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Shared Resources in the Gemini Network

* 2 nodes share a Gemini router
* Routing algorithm:
« X, Y, Zin order
« Tie breaking
 Forward and reverse
routes may not be the

Interconnection same
Network:
3D Torus in )%
Each Dimension 2

n

Y

A

(Blue Waters) U

» An application may be impacted by the traffic of other applications.
» An application cannot get a measure of contention from its view alone.
* In practice, 40% variation in the messaging rate (Bhatele et al SC13).
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Architecture-Aware Mapping

= Static system topology information for allocation decisions
= Nid reordering, shape allocations — Blue Waters

= Partitioning and Task mapping by an application within its allocation

= Tools for mapping applications to architecture information. Application
provides architecture and communication info. Primarily node-level.

= Geometric Mapping based on network topology (Deveci et al IPDPS).
= Charm++ Environment: Grid and Torus topology aware mapping
approximating communication costs by hop-bytes.
* Framework for Dynamic Monitoring and Task Mapping

= Mapping based on dynamic network contention information and known
application communication patterns

= Framework provides dynamic information in architecture-aware context.

= Difficulty: determine meaningful architecture-aware measures of contention
at run-time and deliver them on actionable time-scales at scale




Sandia
’11 National
Laboratories

Framework for Providing State
Data to Applications

Samplers Aggregator Aggregator Non-LDMS
Level 1 Level 2 Applications

Or1----- - Resource
- Oracle
Host

Scotch

1sanbay
asuodsay

Components:

* Monitoring — LDMS
» Assessing and Presenting Global Dynamic Data — Resource Oracle

» Determining Task Mapping - Scotch




Monitoring: LDMS

Sampler Aggregator  Aggregator
Level 1 Level 2
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Low overhead: 2MB, 0.01%
CPU, O(100s) metrics/node

Large-scale collection: RDMA
over Gemini fan-in 16000:1

High-fidelity: O(seconds)

Complete system snapshots:

resource allocation decisions
based on a consistent global

picture

= within .25 sec on Blue Waters
27648 nodes



Congestion Measures in the Gemini

Network

U64 1 nettopo_mesh_coord X

U64 1 nettopo_mesh_coord Y

U64 6 nettopo_mesh_coord Z

U64 511796170434  X+_traffic (B)

U64 11550455465 X+ packets (1)

U64 279915898696 X+ _inq_stall (ns)

U64 53317089003 X+ credit_stall (ns)

U64 48 X+_sendlinkstatus (1)

Ue4 48 X+_recvlinkstatus (1)

U64 13 X+_SAMPLE_GEMINI_LINK_USED_BW (%)
U64 0 X+_SAMPLE_GEMINI_LINK_INQ_STALL (%)
U64 0 X+ SAMPLE_GEMINI_LINK_CREDIT_STALL (%)
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USED_BW - % of total
theoretical bandwidth on an
incoming link over the last
sample interval.

INQ_STALL - % of time the input
gueue of the Gemini spent
stalled due to lack of credits.

CREDIT_STALL - % of time that
traffic could not be sent from
the output queue due to lack of
credits.

Credit based flow control: source can
only send if it has credits




Architecture-Aware Dynamic Information: ) e,

Resource Oracle
= Build the entire route between all pairs of nodes:

" rtr --phys-routes: complete listing of routes between any 2 gemini
rtr --phys-routes:

{23,24,33,34,43,44,53,54}c0-0c0s0g0{00,01,10,11,25-27,35} ->
{06,07,16-22,32}c0-0c0s1g0{00,01,10,11,25-27,35} ->
{06,07,16-22,32}c0-0c0s2g0{00,01,10,11,25-27,35} ->
{06,07,16-22,32}c0-0c0s3g0{23,24,33,34,43,44,53,54}

" rtr --interconnect: link directions between any 2 directly connected gemini

rtr --interconnect:
c0-0c0s0g0I00[(0,0,0)] Z+ -> c0-0c0s1g0132[(0,0,1)] LinkType: backplane
c0-0c0s0g0102[(0,0,0)] X+ -> c0-0c1s0g0I02[(1,0,0)] LinkType: cable11x

= Combine the route and monitoring information to calculate
measures of congestion to characterize the entire route
between any pairs of nodes

= APl to query for static and functions of dynamic information
(e.g., Max(USED_BW)) between any pairs of nodes




Resource-Aware Task Mapping ) .

= The Scotch graph-based mapping library maps tasks to nodes while
attempting to minimize total cost of communication, account for both
message sizes and communication cost across links.

= (Pellegrini et al., LaBri, Inria Bordeaux)
= J|nput 1: Task graph (derived from the application)
= Vertices represent MPI tasks
=  Weighted edges represent #bytes communicated between tasks
= |nput 2: Architecture graph
= Vertices represent allocated nodes
= Weighted edges represent cost of communication between nodes
= Set edge weights using route characterizations from ResourceOracle
= With static metrics (HOPS), distant processors have higher weights

=  With dynamic metrics (USED_BW, STALLS), heavily congested paths between
processors have higher weights

; | O | G Weighted edges
(HOPS) incident to
e node A, similar edges

Allocated nodes in ] I |
a mesh network @ o

exist between all pairs
of allocated nodes.




EXPERIMENT:
APPLICATION PERFORMANCE

DEGRADATION DUE TO
CONGESTION

AND
MITIGATING RESPONSE



Test kernel rh) p

= Sparse Matrix-Vector Multiplication (SpMV): Ax
= Key kernel of many scientific applications

= Communication is primarily point-to-point communication to
obtain needed off-processor x values

= Task graph is determined by matrix’s non-zero pattern and
parallel distribution of matrix/vector
= Ais distributed row-wise; matching distribution of x

= For chosen matrix, each rank communicates with at most six
neighbors
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Application Allocation

= Sparse Matrix Vector Computation.

= Communication with 6 nearest neighbors
Y+
= 16 nodes, 4 ranks/node

Z+

30,31

X+

28,29 26,27

0,1

Network Dimensions: 2x2x8
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Competing Application with Network
Traffic Demands

Vi Max CREDIT STALL = 68%
Max USED BW = 61%

Z+

X+

62,63 W




Affect of Congestion on Application (@),
Performance

= Average SpMV time (sec) for 10K MatVecs:
= Without congestion: 5.07 sec
= With congestion: 6.03 sec

= Contention from competing application increases the average
execution time by ~ 20%

= Parameters:
= 10K Matvecs
= 22-44 experiments
= Each message contains 5x5x100 double precision values
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Contention Affects Potential Application
Routes o

HOPS mmm
70 +

» 256 possible unique routes 6 |
« Task placement 50

determines which routes a0 |
are actually utilized during 20|
execution 20
* Not all combinations valid - 10 o
0 —

restrictions due to the
actual communication o
patterns 180 STALLS mumm
« Scotch Mapping: Minimize 160 | |
. . . . 140 +
communication cost within 120 |
the restrictions of the 100 1
communication patterns
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Determining Mapping Based on Static (@)=,

and Dynamic Information

= Simplistic weighting approach:
= Static: HOPS -- locality but not congestion
Comm cost = HOPS x bytes
= Dynamic: CREDIT_STALL, USED _BW -— congestion but not locality
Comm cost = (Max(STALLS) OR Max(USED_BW)) x bytes

= Compare with:
= No mapping: RM assignments
= No metric: uniform weights -- neither locality nor congestion
Comm cost = 1 x bytes (uniform)
= App migrates the matrix and vector data among processors
according to the new mapping; MPI comm is unchanged
= 0.012 sec remapping. 0.004 sec redistribution




Mapping with Congestion

1.2

Normalized Est. Max. Comm. Cost

Normalized Time per 10K Matvecs

ONo Mapping
O No Metric
OHops

oBw

O stalls

Dynamic Task Mapping based on estimated communication
costs due to run-time congestion monitoring reduces impact
of competing application traffic
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Evinced max comm

cost (left):

» Scotch reduces comm
cost when a variable
metric is used

Execution Time (right):

« Black line:
Uncongested result

* No Mapping — RM
assignment (20%
increase due to
congestion)

* No Metric — Scotch

with all routes equal

HOPS

USED BW

CREDIT_STALLS




Results h) i,
= Percentage Execution Time Recovered by Performing
Mapping with Various Metrics (higher is better)

60
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40
30
20
- o
0

Graph: Hops Graph: Used Graph: Credit
(static) Bandwidth Stalls (dynamic)
(dynamic)

Remapping based on dynamic network information in a congested
environment recovered ~50% of the time lost to congestion.
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Conclusions and Future Work ) .

" |ntegrated framework for monitoring, analysis, and feedback to
perform application-to-resource mapping that adapts to both
static architecture features and dynamic resource state.

= Demonstrated significant potential benefits: recovered 50% of
time lost to congestion.

= Next steps:

Performance optimization: Resource Oracle to directly access the LDMS
aggregator data structures to reduce query overhead

Scalability: multiple Resource Oracles, parallel mapping
Metric Exploration: Metric value weighting and sensitivity (value, time)




