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Motivation rh) pes

= The much cited Rudnicki and Rice ‘75 localization criterion
lacks comprehensive experimental investigation

= Attempt to experimental illustrate intermediate principal
stress dependence and by extension J; dependence.

= Compare experimental results from true triaxial tests to
Rudnicki and Rice ‘75 predictions.
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* First invariant of stress
[,=0,+0,+0,

J; Independent
J; Dependent

Mohr-Coulomb

« Second invariant of deviatoric stress
] 2 2 2
J, —g[(cl —02) +(c72 —03) +(c73 —Gl)
 Third invariant of deviatoric stress
_ [} ! !
J;,=0,0,0,
 Deviatoric stress
r 1
G, =0, —gckkSij
 Shear stress

v =\

* Mean Stress
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Sign convention is positive in compression
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Tests Performed )

= True triaxial tests performed at 5 different Lode angles

= 30, 14.5, 0, -14.5, -30 degrees (axisymmetric compression to
axisymmetric extension)

= Tests were performed under constant mean stress conditions

= 5 mean stresses were tested ranging from 30 to 150 MPa in 30 MPa
increments in order to map out the failure/yield surface for a range of
Lode angles
= Unload loops from all tests were used to develop the strain
separation process.

For experimental description see Ingraham et al. 2013
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Shear Band )t
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Compaction Localization
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Compaction Localization
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Effect of Mean stress
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Effect of Stress State
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Strain Separation )
To Determine the inelastic increment of strain
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Strain Separation: Constitutive Laws ).
= Starting with a common elastic-plastic constitutive model:

t e p
gij_gij_l_gij

= |sotropy and usual invariant definitions provide the common elastic
strain models

=  Assuming stress and plastic strain dependence in incremental form
and expanding the total derivative

dy' =d| ——— |+ dy” de' =d| — 2 |+de”
G(T,)/p) K(Gagp)
dt 1 [0G oG
dy' =—— ( dt +dy”j+dy”
G G'\or oy” de' do _ o (GK do +6—Kpd8p)+d8p

"k K*\oo oe
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Strain Separation: Breakdown T e

&t ot (oG, oG . )
dy'=—— 2k dr+—dpr+dyp
G G \ort oy’
dy = av = Strain is separated into 4 forms:
G Elastic, elastic stress dependent,
v (0G plastic strain dependent, plastic
dy , = ——2(—de
G\ 0t = A,B,Carerecovered upon
t [ 6G unloading y&, however C and D are
dy o=~ ot [ay S dy p] the inelastic increment of strain

needed for localization theory




Separated Strains ) i,
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o §(1+v)(/3+u)—N,,(1—zv)
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Rudnicki and Olsson (1998)
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Constitutive Parameter
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J; Dependent Failure
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Table of Band Angles ) 2.

Mean
Stress Stress Response
State (MPa) p y7i Predicted 0| AE 0 Measured 0| Type
ASC 30 0.76 0.56 59 Conj. Bandy  55-60 Shear
ASC 60 0.23 0.31 48 23 30-35 Shear
ASC 90 0.01 0.09 42 10-23 NA CL
ASC 120 -0.29 | 0:-0.3 37:33 5-15 NA CL
ASC 150 -0.66 | -1.1:-3 3:0 NL NA NL
PS 30 0.09 0.94 57 58 61-80 Shear
PS 60 0.55 0.80 62 63 64 Shear
PS 90 0.08 0.67 54 54 58 Shear
PS 120 -0.23 | 0:-0.7 42:33 NL NA NL
PS 150 -0.75 |-1.5:-4.4 15:0 16-25 NA CL
ASE 30 0.76 0.85 80 51 65 Shear
ASE 60 0.65 0.49 68 NA* 70 Shear
ASE 90 0.04 0.13 54 41 46 Shear
ASE 120 -0.17 | 0:-1.9 50:23  |Conj. Bands 45 Shear
ASE 150 -0.21 | -1.8:-6 25:0 10-25 NA CL
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Conclusions

= Strain Separation
= Separation of strains allows for determination of the onset of
yield/yield surfaces

= Localization Predictions
= Band angle does not appear to depend on stress state, or effects are
smaller than experimental error

= Strain separation processes can be implemented to provide
localization results reasonably comparable with experimental results

for high porosity sandstone.

= J, Dependence
= Localization modes (shear band, compaction localization) are active at
higher mean stresses when the Lode angle is low

= Shear stress required to cause localization decreases with decreasing
Lode angle
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