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Inorganic vs. organic conducting materials: the best and the () i,
Laboratories
worst of two worlds

Crystalline inorganic semiconductors

* High mobility
e Stability

* High cost

* Non-flexible
* Limited tailorability
* Radiation damage

Flexible
Tunable w/ chemistry i
Low cost fabrication
Poor mobility
Instability

Low free carrier densities




What is a Metal-Organic Framework? )

Crystalline (therefore ordered), nanoporous structure

Organic

Metal “linker”
“Node”

Zn*3(NO,), +




MOFs are a subset of a growing category of ()i
self-assembled, nanoporous materials
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MOFs are attractive for gas storage, catalysis,

. . . "‘ ﬁaa?iginaal
separatlons, ionic conductors

Laboratories

CO, sequestratign

SIFSIX-3-Zn
25
— ana &
5 AL LREEONIR
E 2.0 A® < 40 .QQ L]
“
£ e o o0 R
< 15 . .
L ]
= ‘o o
i °
g“‘ 1.0 e
L]
© o5
0.0

T T T T T T T T
0 20 40 60 80 100 120 140
Pressure (torr)

832013

Catalysis

WEL T R, Ty

‘? . "‘:.'- ", ‘7‘?
v i

o e Oy
Ve o) Ve Y e Z’ Wu’ Hu’
* 2. The 2, Tohe Zhang, Lin
re TN ra "> 2
s e JACS 127,
e p Ve A 1.8 nm®™ _: ) 8940, 2005
* A%, Tin e A, Tin e

T8 DN
- ° 4 - 4 «

H Ho ELH 0 Bureekaew et al.,
Nat. Mat. 8, 831,
+Zn(Et), —> 2009




Can the high performance of inorganic semiconductors with the- ...

National

tailorability of organic materials be achieved using MOFs? laboratois
~d Crystalline inorganic semiconductor
« High mobility
- Stability
« High cost

* Non-flexible
« Radiation damage

Disordered organic +
semiconductor

* Flexible

* Tunable w/ chemistry
* Low cost fabrication

* Poor mobility

* Instability

* Low free carrier densities

Crystalline MOF semiconductor

» Structurally flexible

K @ym < Tunable w/ chemistry

MOF semicondyctor 52 + Scalable to nanometers
SFTENEEE o Low cost fabrication

* Reconfigurable electronics

* Rad-hard

* Novel electronic material




Thin film growth for MOF device applications ()&
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Sandia
MOF films make sensitive, selective gas sensors i) fens_

Au connectios
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Electrically conducting porous MOFs are rare L f.

p-type Cu-Ni Dithiolene MOF

MET-3 (Fe-triazolate MOF)

Ni,(HITP), MOG

. . Y. Kobayashi et al. D. Sheberla et al.
Mn(thiophenol) MOF: (-Mn-S-)ee chains ..., nqter. 2010, 22, 4120 JACS 2014 ASAP

* Metal-Organic Graphene analogues
(MOGs)
MEI:(Fe) Mn(thiophenol) MOF
Gandara et al. L. Sun et al.
Chem. Eur. J. 2012, J. Am. Chem. Soc.
18, 10595 2013, 135, 8185



Guest molecule + MOF - ordered, tunable -

. . . rh National _
platform for controlling interactions at the nanoscale= "=~
Amino acids MOF-74-XI
Exmton D|ffu5|on Distance
I 3 % Hemoglobin
. ~ 10 nm
C,H, Glucose Cg, Thiophene oligomers i ‘
43 A (~9A) (~ 13 A) DNA(~20A) (up to 37 A) 50 A Q.agg';l:ﬁes

~ \1, v o
k*‘ /s‘ ‘ o .,Gk‘x &
L? ¢ e o€

COF-1 08 MOF-177

COF-102

1.0n 2.0 3.0 nm 4.0 nm 5.0 nm
Interior pore diameter




Cu-TCNQ is a well-known conducting >

coordination polymer
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144 Inorg. Chem. 1999, 38, 144—156

New Insight into the Nature of Cu(TCNQ): Solution Routes to Two Distinct Polymorphs
and Their Relationship to Crystalline Films That Display Bistable Switching Behavior

Robert A. Heintz,* Hanhua Zhao,” Xiang Ouyang,” Giulio Grandinetti,” Jerry Cowen,* and
Kim R. Dunbar**

+ - >
[Cu™(TCNQ )], Cu M—Ng, =N
“OFF" state h N
W\ / |

[Cu’], + [TCNQ"], + [Cu™(TCNQ )], (1) c ¢
“ON” state C@C
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Guest@MOF: Emergent properties by infiltrating =1
with guest molecules? o
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TCNQ-> Cu,(BTC), leads to color change... ) e,

MOF film grown by layer-by- MOF film on SiO, with Pt

layer method electrodes
MOF growth

!

MOF film + TCNQ

Molecule infiltration



... and >107 increase in conductivity, air stable > 1 year ) s
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C=N stretch splitting in Raman spectrum observed
only inside dark colored, conducting region
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TCNQ@Cu,(BTC), exhibits strong new absorption bands i) it

H0@Cu,(BTC); - ' TCNQ@Cu,(BTC),
Cu(l) d-d transitions Charge transfer transitions
; (weak)
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DFT: Cu(ll) dimers linked by TCNQ, s,

%2 %)

Continuous TCNQ@CuBTC pathway is achievable with 4 TCNQs
Experimental loading = 8 TCNQs/unit cell 2 two continuous pathways are possible
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Bridging TCNQ molecules create new charge transfer states

LUMO

HOMO 1.5 %
H,0@CuBTC S TCNQ@CuBTC

DFT/PBEsol calculations
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Guest aromaticity, electronegativity affect conductivity i) faor

Extended 1t network essential for conductivity
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Cu-BTC band alignments: DFT/PBEsol calculations

Effect of fluorination and hydrogenation of TCNQ,
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TBCNQ increases coupling between neighboring Cu dimers
- lowers barrier to charge transfer
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Two-site model:
Donor-Bridge Acceptor

. (A-2H )2/
AG" = )/

= H ,g-Electronic coupling matrix element
H iy = (0 1],
e A-Reorganization energy
8 | mmcT
H- 4
2H g
IAG* ' Computed by Constrained DFT:
o H,-TCNQ < F,-TCNQ < TCNQ
5 . H,, =0.19eV <1.03eV <2.32 eV

Reaction Coordinate
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Vision for Molecule@MOF ICs, nanodevices  ®/&s.

Guest 1
Guest 2




Sandia

EleCtrO n iC S e Chemically tunable gal}lggalmes

= * Low cost, low-T deposition
i\ * Scalable down to ~1nm (?)

hermoelecftrics

* Ultrahigh surface area

» Ultrahigh surface area e Redox active centers

* Redox active centers

* Multi-axis response
* Chemical specificity
* High surface area
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Conclusions

MOFs are hybrid materials with ordered, chemically tunable porosity
MOF thin films can be grown layer-by-layer from solution
Conductivity of Cu,(BTC), tunable 10°-2>101S/cm with TCNQ
UV-Vis, IR indicate partial charge transfer

Opportunities for tuning properties w/ molecule@MOF expanding
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What about the carrier type (electron or hole?) Seebeck
effect is one way to find out...
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Electric Field

_ @
Low density High density
of electrons of electrons

Electric Field >
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Low density High density
of holes of holes

http://www.mn.uio.no/fysikk/english/research/
projects/bate/thermoelectricity/



Thermoelectric measurements of TCNQ@Cu,(BTC),
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* Majority carriers are holes

* High Seebeck coefficient
~400 puV/K vs 170 uV/K for Bi,Te,
- promising material for

thermoelectrics
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A schematic representation of the alignment of the HOMO/LUMO
orbitals and bandgaps of H,O@CuBTC, TCNQ, F4-TCNQ, and H4-
TCNQ determined at the UB3LYP/VTZP level of theory.




Solvent, precursor likely responsible for conductivity in as

deposited Cu_z,(BTC)z
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As deposited: Low but measurable
conductivity, ionic/electronic?

Activated, exposed to ambient: No
measurable conductivity at 10 V (<10-12 A)

Infiltrated MOF (trace water): s~0.1 S/cm,
~108 increase




Vibrational spectra show shift of -C=EN ) s
indicates charge transfer
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Free Energy

Reaction Coordinate




