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• At the end of this module, students will be able to:

– Understand and compare deterministic and probabilistic 
fracture mechanics approaches

– Understand the fundamental building blocks of a 
probabilistic fracture mechanics (PFM) analysis 
including:

• Characterization of uncertainty

• Separation of uncertainty

• Methods for sampling inputs for Monte Carlo analysis

• Interpretation of PFM results
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MODULE 1 LEARNING OBJECTIVES



• Probabilistic Fracture Mechanics (PFM) Background

• Comparing deterministic and probabilistic approaches

• Components of a PFM analysis

– Characterizing input uncertainty

– Separation of uncertainty: Aleatory vs. Epistemic

– Sampling structure and sampling schemes

– Understanding PFM results

• Example of a PFM analysis

– Basic mechanics example

– Example of an xLPR V2.0 PFM analysis

TALKING POINTS
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Probabilistic Fracture Mechanics 
(PFM) Background
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• Probabilistic Fracture Mechanics (PFM) 
has been increasingly used in the 
fitness for service assessment of aging 
piping, reactor vessels, and steam 
generator tubing in recent years
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MOTIVATION BEHIND CONDUCTING
A PFM ANALYSIS

• Used in:
• Non-Destructive Examination (NDE)

• Risk Informed In-Service Inspection (ISI)

• Enhance the technical basis of
Probabilistic Risk Assessment (PRA)

Hirano, EJAM (2010)



• To better understand performance margins and 
uncertainties

• Many applications have probabilistic performance 
requirements:

• Probability of an undesirable event happening < 10-m

• To provide consistent set of criteria on systems so that 
resources can be focused where needed most

• Qualification support:

• Level of confidence in design

• Body of evidence that the system meets its design 
requirements6

WHY DO WE PERFORM
A PROBABILISTIC ANALYSIS?



Comparing deterministic and 
probabilistic approaches
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• Deterministic approach assumes all significant parameters defining 
the problem are known

• Where uncertainties exist (e.g., materials properties) conservative 
bounding values are assumed

• Safety factors are imposed to ensure satisfactory margins against 
uncertainties 
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MARGIN OF SAFETY:
DETERMINISTIC APPROACH

M

Performance metric

Failure

Deterministic 
calculation

Margin of 
safety



• Deterministic approach uses fixed inputs that generate a 
single output

9

DETERMINISTIC APPROACH

Input / Environment
System

Output / 
Response

• For example: 

X = Weld Residual Stress (WRS) profile across weld thickness

Y = Occurrence of a through-wall crack



• Flow stress: 𝜎𝑓 = 55.5 Ksi

• Safety factor: SF = 2.77(ASME Section III Code Allowable Stress; SA-
36)

• Primary membrane stress: 𝜎𝑚 =
Load

Area
=

T

𝜋𝑟2
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EXERCISE: DETERMINISTIC 
AXIAL STRESS IN A BAR

Example Problem: Calculate the stress in an axially loaded bar and 
determine if it will fail using a deterministic approach

𝑇 = 15000 lbs

𝑟 = 0.5 in



• Navigate to \Exercises\Module 1 and open the file 
“Module_1_Axial_Stress_in_a_Bar.xlsx”

• On the first tab, “Deterministic problem”, enter the 
parameter values

• Does the bar fail?

EXERCISE: DETERMINISTIC 
AXIAL STRESS IN A BAR
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• Solution: Does the bar fail?

– The bar does not fail, the primary membrane stress 
(19.099 Ksi) is less than the flow stress (55.5 Ksi)

EXERCISE: DETERMINISTIC AXIAL 
STRESS IN A BAR
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PROBABILISTIC APPROACH

• Probabilistic approach evaluates the system at many input values 
and maps these to many outputs

Input Distributions Uncertainty in Quantity of 
Interest

Fracture Model
in xLPR v2.0

Output 1

Output 2

N outputs of Y

N samples of X

Input 1

Input 2

Input 3

N realizations of S

System 
Evaluation



• Steps for uncertainty propagation in PFM in xLPR v2.0:

1. Characterization of distributions on the uncertain input values

2. Generation of samples from those distributions

3. Propagation of samples through repeated fracture model execution

4. Generate output distributions by repeating steps 2 and 3 N times

5. Presentation of uncertainty analysis results in the form of functions of the 
output
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UNCERTAINTY PROPAGATION IN PFM



• Probability distributions are assigned to variables which have a 
significant effect on the problem (random variables)

• Problem is solved to determine probability of desired results
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MARGIN OF SAFETY:
PROBABILISTIC APPROACH
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• Flow stress: 𝜎𝑓~𝑁 55, 15 Ksi
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EXERCISE: PROBABILISTIC 
AXIAL STRESS IN A BAR

Example Problem: Calculate the stress in an axially loaded bar and 
determine if it will fail using a probabilistic approach

𝑇~𝑁 15000, 5000 Ksi

𝑟~𝑁 0.8, 0.2 in

Notation: This mathematical expression is read as “The flow 
stress is approximately Normally distributed with a mean of 

55 Ksi and a standard deviation of 15 Ksi.”

Normal 
Distribution

Mean
Standard 
Deviation
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EXERCISE: PROBABILISTIC 
AXIAL STRESS IN A BAR

Example Problem: Calculate the stress in an axially loaded bar and 
determine if it will fail using a probabilistic approach

𝑇~𝑁 15000, 5000 Ksi

𝑟~𝑁 0.8, 0.2 in

𝜎𝑓~𝑁 55, 15 Ksi



• Navigate to \Exercises\Module 1 and open the file 
“Module_1_Axial_Stress_in_a_Bar.xlsx”

• On the second tab, “Probabilistic approach”, enter 
the distribution values

• Does the bar fail? What is the probability of failure?

EXERCISE: PROBABILISTIC AXIAL 
STRESS IN A BAR
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EXERCISE: PROBABILISTIC AXIAL 
STRESS IN A BAR
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• Solution: Does the bar fail?

– The bar experiences 6 failures in the screenshot below. 

– The calculated probability of failure is 6/1000 = 0.006

– Press ‘F9’ to rerun the calculation and get a different result



• Challenge problem: Using the Excel file, fill in the table below by 
adding samples to the calculation and changing the mean of 𝑇
– Create copies of the probabilistic tab for each row

EXERCISE: PROBABILISTIC AXIAL 
STRESS IN A BAR

Number of 
Samples

Mean of 𝑻
[lbs]

Number of 
Failures

Probability of 
Failure

1000 15,000

5000 15,000

10,000 15,000

10,000 20,000

10,000 25,000

• Which of these failure probabilities changes the most when you 
recalculate with new samples (Press F9)?
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• Challenge problem solution:

EXERCISE: PROBABILISTIC AXIAL 
STRESS IN A BAR

Number of 
Samples

Mean of 𝑻
[lbs]

Number of 
Failures

Probability of 
Failure

1000 15,000 ~8 ~0.08

5000 15,000 ~59 ~0.0118

10,000 15,000 ~107 ~0.0107

10,000 20,000 ~197 ~0.0197

10,000 25,000 ~315 ~0.315

• With fewer samples, the estimate of the probability of 
failure is less precise.
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FAILURE UNDER PROBABILISTIC APPROACH
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• Probabilistic approach results in probability of 
failure region

Membrane 
Stress (𝝈𝒎) 
Distribution

Flow Stress 
(𝝈𝒇) 

Distribution

Failure 
Probability 

Region
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COMPARISON OF DETERMINISTIC AND 
PROBABILISTIC APPROACHES

Probabilistic

Analysis

Deterministic

Analysis



Components of a PFM Analysis
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SOURCES OF UNCERTAINTY
IN DFM AND PFM

• Uncertainties exist in both Deterministic Fracture Mechanics 
(DFM) models and Probabilistic Fracture Mechanics (PFM) 
models:
– Model uncertainty: The fracture model structure, i.e., how accurately 

the deterministic fracture model describes the actual fracture process 

– Numerical scheme uncertainty : The numerical approximation, i.e., 
how appropriately the numerical method is used to approximating the 
model

– Input/Output uncertainty: May only be known approximately, may vary 
between instances of the mechanism/sub-model for which predictions 
are sought

• PFM also involves sampling uncertainty:
– Sampling uncertainty: quantities of interest are uncertain because the 

model can only be run a finite number of times



• Steps for uncertainty propagation in PFM in xLPR v2.0:

1. Characterization of distributions on the uncertain input values 

2. Generation of samples from those distributions

3. Propagation of samples through repeated fracture model execution

4. Generate output distributions by repeating steps 2 and 3 N times

5. Presentation of uncertainty analysis results in the form of functions of the 
output
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UNCERTAINTY PROPAGATION IN PFM



• Input uncertainty is usually characterized using probability 
distribution functions

– Distribution will depend on the context of the application (e.g., 
one weld vs. a collection of welds)

– Some combinations of inputs are statistically dependent, meaning 
that sampling them independently could lead to non-physical 
conditions

• Example: Inner diameter of a pipe must be greater than outer diameter

• Correlations can be used to characterize the dependency between 
inputs to avoid
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QUANTIFYING INPUT UNCERTAINTY



• Traditional techniques to select probability distributions include:

• Expert review: used when no data is available

• Bayesian update: used when data becomes available

• Distribution fitting: enough data available to fit distribution
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QUANTIFYING INPUT UNCERTAINTY

• Other techniques include: evidence theory, special objective 
response surface, etc.

• In the context of xLPR v2.0, much of the input calibration was done 
through distribution fitting using field and lab data

D
ata availab

ility
in

creases



• Navigate to \Exercises\Module 1 and open the file 
“Module_1_Distribution_Fitting.xlsx”

• On the first tab, “Distribution Fitting”, we will fit 
distributions using 30 measurements of flow stress
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EXERCISE: DISTRIBUTION FITTING

Empirical 
distribution derived 

from 30 
measurements



Lognormal Parameters

mean(ln(σf)) [Log Mean] =AVERAGE(T4:T33)

sd(ln(σf)) [Log SD] =STDEV(T4:T33)

emean(ln(σf)) [Geometric Mean] =EXP(AVERAGE(T4:T33))

esd(ln(σf)) [Geometric Mean] =EXP(STDEV(T4:T33))

• We will fit Lognormal and Normal distributions to this data

• Lognormal Distribution

– Could be parameterized in several ways depending on the 
software

• In Excel, the log mean and log standard deviation are used

• In GoldSim, either the true mean and true standard deviation or the 
geometric mean and geometric standard deviation are used

– Enter the following equations to calculate these parameters:
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EXERCISE: DISTRIBUTION FITTING

Used in Excel

Used in 
GoldSim 

(included here 
for information 

only)



Normal Parameters

mean(σf) [True Mean] =AVERAGE(S4:S33)

sd(σf) [True SD] =STDEV(S4:S33)

• Normal Distribution

– Parameterized using the mean and standard deviation

– Enter the following equations to calculate these parameters:
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EXERCISE: DISTRIBUTION FITTING

True mean and 
true standard 

deviation could 
also be used in 
GoldSim for the 

Lognormal 
distribution

• Distribution fitting for other distribution forms (i.e., 
Weibull) could also be accomplished using Maximum 
Likelihood Estimation (MLE)



• Final fitted distributions should look like this:
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EXERCISE: DISTRIBUTION FITTING

Lognormal Parameters

mean(ln(σf)) [Log Mean] 4.00

sd(ln(σf)) [Log SD] 0.23

emean(ln(σf)) [Geometric Mean] 54.63

esd(ln(σf)) [Geometric Mean] 1.26

Normal Parameters

mean(σf) [True Mean] 56.04

sd(σf) [True SD] 12.40



• Statistical goodness of fit tests show that both of these 
distributions are consistent with the data

• QQ-plots with confidence intervals show the comparison 
between the data and fitted distributions

– Red line represents a perfect fit, black dots are data points
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EXERCISE: DISTRIBUTION FITTING

Lognormal Normal



• Go to the “Probabilistic approach (1000)” tab

• Toggle between the Lognormal and Normal fits for flow 
stress to see how this impacts your results
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EXERCISE: DISTRIBUTION FITTING

• Takeaways:
– If we applied a more rigorous uncertainty analysis to this example we would 

show that failure probability calculations are sensitive to distribution tails

– Sensitivity studies examining distribution choice should be applied in cases 
where the correct distribution is not clear 



• Through data from fracture experiments on multiple pieces of hardware
• Pros: Best way to quantify unit-to-unit variability

• Cons: Expensive

• Through field data from legacy fractured systems
• Pros: Real applicability

• Cons: Knowledge from past might not be relevant to the future

• Through the use of fracture models representing the system
• Pros: In principle, model can be executed many times to quantify uncertainty

• Cons: Not always an accurate representation of reality

• A combination of both experiments and models, combining the pros and cons of each
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QUANTIFYING INPUT UNCERTAINTY:
HOW TO GENERATE THESE DISTRIBUTIONS?

Example: field data and 
expert opinion are used to 
bound the model input 
weld residual stress



• Model predictions are affected by two primary sources of 
uncertainty that can be used to classify inputs

– Aleatory Uncertainty: Natural (intrinsic) variability in system 
inputs and properties, considered irreducible

• Example: Manufacturing differences among units

– Epistemic Uncertainty: Lack of knowledge about the system of 
interest, could be reduced by collecting additional information

• Example: Uncertainty in crack growth model due to lack of data

CLASSIFICATION OF UNCERTAINTY: 
ALEATORY VS. EPISTEMIC

36

Risk Knowledge about risk

Aleatory Epistemic
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DEMONSTRATION: SEPARATION OF EPISTEMIC 
AND ALEATORY UNCERTAINTY

• Navigate to \Exercises\Module 1 and open the file 
“Module_1_Separation_of_Uncertainty.xlsx”

• Open the second tab, “Basic Separation of Uncertainty”

Same bar 
problem with 

slightly 
different 

distribution 
parameters
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DEMONSTRATION: SEPARATION OF EPISTEMIC 
AND ALEATORY UNCERTAINTY

𝑻 and 𝒓 are set to 
epistemic:

Uncertainty in these inputs could 
be reduced by more 

measurements or more accurate 
measurement techniques

𝝈𝒇 is set to aleatory:
Uncertainty in this input is due to 

random variability in material 
properties
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DEMONSTRATION: SEPARATION OF EPISTEMIC 
AND ALEATORY UNCERTAINTY

• What do these types of uncertainty mean in practice?

– In this demonstration we have 3 epistemic samples and 
5 aleatory samples and use simple random sampling

– Example results shown below, press ‘F9’ in your Excel file to rerun 
the calculation

Results Failure Results Failure Results Failure

T [lbs] r [in] σf [Ksi] σm [Ksi] Is σm < σf ? T [lbs] r [in] σf [Ksi] σm [Ksi] Is σm < σf ? T [lbs] r [in] σf [Ksi] σm [Ksi] Is σm < σf ?

Aleatory 1 4674.356 0.263889 55.90232 21.366 0 12336.79 0.183541 53.0751509 116.570 1 13611.61204 0.284010218 56.88928 53.715 0

Aleatory 2 4674.356 0.263889 58.6355 21.366 0 12336.79 0.183541 55.59391582 116.570 1 13611.61204 0.284010218 48.34774 53.715 1

Aleatory 3 4674.356 0.263889 62.89263 21.366 0 12336.79 0.183541 57.79225462 116.570 1 13611.61204 0.284010218 60.04014 53.715 0

Aleatory 4 4674.356 0.263889 59.44506 21.366 0 12336.79 0.183541 48.4849068 116.570 1 13611.61204 0.284010218 54.65302 53.715 0

Aleatory 5 4674.356 0.263889 59.54206 21.366 0 12336.79 0.183541 45.02974798 116.570 1 13611.61204 0.284010218 55.84193 53.715 0

Epistemic 1 Epistemic 2 Epistemic 3

• What is the probability of failure?

Epistemic samplesAleatory 
samples
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DEMONSTRATION: SEPARATION OF EPISTEMIC 
AND ALEATORY UNCERTAINTY

• The collection of aleatory samples for each epistemic 
sample represents an estimate of the probability of failure

Results Failure Results Failure Results Failure

T [lbs] r [in] σf [Ksi] σm [Ksi] Is σm < σf ? T [lbs] r [in] σf [Ksi] σm [Ksi] Is σm < σf ? T [lbs] r [in] σf [Ksi] σm [Ksi] Is σm < σf ?

Aleatory 1 4674.356 0.263889 55.90232 21.366 0 12336.79 0.183541 53.0751509 116.570 1 13611.61204 0.284010218 56.88928 53.715 0

Aleatory 2 4674.356 0.263889 58.6355 21.366 0 12336.79 0.183541 55.59391582 116.570 1 13611.61204 0.284010218 48.34774 53.715 1

Aleatory 3 4674.356 0.263889 62.89263 21.366 0 12336.79 0.183541 57.79225462 116.570 1 13611.61204 0.284010218 60.04014 53.715 0

Aleatory 4 4674.356 0.263889 59.44506 21.366 0 12336.79 0.183541 48.4849068 116.570 1 13611.61204 0.284010218 54.65302 53.715 0

Aleatory 5 4674.356 0.263889 59.54206 21.366 0 12336.79 0.183541 45.02974798 116.570 1 13611.61204 0.284010218 55.84193 53.715 0

Epistemic 1 Epistemic 2 Epistemic 3

For the first 
epistemic sample, 
the probability of 

failure is 
𝟎+𝟎+𝟎+𝟎+𝟎

𝟓
= 𝟎

For the second 
epistemic sample, 
the probability of 

failure is 
𝟏+𝟏+𝟏+𝟏+𝟏

𝟓
= 𝟏

For the first 
epistemic sample, 
the probability of 

failure is 
𝟎+𝟏+𝟎+𝟎+𝟎

𝟓
= 𝟎. 𝟐
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DEMONSTRATION: SEPARATION OF EPISTEMIC 
AND ALEATORY UNCERTAINTY

• The collection of epistemic estimates of the probability of 
failure represents an estimate of the distribution of the 
probability of failure

Results Failure Results Failure Results Failure

T [lbs] r [in] σf [Ksi] σm [Ksi] Is σm < σf ? T [lbs] r [in] σf [Ksi] σm [Ksi] Is σm < σf ? T [lbs] r [in] σf [Ksi] σm [Ksi] Is σm < σf ?

Aleatory 1 4674.356 0.263889 55.90232 21.366 0 12336.79 0.183541 53.0751509 116.570 1 13611.61204 0.284010218 56.88928 53.715 0

Aleatory 2 4674.356 0.263889 58.6355 21.366 0 12336.79 0.183541 55.59391582 116.570 1 13611.61204 0.284010218 48.34774 53.715 1

Aleatory 3 4674.356 0.263889 62.89263 21.366 0 12336.79 0.183541 57.79225462 116.570 1 13611.61204 0.284010218 60.04014 53.715 0

Aleatory 4 4674.356 0.263889 59.44506 21.366 0 12336.79 0.183541 48.4849068 116.570 1 13611.61204 0.284010218 54.65302 53.715 0

Aleatory 5 4674.356 0.263889 59.54206 21.366 0 12336.79 0.183541 45.02974798 116.570 1 13611.61204 0.284010218 55.84193 53.715 0

Epistemic 1 Epistemic 2 Epistemic 3

Probability of 
failure = 0

Probability of 
failure = 1

Probability of 
failure = 0.2

• Is this a good estimate of the uncertainty in the probability 
of failure?
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DEMONSTRATION: SEPARATION OF EPISTEMIC 
AND ALEATORY UNCERTAINTY

• This sample size does not generate a stable estimate of the 
distribution of the probability of failure
– Running the simulation again (push ‘F9’) creates very different results

Results Failure Results Failure Results Failure

T [lbs] r [in] σf [Ksi] σm [Ksi] Is σm < σf ? T [lbs] r [in] σf [Ksi] σm [Ksi] Is σm < σf ? T [lbs] r [in] σf [Ksi] σm [Ksi] Is σm < σf ?

Aleatory 1 4674.356 0.263889 55.90232 21.366 0 12336.79 0.183541 53.0751509 116.570 1 13611.61204 0.284010218 56.88928 53.715 0

Aleatory 2 4674.356 0.263889 58.6355 21.366 0 12336.79 0.183541 55.59391582 116.570 1 13611.61204 0.284010218 48.34774 53.715 1

Aleatory 3 4674.356 0.263889 62.89263 21.366 0 12336.79 0.183541 57.79225462 116.570 1 13611.61204 0.284010218 60.04014 53.715 0

Aleatory 4 4674.356 0.263889 59.44506 21.366 0 12336.79 0.183541 48.4849068 116.570 1 13611.61204 0.284010218 54.65302 53.715 0

Aleatory 5 4674.356 0.263889 59.54206 21.366 0 12336.79 0.183541 45.02974798 116.570 1 13611.61204 0.284010218 55.84193 53.715 0

Epistemic 1 Epistemic 2 Epistemic 3

Probability of 
failure = 0

Probability of 
failure = 1

Probability of 
failure = 0.2

• Additional samples and techniques for uncertainty 
characterization and propagation may be needed

Results Failure Results Failure Results Failure

T [lbs] r [in] σf [Ksi] σm [Ksi] Is σm < σf ? T [lbs] r [in] σf [Ksi] σm [Ksi] Is σm < σf ? T [lbs] r [in] σf [Ksi] σm [Ksi] Is σm < σf ?

Aleatory 1 13418 0.249613 54.32995 68.549 1 16266.9 0.314188 51.86511668 52.454 1 18942.78021 0.213831191 52.95519 131.872 1

Aleatory 2 13418 0.249613 57.73549 68.549 1 16266.9 0.314188 61.4391029 52.454 0 18942.78021 0.213831191 55.51452 131.872 1

Aleatory 3 13418 0.249613 54.02082 68.549 1 16266.9 0.314188 51.18712643 52.454 1 18942.78021 0.213831191 48.84877 131.872 1

Aleatory 4 13418 0.249613 53.18582 68.549 1 16266.9 0.314188 65.27635194 52.454 0 18942.78021 0.213831191 57.60979 131.872 1

Aleatory 5 13418 0.249613 48.65447 68.549 1 16266.9 0.314188 46.79145745 52.454 1 18942.78021 0.213831191 49.77896 131.872 1

Epistemic 1 Epistemic 2 Epistemic 3

Probability of 
failure = 1

Probability of 
failure = 0.6

Probability of 
failure = 1



• Steps for PFM in xLPR v2.0:

1. Characterization of distributions on the uncertain input values

2. Generation of samples from those distributions

3. Propagation of samples through repeated fracture model execution

4. Generate output distributions by repeating steps 2 and 3 N times

5. Presentation of uncertainty analysis results in the form of functions of the 
output
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SAMPLING UNCERTAIN INPUTS



• When sampling inputs, there are three decisions to 
make:

– Whether or not to separate aleatory and epistemic 
uncertainty

– What sampling scheme to use for repeatedly sampling 
uncertain inputs

– How many samples should be included in the 
sampling scheme

SAMPLING UNCERTAIN INPUTS

44
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SEPARATION OF UNCERTAINTY

Nested loops

1.0

0.8

0.6

0.4

0.2

0.0
Performance Characteristic    y

Inner (aleatory) loop Outer (epistemic) loop

• Uncertainty in xLPR v2.0 can be separated into aleatory and epistemic using 
nested sampling loops

– Requires greater computational power (for simulation and for quantifying uncertainty)

• Separation may facilitate understanding of epistemic uncertainties (knowledge of 
risk)

– Refine distributions on the uncertain inputs that contribute most to the output 
uncertainty and repeat analysis.



• Navigate to \Exercises\Module 1 and open the file 
“Module_1_Separation_of_Uncertainty.xlsx”

• Open the second tab, “Axial Stress in a Bar(100x50)”

– Same bar problem with original distributions
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EXERCISE: SEPARATION OF EPISTEMIC AND 
ALEATORY UNCERTAINTY

𝑻 and 𝒓 are set to 
epistemic:

Uncertainty in these inputs could 
be reduced by more 

measurements or more accurate 
measurement techniques

𝝈𝒇 is set to aleatory:
Uncertainty in this input is due to 

random variability in material 
properties



• In this exercise we are using 100 epistemic samples and 
50 aleatory samples with simple random sampling

• This expands on the number of samples demonstrated earlier in the 
presentation 
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EXERCISE: SEPARATION OF EPISTEMIC AND 
ALEATORY UNCERTAINTY

Results Failure Results Failure Results Failure

T [lbs] r [in] σf [Ksi] σm [Ksi] Is σm < σf ? T [lbs] r [in] σf [Ksi] σm [Ksi] Is σm < σf ? T [lbs] r [in] σf [Ksi] σm [Ksi] Is σm < σf ?

Aleatory 1 4674.356 0.263889 55.90232 21.366 0 12336.79 0.183541 53.0751509 116.570 1 13611.61204 0.284010218 56.88928 53.715 0

Aleatory 2 4674.356 0.263889 58.6355 21.366 0 12336.79 0.183541 55.59391582 116.570 1 13611.61204 0.284010218 48.34774 53.715 1

Aleatory 3 4674.356 0.263889 62.89263 21.366 0 12336.79 0.183541 57.79225462 116.570 1 13611.61204 0.284010218 60.04014 53.715 0

Aleatory 4 4674.356 0.263889 59.44506 21.366 0 12336.79 0.183541 48.4849068 116.570 1 13611.61204 0.284010218 54.65302 53.715 0

Aleatory 5 4674.356 0.263889 59.54206 21.366 0 12336.79 0.183541 45.02974798 116.570 1 13611.61204 0.284010218 55.84193 53.715 0

Epistemic 1 Epistemic 2 Epistemic 3

Epistemic samplesAleatory 
samples

• Press ‘F9’ to run the calculation repeatedly and watch the 
estimates of the probability of failure change

• Is there a high level of variability in the estimate of the average 
probability of failure?



• Change the standard deviations distributions of 𝑇 and 𝑟 to 
match the table below:
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EXERCISE: SEPARATION OF EPISTEMIC AND 
ALEATORY UNCERTAINTY

• Press ‘F9’ to run the calculation again and watch the 
estimates of the probability of failure change

– Record each value by copying it as a value 

– into a new row

• Is there less variability in the estimate of average 
probability of failure?

Distribution Mean Standard Deviation Distribution Mean Standard Deviation Distribution Mean Standard Deviation

Normal 15000 100 Normal 0.8 0.01 Normal 55 15

T [lbs] r [in] Flow Stress σf [Ksi]

Parameter Distributions

(Epistemic)



• There is still a great deal of aleatory sampling uncertainty

• We can reduce this by adding aleatory samples

• Open the third tab, “Axial Stress in a Bar(100x500)”

– The number of aleatory samples has been increased 
from 50 to 500
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EXERCISE: SEPARATION OF EPISTEMIC AND 
ALEATORY UNCERTAINTY

• Press ‘F9’ to run the calculation again and watch the 
estimates of the probability of failure change

• Is there less variability in the average probability of failure?

Epistemic 
distributions 

are still 
narrower



• Exercise takeaways:

– Variability in the estimate of the average probability of failure in 
this simple example was reduced by:

• Reducing uncertainty in input distributions – this is not always possible in 
real application

• Increasing the aleatory sample size

– If uncertainty in the epistemic input distributions could not be 
reduced, we could have also increased the epistemic sample size

– Advanced sampling techniques could also be applied to reduce 
this variability
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EXERCISE: SEPARATION OF EPISTEMIC AND 
ALEATORY UNCERTAINTY
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SAMPLING SCHEME SELECTION

• The number of Monte Carlo samples is finite, we cannot run an 
infinite number of realizations to achieve exact answer
– Therefore, quantities of interest (QoIs)(i.e., mean probability of rupture) have 

sampling uncertainty

– Example: a QoI estimate will be more accurate using 1,000,000 samples than 
100 samples

Example: Mean probability of occurrence of circumferential rupture for Scenario 3, Runs 1 through 10.
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SAMPLING SCHEME SELECTION

• Sampling schemes should be selected such that sampling uncertainty 
in the QoI is sufficiently small
– Increases in sample size or in the sampling algorithm can be used to accomplish this

Running a model 5 different 
times results in 5 different QoI
estimates

Differences in the estimates are 
due to sampling uncertainty
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SAMPLING SCHEMES

• There are many ways to sample inputs for 
uncertainty propagation:
– Simple Random Sampling (SRS)

– Latin Hypercube Sampling (LHS)

– Importance Sampling (IS) [Can be used with LHS or SRS]

– Discrete Probability Distribution (DPD)

– Adaptive Sampling [Can be used with LHS or SRS]

– Other methods (quasi-MC, etc.)

– Alternative to sampling-based methods (FORM, SORM…)



• There are many ways to sample inputs for 
uncertainty propagation:
– Simple Random Sampling (SRS)

– Latin Hypercube Sampling (LHS)

– Importance Sampling (IS) [Can be used with LHS or SRS]

– Discrete Probability Distribution (DPD)

– Adaptive Sampling [Can be used with LHS or SRS]

– Other methods (quasi-MC, etc.)

– Alternative to sampling-based methods (FORM, SORM…)
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SAMPLING SCHEMES IN xLPR

Available in 
xLPR
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SIMPLE RANDOM SAMPLING (SRS)

• The simplest Monte Carlo sampling scheme is simple random 
sampling (SRS)

– All inputs are randomly sampled from their input distributions

– Pros: easy to implement, easy to explain, easy to analyze data

– Cons: sufficiently large samples may not be possible to achieve 
reasonably low sampling uncertainty

Parts of the 
input space 

might be 
missed

SRS
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LATIN HYPERCUBE SAMPLING (LHS)

• LHS “forces” samples to be spread out across domain of the 
input distributions using dense stratification across the range 
of each variable

– Pros: lower sampling uncertainty than SRS, easy to analyze 

– Cons: more difficult to estimate sampling uncertainty

SRS LHS
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LATIN HYPERCUBE SAMPLING (LHS)

• LHS covers the range of all inputs while this 
coverage is less consistent under SRS
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SRS VS LHS: ILLUSTRATION

(x1,…, x5) are the result of drawing a random 
sequence. Note the clustering and gaps that result 
from the sample.

SRS LHS

For n samples, we use the partition [0, 1/𝑛, 2/
𝑛 ,… , (𝑛 − 1)/𝑛, 1] on the cumulative probability 
axis with one sample in each partition. Note the even 
coverage of the CDF.
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IMPORTANCE SAMPLING

• Over-sample ‘important’ parts of the input space
– Pros: better estimation of rare event probabilities

– Cons: harder to implement, more difficult to analyze data, bad implementation 
can increase sampling uncertainty

• Results are calculated using importance sampling weights so that 
this sampling scheme doesn’t skew the output
Area of 

interest not 
covered by 

initial 
sampling

Importance 
sampling 

allows 
estimation 
of area of 
interest
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CHOOSING A SAMPLING SCHEME

• Simple random sampling is simplest – easy to analyze, 
combine results across runs, calculate sampling uncertainty

• Latin hypercube sampling is an improvement on simple 
random sampling without increasing the computation time 
or complexity of post-processing

• Importance sampling helps estimate very small 
probabilities in reasonable computing time

– This type of sampling scheme is chosen after preliminary 
sensitivity studies have been conducted



• Steps for PFM in xLPR v2.0:

1. Characterization of distributions on the uncertain input values

2. Generation of samples from those distributions

3. Propagation of samples through repeated fracture model execution

4. Generate output distributions by repeating steps 2 and 3 N times

5. Presentation of uncertainty analysis results in the form of functions of the 
output
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SAMPLING UNCERTAIN INPUTS

Accomplished 
using the 

xLPR 
Framework



• Steps for PFM in xLPR v2.0:

1. Characterization of distributions on the uncertain input values

2. Generation of samples from those distributions

3. Propagation of samples through repeated fracture model execution

4. Generate output distributions by repeating steps 2 and 3 N times

5. Presentation of uncertainty analysis results in the form of functions of the 
output
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SAMPLING UNCERTAIN INPUTS

Post-
processing



• Sensitivity analysis: Estimate the relationship of the uncertainty in 
the inputs to the uncertainty in the outputs of interest
– Identify the inputs that contribute to the majority of the uncertainty in the 

outputs

POST-PROCESSING TERMINOLOGY
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Example: Five most important variables identified using linear rank regression.

Example: Scatter plots showing relationship between sampled variables and output of interest.

DM1 Proportionality Constant Multiplier A ID Hoop WRS Pre-Mitigation Weld Material Ultimate Strength



• Uncertainty analysis: Analysis of the output 
uncertainty 
– Understand how the uncertainty in the inputs and in the model affects 

uncertainty in the outputs

POST-PROCESSING TERMINOLOGY
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Example: CDFs for occurrence of circ. rupture for each epistemic realization (grey), the mean (red), and 

the 0.05 (blue), 0.5 (green), and 0.95 (purple) quantiles.



• Stability/convergence analysis: Increase confidence in the 
results and assess their stability

– Show that changes to the characterization of input uncertainty, 
selection of sampling options, and numerical accuracy is sufficient 
to achieve converged results

POST-PROCESSING TERMINOLOGY
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Example: Mean probability of occurrence of circ. rupture (solid line) and 95% confidence bounds 

(dashed lines) under two different sampling options



• Sensitivity studies: “What if?” analyses performed for 
individual sub- or full models

– Study the effect of analysis assumptions including separation of 
uncertainty, distribution specification, and identification of 
problem drivers

– Determine impact of different models on the response
• Examples include constant vs. uncertain weld wall thickness, degree of 

uncertainty in PWSCC-initiated flaw size, maximum constant vs. uncertain 
operating stresses, etc. 

– Study alternate scenarios including worst-case scenarios, 
intervention scenarios, etc. 
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POST-PROCESSING TERMINOLOGY



1. Define a Quantity of Interest (QoI) or a set of QOIs

2. Determine sensitivity of the outputs to the inputs

3. Characterize sampling uncertainty of the QoI
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POST-PROCESSING ANALYSIS:
WORKFLOW

Occurrence of circ. rupture ID Hoop WRS pre-mitigation
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DEFINING A QUANTITY OF INTEREST

• Multiple outputs are available in xLPR v2.0 as QoI:

– Occurrence of rupture, occurrence of leak, crack length, etc…

• QoIs are defined relative to looping:
– For the binary output ‘occurrence of rupture,’ a natural QoI is the probability of rupture

– Aleatory only (risk): probability of rupture over na aleatory samples for each epistemic sample

– Aleatory and epistemic uncertainty: average probability of rupture over all na*ne samples

For the model output crack depth, the 
QoIs ‘mean crack depth’ and ‘95th

percentile of crack depth’ can be 
calculated from the output distribution, 
represented here using a frequency 
histogram



69

ANALYSIS OF QoI AS A FUNCTION OF SAMPLING 
DATA CONSIDERED

• Best estimate:
Mean probability over all samples (aleatory AND epistemic)

• Knowledge of uncertainty bound:
99th percentile of epistemic samples

• Knowledge of variability:
Probability for each epistemic sample

Mean probability of rupture stays 
below 5% at 60 years but there is a 
substantial amount of knowledge 
uncertainty in the probability of 
rupture as illustrated by the 99th

percentile shown in the figure



1. Define a Quantity of Interest (QoI) or a set of QOIs

2. Determine sensitivity of the outputs to the inputs

3. Characterize sampling uncertainty of the QoI
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POST-PROCESSING ANALYSIS:
WORKFLOW

Occurrence of circ. rupture ID Hoop WRS pre-mitigation

This input 
appears to 

have a slight 
relationship 

with the 
output
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SENSITIVITY ANALYSIS

• Sensitivity analysis (SA) is used to:
– Understand the relationship between the model inputs and outputs
– Identify the inputs that have the most significant impact on the results of the 

model

• Knowledge of the most important inputs can be used to:
– Target inputs where more information could be collected to decrease 

uncertainty
– Identify inputs for importance sampling to increase precision in estimating rare 

probabilities

In xLPR, the DM1 multiplier is highly 
correlated with the probability of 
crack (left), while the hoop WRS pre-
mitigation is not as highly correlated 
with the probability of crack (right) 



1. Define a Quantity of Interest (QoI) or a set of QOIs

2. Determine sensitivity of the outputs to the inputs

3. Characterize sampling uncertainty of the QoI
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POST-PROCESSING ANALYSIS:
WORKFLOW

Occurrence of circ. rupture ID Hoop WRS pre-mitigation
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CHARACTERIZING SAMPLING UNCERTAINTY

• Reminder: The number of Monte Carlo samples is finite

• Statistical analysis methods can be used to quantify sampling 
uncertainty

• Running the model with different random sequences can help us 
understand and quantify this uncertainty
– Accomplished by changing the random seeds in xLPR

Running a model 5 different 
times results in 5 different QoI
estimates 

Differences in the estimates are 
due to sampling uncertainty
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CONFIDENCE INTERVALS

• Confidence intervals (CIs) are a common measure of 
sampling uncertainty

– Bootstrap method is one of many ways to calculate confidence 
intervals 

Sampling uncertainty in a rupture 
probability can be characterized 
using confidence intervals as an 
alternative to examining 
variability across multiple runs

Interpretation: There is 95% 
confidence that the true 

probability lies within the interval
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STATISTICAL BOOTSTRAP

• The statistical bootstrap method is one of many ways to construct CIs
– Simple to implement, flexible, and generic statistical method

– Observed sample (of size n) is an estimate of the population
• RE-assemble the data (with replacement) repeatedly – each time computing the QoI

• Collection of bootstrapped QoIs estimates sampling variability in the QoI

Bootstrap distribution of means (histogram) and CI 
(vertical lines)
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LOOPING AND ANALYSIS

• Looping over aleatory and epistemic uncertainty should be 
considered in the post-processing analysis

• Looping allows for uncertainty separation but can increase sampling 
uncertainty of ‘best-estimate’ QoIs
– Larger sample size may be needed to estimate small probability under looping

‘Best-estimate’ QoI can have much 
larger sampling variability when 
looping. Figure shows true sampling 
uncertainty of a best-estimate under 
looping (red) and no looping (blue)

Epistemic uncertainty dominates Aleatory uncertainty dominates 

Separation of aleatory and epistemic uncertainties

Example

Sampling 
uncertainty 
with looping 

is much wider 
than without
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LOOPING AND ANALYSIS

Choose sample sizes so aleatory and epistemic uncertainties are not 
confounded by finite sample size uncertainty

Small aleatory sample size results in large 
sampling uncertainty when estimating a 
single epistemic distribution

This sampling uncertainty propagates into 
estimation of the epistemic uncertainty

Same scenario with larger 
aleatory sample size

Actual epistemic uncertainty 
is much smaller – most of 
the uncertainty was sampling 
uncertainty

Larger aleatory sample size results in 
better estimation of each epistemic 
distribution

Less sampling uncertainty propagated into 
estimation of the epistemic uncertainty

Lesson: Sample sizes must be chosen with care and are problem dependent



• Uncertainty quantification used for probabilistic fracture 
mechanics can be a powerful tool when applied to problems of 
interest

– Can be used to determine likelihood of certain outcomes for LBB 
problems

• Statistical analysis of model results helps to refine simulations and 
provide the best possible picture of risk

– Uncertainty analysis tells us how uncertainty in inputs impacts 
uncertainty in outputs and helps us quantify this uncertainty

– Convergence analysis tells us whether or not our simulations are giving 
us a stable result

– Sensitivity analysis can help pinpoint inputs for which additional study 
or data may be most important

CONCLUSION
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• Students should now be able to:

– Understand and compare deterministic and probabilistic 
fracture mechanics approaches

– Understand the fundamental building blocks of a 
probabilistic fracture mechanics (PFM) analysis 
including:

• Characterization of uncertainty

• Separation of uncertainty

• Methods for sampling inputs for Monte Carlo analysis

• Interpretation of PFM results
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REVIEW OF MODULE 1 LEARNING OBJECTIVES



What is ahead for us for the 
remainder of this training?
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SCHEDULE

Day 1: Tuesday March 27, 2018

Time Topic Presenter

08:00AM - 08:30AM Introduction and Opening Remarks
Matt Homiack (NRC/RES)
Aubrey Eckert-Gallup (SNL)

08:30AM – 9:45AM
Module 1:

PFM Background
Aubrey Eckert-Gallup (SNL)

09:45AM - 10:00AM BREAK

10:00AM - 11:30AM
Module 2:

Introduction to R
Nevin Martin (SNL)

11:30AM - 12:30PM LUNCH BREAK

12:30PM - 01:15PM
Module 2: Continued

Introduction to R
Nevin Martin (SNL)

01:15PM - 01:30PM BREAK

01:30PM - 04:00PM
Module 3:

Sensitivity Analysis
Dusty Brooks (SNL)
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