

Brillouin scattering (Wikipedia)
- __ ____
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Embedded Fiber Optics () i

Layup composite with embedded
optical fibers

=  Positives

= Sense damage/strain internal to
composite
= Resin cure monitoring
= Temperature distribution
= Residual stress field from cure .
= Ne gatives SEM image of embedded optical fiber in GFRP composite
» Fiber diameter <100 microns leads (Epsilon Optics)
to decrease in fatigue performance
= High stress concentration where
fiber enters composite

= Leads to easily fiber fracture

FBG sensors network
FBG optical fibers embedded in rocket motor GFRP
structure (2008 X. Chang et al.)
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Acoustic Emission

Sandia
National
Laboratories

= Approach

= Piezoelectric sensor
applied/embedded to composite

=  Monitor for emission of sound
from damage event

=  Characteristic of emission used to
determine damage type

=  Positives

= C(Canlocalize and characterize
damage event
= Negatives
= Constant monitoring at high data
rate to detect damage events

= Equipment can be bulky and
expensive

= Getting a lot better

2. AMPLIFICATION R

Preamplifiers Acquisition system

3. AQUISITION
AND STORAGE

+-

4. DISPLAY |}

1. DETECTION

e

< [

o
[B==" A}

m—

SEM image of embedded optical fiber in GFRP composite
(Mistras Group)

Rise

Volts Time

\’/ Energy

Amplitude

L _ L LN L _ Threshold

\.U”UU T

UWUUHUUWUU““ Time
Threshold

i

Duration

SEM image of embedded optical fiber in GFRP composite
(TMS)

Counts

Time
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Ultrasonic-based sensing () i

Laboratories

= Approach

= Propagate a stress wave across the
structure using piezoelectric

= Wait for response at same or other
sensor

= Analyze for spatial and damage

< e Acellent’s Smart Layer ultrasonic sensors
characteristics

(Acellent Technologies)
= Positives

= Rapidly maturing field
= Sensitive to many damage modes
= (Canlocalize damage
= Negatives
= Data acquisition and amplifiers can

be bulky

= Recent efforts have reduced
hardware significantly

Metis Disk ultrasonic-based sensors
(Metis Design)
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Embedded Sensing via CNT Thin Films (@)%

Laboratories

PART I PART II PART III
Development of carbon nanotube- Embedded nanocomposite strain From point-sensing to distributed
based nanocomposites for multi- sensors for glass fiber-reinforced sensing using sensing skins
modal sensing polymer composites

"él% WS N
. SANDIA 5,0 kV RK4p.

10 20

15
7' [kQ]

1. Harness unique material 3. Deposited thin films on FRP for 5. Electrical impedance tomography for
properties of carbon nanotubes strain sensing spatial conductivity mapping

2. Layer-by-layer “bottom-up” 4. MWNT-latex multi-modal 6. Distributed spatial damage sensing
thin film multi-modal sensor sensor via spray deposition based on sensing skins

design
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Carbon Nanotubes (M) i

=  Multi-walled carbon nanotubes (MWNT):

= Rolled concentric cylindrical structures constructed of graphene sheets
= Diameter: 6 ~ 100 nm

= High-aspect ratios: ~10°to 107

= Metallic conductivity

= Five times stiffer and ten times stronger than steel

Aligned carbon nanotube forest TEM imagery of an end cap of a MWNT
Thostenson, et al. (2001) Harris (2004)
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Layer-by-Layer (LbL) Method () i

Laboratories

= Sequential assembly of oppositely-charged nanomaterials onto a charged
substrate
= Bottom-up fabrication methodology
= Incorporation of a wide variety of nanomaterials
= 2.5-dimensional nano-structuring to design multifunctional composites
= Excellent physical, mechanical, and electrical properties:
= Physical: homogeneous percolated nano-scale morphology
= Mechanical: high strength, stiffness, and ductility

2. Negatively-charged
monolayer
MWNT-PSS

1. Positively-c
monolayer
PVA, PANI,

DI Water

0. Negatively-chafged
substrate
GFRP composile

7th Asia Pacific Summer School on Smart Structures Technology | July 5%, 2014 21 of 78



Laboratories

Nanocomposite Morphology () i

= Mechanical strength and electrical conductivity/sensing derived from percolated
thin film morphology

= Homogeneous composite with similar properties across entire film
= Scanning electron microscopy (SEM) imagery to evaluate percolation and uniformity

Scanning electron microscopic (SEM) cross-section view Surface SEM image of a [MWNT-PSS/PVA],, thin film
of a [MWNT-PSS/PVA];5, thin film on GFRP

7th Asia Pacific Summer School on Smart Structures Technology | July 5%, 2014 22 of 78



0 c Sandia
Presentation Outline () s

Laboratories

PART I PART II PART III
Development of carbon nanotube- Embedded nanocomposite strain From point-sensing to distributed
based nanocomposites for multi- sensors for glass fiber-reinforced sensing using sensing skins
modal sensing polymer composites

£
S Yo

. SANDIA 5,0 kV RK4p.

-z [kQ]

0 5 10 20

15
Z'[kQ]

1. Harness unique material 3. Deposited thin films on FRP for 5. Electrical impedance tomography for
properties of carbon nanotubes strain sensing spatial conductivity mapping

2. Layer-by-layer “bottom-up” 4. MWNT-latex multi-modal 6. Distributed spatial damage sensing
thin film multi-modal sensor sensor via spray deposition based on sensing skins

design

7th Asia Pacific Summer School on Smart Structures Technology | July 5%, 2014 23 of 78



Laboratories

Strain Sensitivity Validation () i

=  Objective:
= Validate thin film electromechanical performance deposited on GFRP
= Specimen preparation:
= Attach two conductive electrodes and composite tabs
= Nanocomposite electromechanical performance characterization:
= Apply monotonic and dynamic uni-axial tensile loading to specimens

OO ooOO
[even]en]an]an )

Agilent 34401A
6.5 Digit Multimeter

Thin film on
glass fabric

[ [ T | | o [ |
eo0e [ s s [

Q
E Agilent 4294A
¢ Precision Impedance Analyzer

Fiber-coated specimen Thin film mounted in load frame Time- and frequency-domain strain sensing
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Sandia

Laboratories

Electrical Impedance Spectroscopy (EIS) ()=

= Electrical impedance spectroscopy: 3.000
= Provides greater insight as compared
e 2,500/
to bulk resistivity measurements
= Measurement of complex electrical 2,000
impedance across spectrum of S 4 500!
frequencies (40 Hz - 110 MHz) N
1,000 |
V .a') ! 7l
2@)=" Y |z L9 = 7@+ ') w0 " easurd
[(jow) Fit
7000 8500 10,000 11,500 13,000
= Physically-based equivalent circuits Z1a]
are used to fit to the impedance data C,
. 1

NN\ — - o

Proposed equivalent circuit model for LbL thin films
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Monotonic Sensor Characterization () i

Laboratories

. : C
= Load frame applies stepped-tensile |
displacement profile: = ‘
= Monotonic increasing strain to failure NVN— °
= Capture full sensors response 60,000 - VoY
P
;

= Equivalent circuit model-updating:
= Fitting with nonlinear least squares

= Extract fitted circuit parameters as a
function of applied strain

Strain [ue]

= Bi-functional strain sensitivity:
= Low strain region:

= Linear response (elastic)

= High strain region:

Normalized Component Change

* Quadratic Response
= Damage to GFRP/thin film

§ >1 /2112011 | Lens | ode | W
5:44:29 PM | Immei sion | 5.2 m

Damage forma'e e
. fepeee - . 30,000
Strain [ug]
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Sprayable MWNT-Latex Thin Film M),

= Rapid large-scale deposition
= Required for mass deployment of methodology

= MWNT-PSS/Latex paint formulation
= Collaborated to improve initial Sandia formulation

= Sub-micron PVDF creates mold for MWNT
organization

=  Off-the-shelf deposition method

wre,
J nanotube ink

i (PSS wrapped MWCNT)

L WNSTI7 ﬂ J
‘\\0\“\ 3 Uig-p

& i Kynar Aquatec™ latex solution Forms segregated
(avg. particle size 150nm) MWCNT network

sonicate with

W

7, O ©
o O
0 gene®
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MWNT-Latex Morphology () i

Laboratories

= Creation of MWNT networks:
= Electrical percolation above 1 wt% MWNTs

= Fiber-reinforced polymer deployment:
= Surface applied to post-cured composites
= Applied to fiber weaves for embedded sensing

Cross-section and MWNT network SEM images of 3wt% MWNT-Latex film
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MWNT-Latex Characterization () it

= Electromechanical characteristics:
1.6

Applied 25 BiL PSS-MWNT/PVA TF
Applied 50 BiL PSS-MWNT/PVA TF
Applied 75 BiL PSS-MWNT/PVA TF

O/ _N\A/N

" Quasi-static testing
= Nearly same sensitivity as LbL

= Bi-functional strain response
= Linear
= Quadratic

- Cracking of film ¥
:
= Thermo-resistance coupling: %
= -50° Cto80° Cover?2hours 5
= 2 hour holds ZE
= Inversely linear relationship
= Non-linear response @ -30° C
-~ ~T,ofPVDF  Eleimasas LD s sl i
= Restructuring of MWNTs
Saal, 5,000 1,000 20,000 30,500 40,000

W

Strain [pe]

Pt

o =
L
B8/

7, & o
e < o A
0 engnes
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0 c Sandia
Presentation Outline @ eberies

PART I PART II PART III
Development of carbon nanotube- Embedded nanocomposite strain From point-sensing to distributed
based nanocomposites for multi- sensors for glass fiber-reinforced sensing using sensing skins
modal sensing polymer composites

£
S Yo

. SANDIA 5,0 kV RK4p.

-z [kQ]

1. Harness unique material 3. Deposited thin films on FRP for 5. Electrical impedance tomography for
properties of carbon nanotubes strain sensing spatial conductivity mapping

2. Layer-by-layer “bottom-up” 4. MWNT-latex multi-modal 6. Distributed spatial damage sensing
thin film multi-modal sensor sensor via spray deposition based on sensing skins

design
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Spatially Distributed SHM Paradigm () &

= Current state-of-art in structural health monitoring:
* Passive SHM using acoustic emissions
= Active SHM using piezoelectric sensor/actuator pairs
= “Sensing skins” for spatial damage detection:
= Objective is to identify the location and severity of damage
= Monitor and detect damage over two- (or even three) dimensions
= Direct damage detection

(Boeing) (Boeing)
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Electrical Impedance Tomography () i

= Opverview of spatial conductivity mapping

= Since film impedance calibrated to strain, conductivity maps can correspond to 2-D
strain distribution maps

© O
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Typical EIT Reconstruction

Laplace’s equation:

= V. (G V¢) — (), where & can vary by orders of magnitude

= Governs potential and conductivity relationship

Forward problem: conductivity known, solve voltage

Inverse problem: voltage known, solve conductivity

AC

voltage
measurements

®,, = [v)..v,]

Sensing skin

|
I(w) Boun dﬁ

with inherent
a-distribution

Vio Vo Vg

Output

o-map

Yes

( Finite \
element
formulation

_J

Update

Ao No

PAUSE

Convergence?
error < 0.05%

(. N
Predicted
boundary
voltage
output
Py
\_ J
Iterate
Forward
Problem
(. )
Minimize cost
function
fo) =
Y || drerdo)-v |I°
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Linear EIT Reconstruction () i

Laboratories

= Reconstructs small 6 changes: AG ( ) ( )A V
= Typically difference imaging H WH + A‘R H 74
o V.
" 0,-0,<<0, 0 0
= Maximum a posteriori (MAP): Ao AV
= H: sensitivity matrix —=BA—
o,
H(Gbkgd )ij = ?ﬁ

= Regularization hyperparameter: A

= Noise figure
NF())= SR, <1
SNR

out

= Use representative ¢ distribution
=  W: Noise model
= R:Regularization matrix

Mormalized Conductivity Change

= Advantages:

= (Can pre-calculate H

= Many damage modes lead to small
changes in ¢
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Validation EIT () i

Laboratories

= Applied sensing measurements Current Injection Pattern
= MWNT-Latex deposited upon cured GFRP
composites 60

= 78 mm x 78 mm sensing region

40

= 8x8 electrodes scheme = 32 electrodes

= 3 mm electrodes 20

* 6 mm spacing

= Investigate stability and efficiency:
= Computational demand

= ~ 71 sreconstruction time

= Accuracy characterization:
= Conductivity:
= Point-to-point resistance map via 4-pt probe

= Spatial feature ID sensing resolution

Mormalized Conductivity Change

= ~ 6 mm cross at center with -50% Ao
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Spatial Strain Sensing () i

Laboratories

= 4-pt bending = Strain sensitivity
= ASTM D7264 = Nearly linear
= MWNT-Latex on GFRP
= Stepped displacement profile
= Tensile/compressive strain

0.8

04rm ~

Normalized Conductivity Change [%]

-0.41
re
0.8 :t::i

2 L 1 L L 1
-4,000 -2,000 0 2,000 4,000 6,000
Strain [pe]
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Embedded Spatial Sensing () e

Laboratories

. . Current Injection Pattern
= Embedded sensing architecture T

= MWNT-Latex on GF fiber weave 60
= Embedded within epoxy matrix

[\
[e)

= Specimens
= [0° /+45° /90° /-45" ], 00" 20 40 60 78
=  Unidirectional GF

= 150 mm x 100 mm
= ASTM D7146 Standard

= Anisotropic EIT
= Isotropic > Anisotropic
= Scalar » Matrix: o
" Oy >0 by~2:1

Mormalized Conductivity Error

" V-(6V$)=0
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Embedded Spatial Sensitivity () i

Laboratories

= Embedded sensing validation:
= Determine conductivity change

sensitivity
8 10
= Process:
-1
= Progressively larger drilled holes:
7 7 7 7 7 7 7 g2
ATV RV STV PR TN F R P ®
= Anisotropic EIT performed I° &
= Conductivity change from pristine t g
= k1
sample g -
6 &
e
7 <
20
-8
1 "
/16 9
0 -10
0 20 40 60 8
X [mm]
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Impact Damage Detection () i

= Drop-weight impact tests
= ASTM D7146
= 78 mm by 78 mm sensing region

= MWNT-latex on glass fiber weave
= Impact energy: 20, 60, 100, 140 ]
= Before/after EIT measurements

=  Verification:

N 1A AL o

= Thermography

= Matrix Cracking

= Delamination

= Photographic Imaging

Top Bottorm

= Surface damage

-0.5

—
—

o
Normalized Conductivity Change
pygini]|
iy
o }

—_
n

Normalized Conductivity Change

0 20 40 60 78 0 20 40 60 78
X [tm] X [trum]
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Sandia
Summary @ Netional

Laboratories

= Propose a next-generation SHM system
= Direct in situ damage detection
= Monitor location and severity of damage

= Embedding multi-modal sensing capabilities
= Development of MWNT-nanocomposites for SHM
= Characterized electromechanical response to monotonic and dynamic strain
= Response to temperature swings

= QOutline validation of EIT for damage detection
= Strain sensitivity
= Damage sensitivity
= Impact damage
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Thank You! () i

Laboratories

o Exceptional
Questions?
in the
national

interest
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