
1
Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed 

Martin Corporation, for the U.S. Department of Energy’s National Nuclear Security Administration under contract DE-AC04-94AL85000. 

Realistically	Bad	Data
Liam Boone
September 29th, 2014

SAND2014-17776PE



2

About	Me

• Pennsylvania State University (2007 – 2012)

• B.S. in Electrical Engineering

• B.S. in Computer Engineering

• University of Pennsylvania (2012 – 2014)

• M.S.E. in Computer & Information Science

• Sandia National Labs (2012 – Now)



3

My	History	with	CIS	565

2012 - Student 2013 - TA 2014 - Guest

Power

Responsibility



4

Globe	Rendering

All world and cloud textures courtesy of NASA’s MODIS datasets



5

Motivation

• Strong need for payload agnostic simulation of real-time data

• Introduce more dynamic scene elements to allow greater 
flexibility for algorithm developers

• Current test data has static backgrounds and little to no bad 
pixels

• Would allow developers to test on realistic scenes

• Goals:

• Faster development cycles and fewer bugs in software

• Dynamically produce realistic scenes to provide developers with a 
larger library of test scenarios



6

Processing	Flow

Generate 
Rays for 

Each Pixel

Intersect 
Rays with 

Earth Model

Calculate 
Intensities



7

Generate	Rays

• Rays form a one-to-one correspondence with Pixels in the 
simulated focal plane

• Each Ray originates at the center of an idealized camera located 
at some position in space and extends through an imaginary focal 
plane located some distance in front of the idealized camera

• For this we need to know:

• Position of the camera

• Rotation of the camera (to determine where it is looking)

• Resolution of the focal plane (number of pixels wide/tall)

• Field of view of the camera

Focal Point Focal plane

Rays

Field of View
Earth



8

Sensor	Jitter

• The camera is not perfect and will move from frame to frame

• Represented as a rotation from true pointing direction

• Euler angles (Roll, Pitch, Yaw)

• Very small

• Random values sampled from N-D Gaussian distribution

• Over time the look angle will walk off from where it should be

Yaw

Pitch



9

Ray	Intersection	

• All models use simple spheres as primitives

• Straight-forward intersection routine

• Use formula for sphere (�� + �� + �� = ��) 

and ray (
�
�
�

=

��

��

��
+ �

��

��

��

) to derive an intersection point

• Boils down to a familiar quadratic equation (��� + �� + � = 0)

• Helps with computational complexity

• Code reuse

• Easy to manage



10

Earth	Model	(Simple)

• Simple Earth Model

• Two concentric spheres

• Inner sphere represents the surface of the earth

• Outer sphere is the cloud layer

• Details are represented by textures

• No height data involved

• Intensity values from NASA MODIS

• Clouds are “flattened” into one layer

• Pros

• Easy to code

• Fast

Earth

Clouds

• Cons

• Not very realistic

• Some test cases 
hard to represent



11

Earth

Clouds

Earth	Model	(Complex)

• Complex Earth Model

• Three concentric spheres

• Inner two spheres as before

• Outer sphere is the extent of the atmosphere

• Atmosphere layer contributes scattering

• Rayleigh and Mie scattering

• Must evaluate a double integral per pixel

• Wavelength dependent 

• Pros

• More accuracy

• More test cases

Atmosphere

• Cons

• Still not perfect

• Requires much 
more computation



12

Intensity	calculation

Terrain 
Reflectance

Cloud 
Obscuration

Atmospheric 
Attenuation

Noise



13

Terrain

• From the ray/sphere intersection point determine a Lat/Lon 
coordinate

• Sample from an image representing the surface of the earth to 
get the base intensity

• Sample from a binary image representing whether a given 
coordinate is water or not to get the specular coefficient

• Use simple Phong lighting model to apply diffuse and specular 
components of the sun’s light



14

Clouds

• From the ray/sphere intersection point determine a lookup 
coordinate

• Sample the cloud image to determine a cloud density value

• Use the density value to attenuate the intensity of the ground

• Can also use a second ray cast to the sun to determine if the 
clouds will cast a shadow on the surface of the earth



15

Atmosphere I

• Attenuation based on distance light travels through the 
atmosphere

• Calculated with a double integral

Attenuation Factor:

� � =
��

��

Phase Function:

� �, � =
3(1 − ��)(1 + �����)

2(2 + ��)(1 + �� + 2�	����)
�
�

Out-Scattering Function:

� �� , ��, � = 4�� � � �
�

�
��

��

��

��

In-Scattering Function:

�� � = �� � K � � �, � � �
�
� �� �,��,� �� �,��,�

�� ��
��

��



16

Atmosphere	II

• ��: Molecular density at sea level

• �: Wavelength of detectable light

• �: Angle between incident light and viewing vector

• �: Scattering parameter

• 0 for Rayleigh

• Between -0.75 and -0.999 for Mie

• ��: Scale height of the atmosphere

• ℎ: Height above surface of the earth

• �, ��: Points (see figure on next slide)



17

Atmosphere	III

��

��

�

��



18

Scattering	Results

All world and cloud textures courtesy of NASA’s MODIS datasets



19

Intensity	Calculation	(Noise)

• Shot noise
• Simulates a more grainy image

• Use a Poisson distribution centered on the pixel value

• Variable with time

• Popcorn noise
• Simulates under/over-excited pixels 

• Sample a uniform distribution and saturate or zero the pixel if the 
sample is above or below some threshold respectively

• Variable with time

• Fixed pattern noise
• Simplest noise type

• Defines a fixed pattern of dead/under-excitable pixels

• Constant over the lifetime of the simulation



20

Shot	Noise

• Knuth’s Poisson sampling algorithm:

• Can be parameterized by multiplying λ by some constant s 
before sampling and then dividing by the same constant 
afterwards

• Small values of s lead to more grainy images

• Large values of s cause the algorithm to perform slower

Def Poisson(λ):
Let L ← exp(−λ), k ← 0 and p ← 1.
do:

k ← k + 1.
Generate uniform random number u in [0,1].
let p ← p × u.

while p > L.
return k − 1.

Poisson(λ*s)/s



21

Shot	Noise

Test Pattern Noise (s=2)



22

Shot	Noise

Test Pattern Noise (s=1)



23

Shot	Noise

Test Pattern Noise (s=0.1)



24

Popcorn	Noise

• Popcorn sampling algorithm:

Def Popcorn(x, t):
Generate uniform random number u in [0,1].
If u > (1-t):

return 255.
If u < t:

return 0.
return x.



25

Popcorn	Noise

Test Pattern Noise (t=0.001)



26

Popcorn	Noise

Test Pattern Noise (t=0.1)



27

Fixed	Pattern	Noise

• Fixed pattern noise is simply a constant offset or attenuation 
applied to the whole FPA

• Simulates manufacturing defects and errors present in the 
hardware



28

Fixed	Pattern	Noise

Test Pattern Noise (Horizontal Bars)



29

All	Together

Test Pattern Noise (p=0.1, t = 0.01, Bars)



30

Terrain	Rendering



31

Overview

• Atmospherics and sensor noise are great first steps

• Good enough for some situations

• Sometimes necessary to fully model the terrain

• Need terrain data to answer questions about where mountain 
shadows lie

• Is a particular asset’s view obstructed by terrain in any way?

• Current dataset chosen is DTED level 1

• Partial global coverage

• 90m post spacing in most of the world



32

Algorithm

• Preprocess data into a chunked maximum mipmap format

• Each entry in each level of the mipmap represents the maximum 
height of the four entries in the next finer level

• A 513x513 chunk of elevation posts give a 512x512 initial level

• Generate coarser levels until one value is reached

• Chunk edges will share posts

• Ray march through the mipmap structure

• Step through progressively finer levels of the mipmap until the 
finest layer is encountered or the ray steps off of the chunk

• Intersect the ray with a bilinear patch to determine the final 
elevation of the terrain



33

Maximum	Mipmap (2D)



34

Maximum	Mipmap (2D)



35

Maximum	Mipmap (2D)



36

Maximum	Mipmap (2D)



37

Maximum	Mipmap (2D)



38

Maximum	Mipmap (2D)



39

Maximum	Mipmap (2D)



40

Maximum	Mipmap (2D)



41

Maximum	Mipmap (2D)



42

Bilinear	Patch	Intersection

• Intersect a ray 
�
�
�

=

��

��

��
+ �

��

��

��

with a bilinear surface 

� = ��� + ���� + ���� + �����

• �, �	 ∈ [0,1]

• Substitute ray equation into patch equation 
�� + ��� = ��� + ��� �� + ��� + ��� �� + ��� + ��� �� + ��� �� + ���

• Solve for t ������� �� + (����� + ����� + ������� +

������� − ��)� + ��� − �� = 0	

• Solve like sphere intersection

• Make sure to stay inside of patch bounds

• Ray can have 0, 1, or 2 intersection points



43

Results	–Maximum	Mipmap
Green channel used to indicate number of steps before surface intersection

Blue channel indicates height of terrain



44

Results	–Bilinear	Patch	Intersection
Color represents intersection position

Shading based on patch normals



45

Questions?



46

References

• Schafhitzel, Tobias, Martin Falk, and Thomas Ertl. "Real-time 
rendering of planets with atmospheres." (2007).

• O’Neil, Sean. "Accurate atmospheric scattering." GPU Gems 2 
(2005): 253-268.

• Dick, Christian, Jens Krüger, and Rüdiger Westermann. "GPU 
ray-casting for scalable terrain rendering." Proceedings of 
EUROGRAPHICS. Vol. 50. 2009.

• Tevs, Art, Ivo Ihrke, and Hans-Peter Seidel. "Maximum 
mipmaps for fast, accurate, and scalable dynamic height field 
rendering." Proceedings of the 2008 symposium on Interactive 
3D graphics and games. ACM, 2008.

• http://modis.gsfc.nasa.gov/ - MODIS Texture Data

http://modis.gsfc.nasa.gov/
http://modis.gsfc.nasa.gov/

