

Addressing Scientific I/O Needs for Current and Future Architectures

Ron A. Oldfield
Sandia National Laboratories
Albuquerque, NM, USA

Storage Systems and I/O (SSIO) Summit

September 2014

*Exceptional
service
in the
national
interest*

U.S. DEPARTMENT OF
ENERGY

Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.

Extreme-Scale Computing

- Trends: More FLOPS with comparatively less storage, I/O bandwidth
 - Consequence: A smaller fraction of data can be captured on disk

Oak Ridge National Laboratory

	System Peak	I/O BW
Jaguar (2008)	263 TFLOPS	44 GB/s
Jaguar PF (2009)	1.75 PFLOPS	240 GB/s
Titan (2012)	20 PFLOPS	240 GB/s
Factor Change	76×	5.5×

Bland, Kendall, Kothe, Rogers, and Shipman. "Jaguar: The World's Most Powerful Computer"
http://archive.hpcwire.com/hpcwire/2012-10-29/titan_sets_high-water_mark_for_gpu_supercomputing.html?featured=top

Argonne National Laboratory

	System Peak	I/O BW
Intrepid (2003)	560 TFLOPS	88 GB/s
Mira (2011)	10 PFLOPS	240 GB/s
Factor Change	17.8×	2.7×

<https://www.alcf.anl.gov/intrepid>
<https://www.alcf.anl.gov/mira>

Lawrence Livermore National Laboratory

	System Peak	I/O BW
ASC Purple (2005)	100 TFLOPS	106 GB/s
Sequoia (2012)	20 PFLOPS	1 TB/s
Factor Change	200×	9.4×

<http://www.sandia.gov/supercomp/sc2002/flyers/SC02ASCIPurplev4.pdf>
<https://asc.llnl.gov/publications/Sequoia2012.pdf>

Sandia National Laboratories

	System Peak	I/O BW
Red Storm (2003)	180 TFLOPS	100 GB/s
Cielo (2011)	1.4 PFLOPS	160 GB/s
Factor Change	7.8×	1.6×

<https://cfwebprod.sandia.gov/cfdocs/CCIM/docs/033768p.pdf>
<http://www.lanl.gov/orgs/hpc/cielo/>

Extreme-Scale Computing

- Trends: More FLOPS with comparatively less storage, I/O bandwidth
 - consequence: A smaller fraction of data can be captured on disk

Oak Ri

Jaguar

Jaguar

Titan (

Facto

Bland, Kendra
<http://archive>

Law

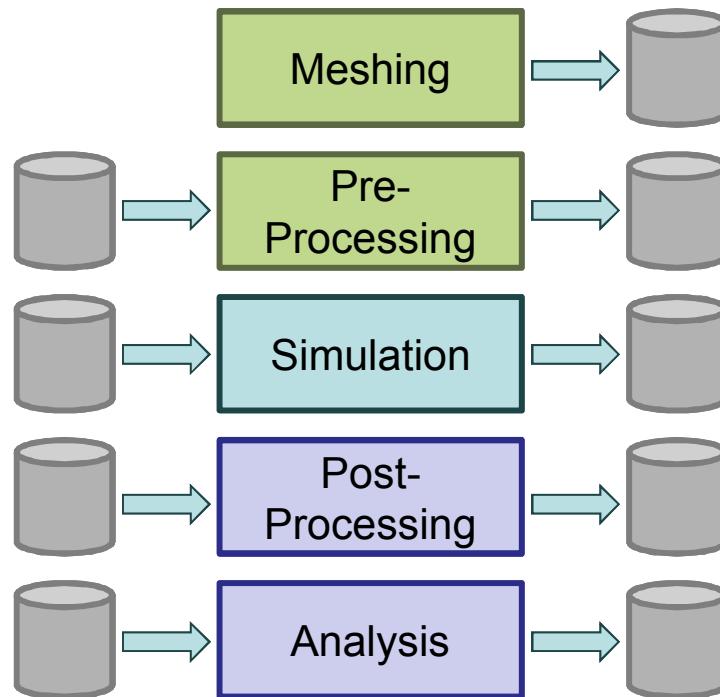
If you really need
motivation for I/O
research, I'm probably
in the wrong room!

ASC Purple (2005) 100 TFLOPS 106 GB/s

Sequoia (2012) 20 PFLOPS 1 TB/s

Factor Change **200x** **9.4x**

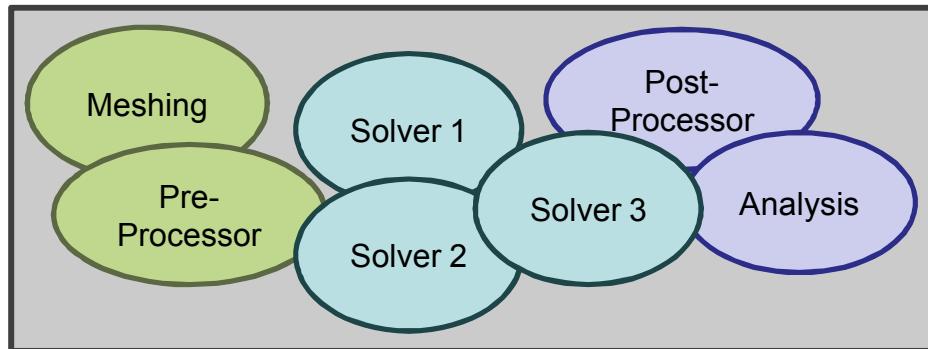
Cielo (2011) 1.4 PFLOPS 100 GB/s


Factor Change **7.8x** **1.6x**

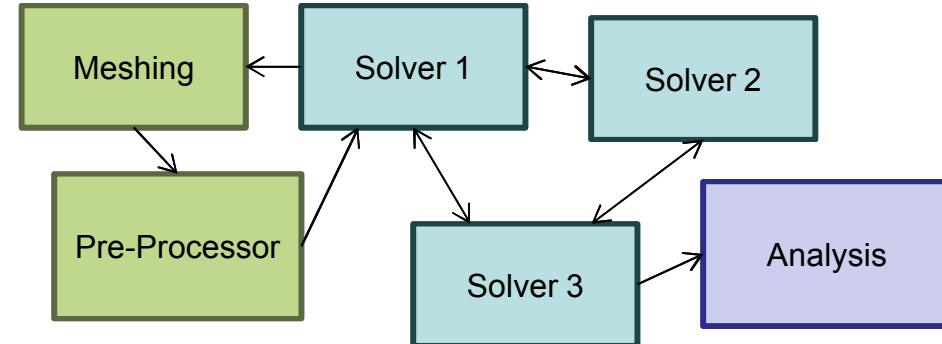
<http://www.sandia.gov/supercomp/sc2002/flyers/SC02ASCIPurplev4.pdf>
<https://asc.llnl.gov/publications/Sequoia2012.pdf>

<https://cfwebprod.sandia.gov/cfdocs/CCIM/docs/033768p.pdf>
<http://www.lanl.gov/orgs/hpc/cielo/>

Usage Models Conflict with Trends


App workflows historically use parallel file system for communication

One way to relieve I/O pressure is to integrate components


Two Existing Approaches to Integration

Tightly Coupled (In Situ)

- Pros
 - Standard communication (MPI)
 - Supported by HPC runtimes
- Implementation Challenges
 - Configuration/build (lib conflicts)
 - Data structure mismatches
 - Resilience (one fails, they all fail)

Loosely Coupled (In Transit)

- Pros
 - Configuration/build is easy
 - Resilience is easier to manage
- Implementation Challenges
 - Not well supported by runtimes
 - No dynamic scheduling, placement, load balancing, ...
 - No standard comm interface

Observations

- Tightly coupled and loosely coupled approaches will co-exist
- Gaps remain before these approaches become “productive”
 - Need portable, fast, memory-efficient mechanisms and interfaces for sharing data
 - POSIX file system is not sufficient
 - Need the right “hooks” into in-memory data structures (avoid copies)
 - Need to deal with data structure mismatches in coupled codes
 - Need to deal with multi-resolution/multi-scale issues
 - Need new definitions for “persistence” of transient data
 - E.g., time windows, data set versioning, ...
 - Need new system software that supports integrated workflows
 - Scheduling, load balancing, node and data placement
 - Runtime requirements may differ for coupled components
 - Need resilience...everywhere... nuff said

We've been addressing some of the gaps

- Capabilities for Integrated Workflows (Nessie, NNTI – ASC)
 - RPC-based framework for developing data services
 - Portable RDMA abstraction over HPC interconnects (Cray XT/XE, IBM BG, IB)
- Capabilities for data sharing (Kelpie, Sirocco – ASC)
 - Kelpie: In-memory, high-performance key-value store
 - Sirocco: Peer-to-peer like storage system. Supports many media, adaptable and resilient.
- Capabilities for In-situ Analysis and Visualization (ASC)
 - ParaView/Catalyst (SNL/Kitware)
 - Current focus on modularity, low memory footprint, scalability
- Resilient integrated workflows (D2T – LDRD)
 - D2T (Lofstead) – distributed transaction-based approaches
- OS and Runtime changes to support integrated workflows (ASC and ASCR)
 - Hobbes and Argo – Both ASCR projects
 - Resource management, data sharing, application composition, prog models.