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Project Overview ) .

 Wide-bandgap semiconductors have material properties that
make them theoretically superior to Silicon for power device

applications

 Lower power loss and reduced cooling requirements would increase the
efficiency and reduce the size and complexity of power conversion
systems linking energy storage to the grid, thus reducing overall system

cost

 However, wide-bandgap materials and devices are far less mature than
their Si counterparts; many questions remain regarding their reliability,
limiting their implementation in systems

* Goal: Understand the reliability physics of SiC and GaN wide-
bandgap power switches and how it implements circuit- and
system-level performance
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Motivation and Overview for This Year’s Work ()i

For mature Si technology, most power device reliability focuses on the packaging
and thermal management

 Devices are mature and well-understood

 Manufacturing is well-controlled
For WBG materials, device instabilities due to internal charge trapping are still a
concern

 Materials are much newer

e Manufacturing in not as well-controlled

e True for both SiC and GaN, but SiC is more mature

While much progress has been made, many reliability issues remain
 Easy-to-use characterization techniques that can be employed by users of

devices are needed
e Coupling between defect physics and device design is not well understood

* Correlation between device- and circuit-level degradation is not well
understood

Our work this year had addressed these questions
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Superior Properties of WBG Materials and their ()&=
Impact on Power Conversion Systems
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Power Device Characterization Laboratory (i)

Laboratories

Facilities funded by this program

 Hot chuck capable of 600°C
operation (used for MOS
capacitor measurements,
including interfacial defect
density characterization)

 High-power test system for
evaluation of power
semiconductor switches
e 3kV,50A
 Packaged parts up to 400°C
 Wafers and die up to 300°C

* Leverages Sandia’s role as the lead DOE lab for electronics,
including significant investments in silicon (e.g. ASICs) and
compound semiconductors (e.g. solid-state lighting)
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SiC Power MOSFET Reliability (1) (&=,

A high density of SiO,-SiC interfaces states can render a power MOSFET useless
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SiC Power MOSFET Reliability (2) (@
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We have developed a technique that circuit designers can easily
use to evaluate the reliability of commercial SiC MOSFETs
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Details reported in D. R. Hughart et al., IRPS 2014 8
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We have performed an in-depth analysis that couples defect physics to device design
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LABORATORIES

GaN Power HEMT Reliability (2)
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Correlation between device- and circuit-level degradation has been demonstrated
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Summary/Conclusions  @&:.

* SiC power MOSFET reliability

 Developed an easy-to-use method that can be used by circuit designers
to evaluate the reliability of commercial SiC MOSFETSs

* GaN power HEMT reliability

* Created a physics-based model linking defect properties to device
design to explain observed degradation

 Used the model to explain an apparent discrepancy between circuit-
and device-level stress conditions, linking device physics to system
design

* SiC power JFET reliability

 Performed unbiased analysis comparing SiC JFET reliability to SiC
MOSFET reliability (not shown)
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Future Tasks ) .

Fundamental vs. process-induced MOSFET reliability
 Working collaboratively with a second MOSFET manufacturer

SiC MOS interface passivation

* Collaboration with several universities to study fundamental physics of
interfacial defect passivation

Unbiased evaluation of SiC device reliability
e Several different devices from a number of manufacturers in the test queue
Link device physics and system-level performance

 US Patent applicaton: “In-Situ Restoration of Semiconductor Switch
Characteristics”

 Working with a commercial company to implement the idea in a
compact test system that is useful to industry




FY14 Reporting of Results ) s,
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