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MODULE 1: PFM BACKGROUND
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e At the end of this module, students will be able to:

— Understand and compare deterministic and probabilistic
fracture mechanics approaches

— Understand the fundamental building blocks of a
probabilistic fracture mechanics (PFM) analysis
including:

* Characterization of uncertainty

e Separation of uncertainty

* Methods for sampling inputs for Monte Carlo analysis
* Interpretation of PFM results

—
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* Probabilistic Fracture Mechanics (PFM) Background

 Comparing deterministic and probabilistic approaches

 Components of a PFM analysis
— Characterizing input uncertainty
— Separation of uncertainty: Aleatory vs. Epistemic
— Sampling structure and sampling schemes
— Understanding PFM results

 Example of a PFM analysis

— Basic mechanics example
— Example of an xLPR V2.0 PFM analysis

—
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Probabilistic Fracture Mechanics
(PFM) Background
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Reactor
Vessel

* Probabilistic Fracture Mechanics (PFM)
has been increasingly used in the
fitness for service assessment of aging
piping, reactor vessels, and steam

Pressurizer

Steam
Generator

()]

generator tubing in recent years Hirano, EJAM (2010)

Baseline
Results
Change in risk Change in risk
‘ acceptable! | acceptable?

| [ ]
* Usedin:
. | * Non-Destructive Examination (NDE)

Failure Frequency (Year ") or CDF . . .
—= « Risk Informed In-Service Inspection (ISI)

Probability Density (%)

- = = Theoretical
Actual

* Enhance the technical basis of
Probabilistic Risk Assessment (PRA)
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”“ WHY DO WE PERFORM @ Sandia
(I

* To better understand performance margins and
uncertainties

* Many applications have probabilistic performance
requirements:
* Probability of an undesirable event happening < 10™

* To provide consistent set of criteria on systems so that
resources can be focused where needed most

e Qualification support:
* Level of confidence in design

* Body of evidence that the system meets its design

n reﬂuirements
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Comparing deterministic and
probabilistic approaches
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Margin of

/ safety
Determln.lstlc M
calculation < »

/ Failure

Performance metric

* Deterministic approach assumes all significant parameters defining
the problem are known

 Where uncertainties exist (e.g., materials properties) conservative
bounding values are assumed

» Safety factors are imposed to ensure satisfactory margins against
uncertainties
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* Deterministic approach uses fixed inputs that generate a
single output

Input / Environment Output /

* For example:
X = Weld Residual Stress (WRS) profile across weld thickness
Y = Occurrence of a through-wall crack

_
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Example Problem: Calculate the stress in an axially loaded bar and
determine if it will fail using a deterministic approach

(h T = 15000 Ibs

r = 0.5in

* Flow stress: 07 = 55.5 Ksi

« Safety factor: SF = 2.77(ASME Section Ill Code Allowable Stress; SA-
36)

Load T

* Primary membrane stress: 0,,, =

Area Tr2
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* Navigate to \Exercises\Module 1 and open the file
“Module 1 Axial Stress in_a Bar.xlsx”
* On the first tab, “Deterministic problem”, enter the
parameter values
 Does the bar fail?
Deterministic example: Calculate the stress in an axially loaded bar and determine if it will fail
.‘ r =05in
' Load T
Om = — >
Area r
of = 55.5 Ksi
SF = 2.77

_
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e Solution: Does the bar fail?
— The bar does not fail, the primary membrane stress

(19.099 Ksi) is less than the flow stress (55.5 Ksi)

Sandia
National
Laboratories

Deterministic example: Calculate the stress in an axially loaded bar and determine if it will fail
; Results Failure
II T[Ibs] rlin] |Flow Stress o;[Ksi] | Safety Factor SF| Primary Membrane Stress o, [Ksi] | 1s SFx 0., » 0; ? [No =0, Yes = 1 (Failure)]
|| 15000 0.5 : 2.77 19.099
W
. r = 0.5in
|
|
. Load T
M Area  mr?

_
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* Probabilistic approach evaluates the system at many input values
and maps these to many outputs

Input Distributions ——— System » Uncertainty in Quantity of

N samples of X Evaluation Interest

N outputs of Y

a
nput - 7
N realizations of S i i
Output 1 ) r
Input 2 B :
o 0 0 20 0
9%\ Time {years)

k Output 2
e y

Input 3

_
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e Steps for uncertainty propagation in PFM in xLPR v2.0:

Characterization of distributions on the uncertain input values
Generation of samples from those distributions

Propagation of samples through repeated fracture model execution
Generate output distributions by repeating steps 2 and 3 N times

Presentation of uncertainty analysis results in the form of functions of the
output

COE

Input Distributions
N samples of X

Output Distributions
N outputs of Y

| t1 .. (_

npu N realizations of § f ? |
- o

Input 2

Pralh N
‘ 9}\.\ _) \_ outpur 2
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2 2
2 ) 1 ) 2
< < > <
) )
o o
Sl Sl
(=¥ (=¥

O
 —l
Performance metric Performance metric

* Probability distributions are assigned to variables which have a
significant effect on the problem (random variables)

* Problem is solved to determine probability of desired results
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Example Problem: Calculate the stress in an axially loaded bar and
determine if it will fail using a probabilistic approach

Normal
Distribution

Mean

* Flow stress: ap~N (55, 15) |Ksi]

N\ v J

Notation: This mathematical expression is read as “The flow

stress is approximately Normally distributed with a mean of
55 Ksi and a standard deviation of 15 Ksi.”

(h T~N(15000,5000) [Ksi]

r~1fV(O.\8, 0.2) [in]

Standard
Deviation
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AXIAL STRESS IN A BAR

Example Problem: Calculate the stress in an axially loaded bar and
determine if it will fail using a probabilistic approach

T~N (15000, 5000) [Ksi]

wp 7~N(0.8,0.2) [in]

or~N(55,15) [Ksi]

9.0E-05 25 0.0
8.0E-05
0.025 -

B 7.0E-05 2
2 B z

6.0E-05 = =
=) ) v 0.02 A
3 g Z 0.02
; 5.0E-05 A L5 a
= 4.0E-05 E 50.015 !
o) = =
2 T 1 c

3.0E-05
e = S o001 1
B 20E05 & a

05
1.0E-05 - 0.005 4
0.0E+00 ¥—¥—e—-or--ov--oe--er
mmmmmmmmmmmmm
S LSS OSSO § 0 —_— 0 - ——
VG AT DT A AV A AN o 0 01020304050607 0809 1 1112131415 0 10 20 30 40 50 60 70 80 90 100
T [1bs] r [in] o;[Ksi]
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* Navigate to \Exercises\Module 1 and open the file
“Module 1 Axial Stress in_a_ Bar.xlsx”

* On the second tab, “Probabilistic approach”, enter
the distribution values

* Does the bar fail? What is the probability of failure?

Probabilistic example: Calculate the stress in an axially loaded bar and determine if it will fail
. [ Parameter [ sampledparameter Values ioo0) | Resuits Failure

| ( | T [bs] rfin] [ Flows Stress o, [Ksi] Tlibs] r[in] Flow Stress o, [Ksi] | Primary Membrane Stress o,, [Ksi] | Is o,, <, ? [Yes =0, No =1 [Failure)]
| Distribution| Mean| Standard Deviation | Distribution] _Mean | standard Deviation | _Distribution | Mean| Standard Deviation | 10143.87764 0818838225 6548431571 4819 o
| . [1s000] S000 Norm 08 02 Normal o 1259334852 0.986345801 aL35775058 aais o
I 15556.34059 0.935457265 55.40689649 5.659 0
| _ T~N ( 15000,500 0) 16816 0.685109176 3693360257 5.392 o
I‘ ’ 6910.210381 1195325136 5056999859 1539 0
19972.23016 0759680967 8161212637 9.541 0
[ 1"’.'-"IV(OBJOZ) 1751458374 0.580220108 62.16220062 16,560 0
[ | | ] — weoaassmss | osmummm | memses s 5
- 1638166002 0.720813817 39.29706568 10,035 a
o‘f N (5 5‘ 1 5) [KS 1] 11116.82353 0.711311657 44.55212217 6.594 [
Load T 1225554551 0.645085703 344517881 9.259 a
P et T cs— 1234189308 0.59761209% 62.33365638 11.000 o
m = area  mr? s> | ossno | romassn = o
1340030617 0.975654992 47371671 2481 a
157806768 0.858001852 3430617148 5823 a
s0Es 15 003 19100.88508 0.862269267 5782867104 5177 o
B0E0S 1455401109 0.575255884 7131775356 13.999 a
028 3640.895909 0.881571445 52.56482134 1.491 a
B TRE05 2 24887.75218 0.840915873 45.17481339 11.203 L]
B aptes 2 1456185784 0.815279508 55.79063516 6.974 )
£ a om 1544065291 094882255 571821322 5459 o
2 505 2 1230311608 0522010575 <5.79c8807 o7 0
=4 \ S 7552.183845 0.760135045 3324776998 a.182 a
- / \ 20 6463.341337 0246650233 74.61025488 1721 [
Z sercs 2 / \ 6808791289 1094916338 8033442622 1608 [
£ 2 o 1818694138 064901109 5345570566 174 0
20805 IS / \ 0697326338 3722170014 13475 o
roros 05 / \ o 0815221657 5651368653 5007 o
0.771150304 39.45438464 5.885 a
ooe+00 + 1043350320 6927340625 5.152 a
O o 0 oags1342 0orsines 11000 o
g o 0403 03 04 05 04 07 08 09 1 1113 13 14 15 © 10 20 30 40 30 80 70 s so 1w T s = 5
r [in] oy [Ksi] i T 12627 o
0.715230091 4537306182 7.608 o




EXERCISE: PROBABILISTIC AXIAL Sandia

I|iIHH““"'i STRESS IN A BAR Plaahtzlorg?lllries
I hi

 XLPR

* Solution: Does the bar fail?
— The bar experiences 6 failures in the screenshot below.
— The calculated probability of failure is 6/1000 = 0.006
— Press ‘F9’ to rerun the calculation and get a different result

Probabilistic example: Calculate the stress in an axially loaded bar and determine if it will fail

[ sompledparametervalues (lo00) | Results Failure [Number of Failures | 5|

T[lbs] r[in] Flow Stress o, [Ksi] T[lbs] r[in] g [Ksil | Primary Stress oy, [Ksil | Is 6, <0, ? [Yes =0, No =1 (Failure)] ‘Plohabilil‘fol Failure ‘ 0.005‘
[Mean] standard Deviation | Distribution] Mean |standard Deviation istributi [Mean] standard Deviation| 1897437539 0748662477 80.75136728 10.776 0
Normal _|15000] 5000 Normal | 08 | 0.2 Normal [ 55 | 15 14860.38787 0802048917 3271557465 7.353 o
13447.57456 0.996279311 45.81894119 4313 )
T ~ N ( 1 5 0 0 0 5 0 0 0) 14308.05847 0.795234691 3154977048 7.202 )
’ 19520.12586 0.870626981 76.16651638 8157 )
T~ N ( 0 8 0 2) 1752539455 1.001465754 60.66807656 5.562 )
-0,V 2440231852 0.858425642 42,05384521 10.541 )
1126651671 o 33.9054625 14.044 )
g, f | N (5 5 , 1 5 ) [KS 1] 16969.09278 1.293107615 26.30559425 3.230 )
12453.55266 0.313763466 7171262604 5568 )
Load T 18000.19795 0.821340998 65.44150505 8493 o
- = 10339.76557 0.826330987 65.04497333 4.820 0
Area r2 12852.869% 0.639622094 62.0061366 10.000 o
20087.02784 1.030089948 5238872649 6.020 0
12000.49409 1.009446614 21.19862025 3.743 o
F.0E-05 25 0.03 12652.50909 0.83472061 66.32754565 5.781 0
I 20606.11109 0.630337664 64.54795676 16.508 )
0035 5576.599095 0.638252748 63.93340123 2.356 0
70805 2 13090.70328 0.56731344 75.49435958 12.947 o
E' . 2 12457.34627 0501240471 39.13327581 15.783 0
g @ oo 10859.56472 0759070982 79.72820456 5414 o
2 soes 2 5438.317622 0.825077801 63.48471636 2.543 )
B ~ 13786.641 1.185837202 87.19970109 3.121 )
R £ 12646.93064 0942526874 63.21699208 4532 o
_‘.; 30805 § 11955.08195 0.762737652 5227745666 6.541 )
£ S on 10847.36474 o 70.53856321 5.136 )
2.0E-05 o 18219.79708 0.37904796 37.63343851 40.365 1
. : S0 15798.02315 0.882144305 '59.88620768 6.462 )
19995.10635 0.636395493 62.37102186 13.124 )
0.0E400 17350.42032 0.522421416 47.7031602 20236 o
@@ v@ & @b @é’ v@“ @“b q@@&@“ 0 0 16846.1195 1.008514768 54,33984881 5.272 0
AT AT AT Al aT )t o 0 01020304050607 0809 1 1112131415 0 10 20 30 40 50 60 70 80 90 100 12729.62982 0.466495839 67.167249 18.620 0
T [Ibs] r [in] o [Ksi] 15069.72825 0.804578026 61.85255167 7.410 )
20384.4926 0.61996461 4366008534 16.882 o
8371270367 0.635291119 62,64897485 6.600 o
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* Challenge problem: Using the Excel file, fill in the table below by
adding samples to the calculation and changing the mean of T

— Create copies of the probabilistic tab for each row

EXERCISE: PROBABILISTIC AXIAL @ Sandia

Number of Mean of T Number of | Probability of
Samples [1bs] Failures Failure
1000 15,000
5000 15,000
10,000 15,000
10,000 20,000
10,000 25,000

* Which of these failure probabilities changes the most when you
recalculate with new samples (Press F9)?

_
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STRESS IN A BAR

* Challenge problem solution:

Number of Mean of T Number of | Probability of
Samples [Ibs] Failures Failure
1000 15,000 ~8 ~0.08
5000 15,000 ~59 ~0.0118
10,000 15,000 ~107 ~0.0107
10,000 20,000 ~197 ~0.0197
10,000 25,000 ~315 ~0.315

* With fewer samples, the estimate of the probability of
failure is less precise.

_
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* Probabilistic approach results in probability of
failure region

0.120 -
Membrane
0-100 1 Stress (0,,)
Distribution

e
o
@
S

Flow Stress
(ay)
~ Distribution

e
[=]
~
o

Probability Density
2

Failure

0.020 A Probability
®/ Region
0.000 ——s

-20 -10 0 10 20 30 40 50 60 70 80 90 100 110 120 130

Stress [Ksi]

_
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COMPARISON OF DETERMINISTIC AND @ Sandia
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Probabilistic
L L o Analysis
. Probabili
Multiple Ongﬁ
IRERRARRRRAR! IRERRERRRRAR! IRERRARRRRAR! ttttttttttyCaloulations v o
Many Values Used Many Values Used Many Values Used Many Values Used
Stress + Fracture Toughness + Crack Growth Rate + DefectSize Life
I [ [ [ I
nole Single Very
+ + + Cj:ﬂls;lﬁon Conservative
Life Value
Conservative ._I I—- Conservative Conservative -—I Conservalive'—]
Value Used Value Used Value Used Value Used

Deterministic
Analysis
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Components of a PFM Analysis
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 Uncertainties exist in both Deterministic Fracture Mechanics

(DFM) models and Probabilistic Fracture Mechanics (PFM)
models:

— Model uncertainty: The fracture model structure, i.e., how accurately
the deterministic fracture model describes the actual fracture process

— Numerical scheme uncertainty : The numerical approximation, i.e.,

how appropriately the numerical method is used to approximating the
model

— Input/Output uncertainty: May only be known approximately, may vary

between instances of the mechanism/sub-model for which predictions
are sought

* PFM also involves sampling uncertainty:

— Sampling uncertainty: quantities of interest are uncertain because the
model can only be run a finite number of times

_
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e Steps for uncertainty propagation in PFM in xLPR v2.0:

Characterization of distributions on the uncertain input values
Generation of samples from those distributions

Propagation of samples through repeated fracture model execution
Generate output distributions by repeating steps 2 and 3 N times

Presentation of uncertainty analysis results in the form of functions of the
output

COE

Input Distributions
N samples of X

Output Distributions
N outputs of Y

| t1 .. (_

npu N realizations of § f ? |
- o

Input 2

Pralh N
‘ 9}\.\ _) \_ outpur 2
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* |nput uncertainty is usually characterized using probability
distribution functions

— Distribution will depend on the context of the application (e.g.,
one weld vs. a collection of welds)

Normal  ee— LogNormal e

— Some combinations of inputs are statistically dependent, meaning
that sampling them independently could lead to non-physical
conditions

* Example: Inner diameter of a pipe must be greater than outer diameter

e Correlations can be used to characterize the dependency between
inputs to avoid

_
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* Traditional techniques to select probability distributions include:

* Expert review: used when no data is available

* Bayesian update: used when data becomes available

S9seaJoul
Ajjigejieae eleq

* Distribution fitting: enough data available to fit distribution

* Other techniques include: evidence theory, special objective
response surface, etc.

* In the context of xLPR v2.0, much of the input calibration was done
through distribution fitting using field and lab data

_



EXERCISE: DISTRIBUTION FITTING @ o

Laboratories

||

.||I|H”“Hi:n
 XLPR

* Navigate to \Exercises\Module 1 and open the file
“Module_1_ Distribution_Fitting.xIsx”

* On the first tab, “Distribution Fitting”, we will fit

distributions using 30 measurements of flow stress
|

0.030 1

o ] Empirical
distribution derived

— from 30

measurements

e
o
o
=)

Probability Density

e
o
=
o

0.005 A

0.000 T T T T T 1
50 60 70 80
o [Ksi]

20 30 40
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 We will fit Lognormal and Normal distributions to this data
* Lognormal Distribution

— Could be parameterized in several ways depending on the
software
* In Excel, the log mean and log standard deviation are used

* |n GoldSim, either the true mean and true standard deviation or the
geometric mean and geometric standard deviation are used

— Enter the following equations to calculate these parameters:

Lognormal Parameters Used in EXCE'
mean(In(c;)) [Log Mean] =AVERAGE(T4:T33) 4
sd(In(c})) [Log SD] -STDEV(T4:T33) Used in
emean(in(of) [Geometric Mean]|  =EXP(AVERAGE(T4:T33)) = GoldSim
esd(in(sf)) [Geometric Mean] =EXP(STDEV(T4:T33)) t;

(included here
for information

ﬂ only)
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e Normal Distribution

— Parameterized using the mean and standard deviation
— Enter the following equations to calculate these parameters:

Normal Parameters True mean and
mean(o,) [True Mean]] =AVERAGE(S4:533) true standard
sd(o,) [True SD] =STDEV(S4:S33) deViation cou Id

also be used in

GoldSim for the
Lognormal
distribution

e Distribution fitting for other distribution forms (i.e.,
Weibull) could also be accomplished using Maximum
Likelihood Estimation (MLE)

_
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Final fitted distributions should look like this:

Lognormal Parameters

™)

Normal Parameters

mean(In(oy) [Log Mean] 4.00
sd(In(oy) [Log SD] 0.23 mean(og) [True Mean] 56.04
e™ """ [Geometric Mean] 54.63 sd(oy) [True sD] 12.40
>4 |Geometric Mean] 1.26

0.035 1

0.030 A

0.025 A

0.020 A

0.015 A

Probability Density

ot
o
=
=

0.005 A

0.000 +

=Fitted Lognormal = =Fitted Normal

Sandia

National _
Laboratories
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EXERCISE: DISTRIBUTION FITTING
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 Statistical goodness of fit tests show that both of these
distributions are consistent with the data

 QQ-plots with confidence intervals show the comparison
between the data and fitted distributions

— Red line represents a perfect fit, black dots are data points

Normal-model predicted quantiles on log-scale

=<
~

N
<

e ]
3

< |
)

© |
©

o
7,

.

3.4

3.6 38 4.0
Empirical log-data quantiles

4.2

Lognormal

Normal-model predicted quantiles

40
1

f=]
L=+

(=0
~

60
L

50
1

30
N

40 50 60 70

Empirical data quantiles

Normal

_
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* Go to the “Probabilistic approach (1000)” tab

* Toggle between the Lognormal and Normal fits for flow
stress to see how this impacts your results

Flow Stress o; [Ksi]
Distribution Mean| Standard Deviation

Lognormal - 001 0.234448917
Mormal

* Takeaways:

— If we applied a more rigorous uncertainty analysis to this example we would
show that failure probability calculations are sensitive to distribution tails

— Sensitivity studies examining distribution choice should be applied in cases
where the correct distribution is not clear

_
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QUANTIFYING INPUT UNCERTAINTY:

HOW TO GENERATE THESE DISTRIBUTIONS?

* Through data from fracture experiments on multiple pieces of hardware
* Pros: Best way to quantify unit-to-unit variability

* Cons: Expensive

* Through field data from legacy fractured systems

* Pros: Real applicability

* Cons: Knowledge from past might not be relevant to the future

e Through the use of fracture models representing the system
* Pros: In principle, model can be executed many times to quantify uncertainty

* Cons: Not always an accurate representation of reality

Sandia
National
Laboratories

A combination of both experiments and models, combining the pros and cons of each

Example: field data and
expert opinion are used to
bound the model input
weld residual stress

-200

-400

-———
P

0.2 04 0.6
Normalized Depth from ID (mm)

0.8 1.0




National _
Laboratories

”“ CLASSIFICATION OF UNCERTAINTY: Sandia
I, ™)

NI ALEATORY VS. EPISTEMIC

-\xLPR
 Model predictions are affected by two primary sources of
uncertainty that can be used to classify inputs
— Aleatory Uncertainty: Natural (intrinsic) variability in system
inputs and properties, considered irreducible

* Example: Manufacturing differences among units

— Epistemic Uncertainty: Lack of knowledge about the system of
interest, could be reduced by collecting additional information
* Example: Uncertainty in crack growth model due to lack of data

? Risk Knowledge about risk
1 cedf curve
Aleatory

consequence consequence

_

ter

N,y CCdf curves

FProbability event
as big or grea
as big or greater

FProbability event

Epistemic
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* Navigate to \Exercises\Module 1 and open the file
“Module_1 Separation_of Uncertainty.xlsx”

* Open the second tab, “Basic Separation of Uncertainty”

| | Same bar
| | r~N(0.25,0.05) (Epistemic) P slightly
| ~N(55,5) [Ksi !
o;~N(55,5) [Ksi] (Aleatory) different

_Load _ T
distribution

m ™ Area  mr2
parameters

Probability Density
Probability Density
Probability Density

Ve R LR A 11 02 0.3 0.4 05 0.6 07 0.8 O
T [1bs] r [in]
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AND ALEATORY UNCERTAINTY

-ﬁ T~N(15000,5000) (Epistemic)
5 r~N(0.25,0.05) (Epistemic)
or~N(55,5) [Ksi] (Aleatory)
_Load _ T

Oy = =
m  Area  mr?

9.0E-05

=
=
b4

8.0E-05

=
=3
@

7.0E-05

o ~ @ ©
=
1=}
3

6.0E-05

=]
=]
)

S.0E-05

=
5

4.0E-05

=4
=3
4

3.0E-05

Probability Density

Probability Density
Probability Density

2.0E-05

LOE-05

=
=3
=

=3 = 8] w s
=)
=]
5]

0.0E+00 ¥—/—F—--F"T"7T""—"T—"T—"T—T3

o o
& 0 f—_———
> v '{'\ “P 0 01020304050607 0809 1 111213 1415 0 10 20 30 40 50 60 70 80 90 100

T [1bs] \/ r [in] o [Ksi]

T and r are set to

epistemic:
Uncertainty in these inputs could
be reduced by more
measurements or more accurate
measurement techniques

_

gy is set to aleatory:

Uncertainty in this input is due to
random variability in material
properties
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 What do these types of uncertainty mean in practice?

— In this demonstration we have 3 epistemic samples and
5 aleatory samples and use simple random sampling

— Example results shown below, press ‘F9” in your Excel file to rerun
the calculation

[ ] [ ] o
Aleatory Epistemic samples
Results _ Results Failure _ Results Failure
samples Thbs] | rlin] | oflKsil | o, [Ksi] [Iso,<o.2| Tibs] | rlin] | orlksil | o, [Ksi] | Iso, <02 | Tlibs] rlin] | olKsi] | o, [Ksi] | Iso,<o;?
leatoryd | 4674.356 | 0.263839 | 55.90232| 21.366 0 12336.79 | 0.183541| 53.0751509 | 116.570 1 13611.61204 | 0.284010218 | 56.88928 | 53.715 0
| Aleatory2 | 4674.356 | 0.263839 | 58.6355 | 21.366 0 12336.79 | 0.183541 ] 55.59391582 | 116.570 1 13611.61204 | 0.284010218 | 48.34774| 53.715 1
| Aleatory3 || 4674.356 | 0.263839 | 62.89263| 21.366 0 12336.79 | 0.183541] 57.79225462 | 116.570 1 13611.61204 | 0.284010218 | 60.04014 | 53.715 0
_Aleatory4 | 4674.356 | 0.263889 | 59.44506 | 21.366 0 12336.79 | 0.183541| 48.4849068 | 116.570 1 13611.61204 | 0.284010218 | 54.65302 | 53.715 0
leatory5| | 4674.356 | 0.263889 [ 59.54206| 21.366 0 [12336.79] 0.183541] 45.02974798] 116570 1 13611.61204 [ 0.284010218[ 55.84193 | 53.715 0

 What is the probability of failure?

_
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* The collection of aleatory samples for each epistemic
sample represents an estimate of the probability of failure

Results Failure Results Failure Results Failure
T [lbs] r[in] o; [Ksi] | o, [Ksi] |Is on<af? T [Ibs] r[in] o; [Ksi] o, [Ksi] | Is o!<af? T [Ibs] r[in] o; [Ksi] | o, [Ksi] Isc,<0;?
4674.356 | 0.263889 | 55.90232| 21.366 |/ 0 \|12336.79]0.183541 53.0751509 | 116570 | / 1 '\ |13611.61204]0.284010218] 56.88928 | 53715 | / 0 '\
4674.356 | 0.263889 | 58.6355 | 21.366 0 12336.79 | 0.183541 | 55.59391582| 116.570 1 13611.61204 | 0.284010218 | 48.34774 | 53.715 1
4674.356 | 0.263889 | 62.89263 | 21. 0 12336.79] 0.183541 57.79225462| 116.5 1 13611.61204 | 0.284010218| 60.04014 | 53.715 0
4674.356 | 0.263889 | 50.44506921.366 )\ 0 12336.79 | 0.183541 | 48.48490 6.570 1 13611.61204 | 0.284010218 | 54.6530 715 0
4674.3560}539-@4206 21.366 | N\, 0 /| 12336.79] 0.183541 | 45:67974798| 116570 | \. 1/ |[13611.61204]0.284010218|.55:84193| 53715 | \. 0
" -—
For the first For the second For the first
epistemic sample, epistemic sample, epistemic sample,
the probability of the probability of the probability of
failure is failure is failureis
0+0+0+0+0 1+1+1+1+1 0+1+0+0+0
. =0 . =1 - =0.2

_
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* The collection of epistemic estimates of the probability of
failure represents an estimate of the distribution of the
probability of failure

Results Failure Results Failure Results Failure
T[lbs] r[in] o; [Ksi] | o, [Ksi] Istmf? T[lbs] r[in] o; [Ksi] o, [Ksi] Isggrf? T[lbs] r[in] o; [Ksi] | o, [Ksi] Isc,<0:?
4674.356 | 0.263889 | 55.90232  21.366 / 0 \ 12336.79 | 0.183541 | 53.0751509 | 116.570 / 1 \ 13611.61204 | 0.284010218 | 56.88928 [ 53.715 / 0 <
4674.356 | 0.263889 | 58.6355 21.366 0 12336.79 | 0.183541 | 55.59391582| 116.570 1 13611.61204 | 0.284010218 | 48.34774| 53.715 1
4674.356 | 0.263889 | 62.89263 | 21.366 0 12336.79 | 0.183541 | 57.79225462| 116.570 ( 1 13611.61204 | 0.284010218 | 60.04014 | 53.715 0
4674.356 | 0.263889 | 59.44506 | 21.366 \ 0 }12336.79 0.183541| 48.4849068 | 116.570 1 13611.61204 | 0.284010218 | 54.65302 | 53.715 0
4674.356 | 0.263889 | 59.54206 MO / 12336.79 | 0.183541 | 45.02974798 116.5B¢'\1 / 13611.61204 | 0.284010218 | 55.84193 [ 53.715 ‘AO /
- - _
Probability of Probability of Probability of

failure=0

failure=1

failure = 0.2

* |s this a good estimate of the uncertainty in the probability

of failure?

_
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* This sample size does not generate a stable estimate of the

distribution of the probability of failure

— Running the simulation again (push ‘F9’) creates very different results

Results Failure Results Failure Results Failure
T [lbs] r[in] o; [Ksi] | o, [Ksi] Ison<af? T [Ibs] r[in] o; [Ksi] O, [Ksi] Iso!<af? T [Ibs] r[in] o; [Ksi] | o, [Ksi] Isc,<0;?
4674.356 | 0.263889 | 55.90232 | 21.366 / 0 \ 12336.79 | 0.183541| 53.0751509 | 116.570 / 1 \ 13611.61204 | 0.284010218 | 56.88928 | 53.715 / 0 <
4674.356 | 0.263889 | 58.6355 21.366 0 12336.79 | 0.183541 | 55.59391582| 116.570 1 13611.61204 | 0.284010218 | 48.34774 | 53.715 1
467 10263229 | 62 826321366 0 12336.79 1.0.183541.1.52.29225462 |_116.570 1 13611.61204 |60.04014 153 715 0
467 Pr ili f 6 0 }12336.79 Pr ili f 1 13611.61204 HH 0
467 obab ty o 6 0 /| 12336.79 obab ty 0 1/ |13611.61204 PrObablllty of | 0
failure=0 failure=1 failure = 0.2
Results Failure Results Failure Results Failure
T [lIbs] r[in] o; [Ksi] | o, [Ksi] |Iso,<0:?| T[lbs] r[in] o; [Ksi] o, [Ksi] | Iso,<0;? T [Ibs] r[in] o; [Ksi] | o, [Ksi] Iso,<0:?
13418 | 0.249613 | 54.32995| 68.549 1\ 16266.9 | 0.314188( 51.86511668( 52.454 / 1\ 18942.78021| 0.213831191 | 52.95519 | 131.872 / 1\
13418 |0.249613|57.73549 ( 68.549 1 ‘ 16266.9 | 0.314188| 61.4391029 52.454 0 18942.78021 | 0.213831191 | 55.51452 | 131.872 1
13 1.0.249613 15402082 |_68.549 i 16266.9 L0.3141881 51 18712643 [_52.454 i 18942.78021 1.48.84877 |_131.87 1
1 HH 19 1 16266.9 HH 0 18942.78021 HH 1
3 Probability of E=S— 16266_9| Probability of 7 Tisamon] Probability of -=—
. ——— . — . S
failure=1 failure = 0.6 failure=1

e Additional samples anc

techniques for uncertainty

characterization and propagation may be needed

_



\ XLPR

e Steps for PFM in xLPR v2.0:
1.

COR

SAMPLING UNCERTAIN INPUTS @ o

Laboratories

Characterization of distributions on the uncertain input values

Generation of samples from those distributions

Propagation of samples through repeated fracture model execution

Generate output distributions by repeating steps 2 and 3 N times

Presentation of uncertainty analysis results in the form of functions of the

output

Input Distributions
N samples of X

Input 1

\

N realizations of §

Output Distributions
N outputs of Y

oo

Output 1

& e

k Output 2
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* When sampling inputs, there are three decisions to

make:

— Whether or not to separate aleatory and epistemic
uncertainty

— What sampling scheme to use for repeatedly sampling
uncertain inputs

— How many samples should be included in the
sampling scheme

_
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* Uncertainty in xLPR v2.0 can be separated into aleatory and epistemic using
nested sampling loops

— Requires greater computational power (for simulation and for quantifying uncertainty)

» Separation may facilitate understanding of epistemic uncertainties (knowledge of
risk)
— Refine distributions on the uncertain inputs that contribute most to the output
uncertainty and repeat analysis.

Inner (aleatory) loop Outer (epistemic) loop

Number of loops is
Epistemic sample size 1.0 . _
T USSR R S TS o B S o A
Aleatory 0.8 s
I Samples \ i o
m 0.
mm 0.6 E .
@ 05
. — 0.4 2

0.2] 3o

Epistemic Loops

Nested loops

0.0 = =
Performance Characteristic y Performance Characteristic y
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ALEATORY UNCERTAINTY
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* Navigate to \Exercises\Module 1 and open the file
“Module_1 Separation_of Uncertainty.xlsx”

 Open the second tab, “Axial Stress in a Bar(100x50)”

— Same bar problem with original distributions

L

T~N(15000,5000)(Epistemic)
r~N(0.8,0.2) (Epistemic)

or~N (55, 15) [Ksi] (Aleatory)
_Load T

0' —
m " Area  mr?

Probability Density
. -

&
mmmmm
VEAF R E N A A A S

00000

Probability Density
Probability Density

T and r are set to
epistemic:
Uncertainty in these inputs could
be reduced by more
measurements or more accurate
measurement techniques

gy is set to aleatory:

Uncertainty in this input is due to
random variability in material
properties

0 50 60
o¢[Ksi]
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iy, ALEATORY UNCERTAINTY

EXERCISE: SEPARATION OF EPISTEMIC AND

* In this exercise we are using 100 epistemic samples and
50 aleatory samples with simple random sampling

™)

Sandia
National _
Laboratories

e This expands on the number of samples demonstrated earlier in the

presentation

Aleatory

Epistemic samples

»

Results | Failure | Epistemic2 | Results | Failre |  Epistemic3 [ Results [ Failure
samples Tlbs] | rlinl | o[Ksi] | on[Ksi] [Ison<o;2| Tlbs] | rlin] | oksi] | oniKsi] | Isom<oi? | Tbs] rlinl | olKsi] | oniKsi] | Ison<o;?
leatoryd | 4674.356 | 0.263889 | 55.90232| 21.366 0 12336.79 | 0.183541| 53.0751509 | 116.570 1 13611.61204 | 0.284010218 | 56.88928 | 53.715 0
| Aleatory2 | 4674.356 | 0.263839 | 58.6355 | 21.366 0 12336.79 | 0.183541 55.59391582 | 116.570 1 13611.61204 | 0.284010218 | 48.34774| 53.715 1
Al : atory3 || 4674.356 | 0.263889 | 62.89263| 21.366 0 12336.79 | 0.183541] 57.79225462 | 116.570 1 13611.61204 | 0.284010218 | 60.04014 | 53.715 0
Al : atory4 || 4674.356 | 0.263889 | 59.44506 | 21.366 0 12336.79 | 0.183541| 48.4849068 | 116.570 1 13611.61204 | 0.284010218 | 54.65302 | 53.715 0
‘ leatory5 | | 4674.356 | 0.263889 | 59.54206 | 21.366 0 12336.79 | 0.183541[ 45.02974798 | 116.570 1 13611.61204 | 0.284010218 [ 55.84193 | 53.715 0

* Press ‘F9’ to run the calculation repeatedly and watch the
estimates of the probability of failure change

* |sthere a high level of variability in the estimate of the average

probability of failure?

_
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* Change the standard deviations distributions of T and r to
match the table below:

Parameter Distributions
T [Ibs] r[in] Flow Stress o; [Ksi]
Distribution | Mean Standard Deviation Distribution Mean Standard Deviation Distribution Mean Standard Deviation
Normal 15000 100 Normal 0.8 0.01 Normal 55 15

* Press ‘F9’ to run the calculation again and watch the
estimates of the probability of failure change

— Record each value by copying it as a value

— into a new row

* |sthere less variability in the estimate of average
probability of failure?

_
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* There is still a great deal of aleatory sampling uncertainty

* We can reduce this by adding aleatory samples
* Open the third tab, “Axial Stress in a Bar(100x500)”

— The number of aleatory samples has been increased
from 50 to 500

Epistemic
distributions
are still
narrower

2oois

W QT A A AV A 0 010203040506070809 1 1112131415 o 10 20 30 40 50 6 70
T [1bs] r[in] o [Ksi]

* Press ‘F9’ to run the calculation again and watch the
estimates of the probability of failure change

* |s there less variability in the average probability of failure?
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e Exercise takeaways:

— Variability in the estimate of the average probability of failure in
this simple example was reduced by:

e Reducing uncertainty in input distributions — this is not always possible in
real application

* Increasing the aleatory sample size

— If uncertainty in the epistemic input distributions could not be
reduced, we could have also increased the epistemic sample size

— Advanced sampling techniques could also be applied to reduce
this variability

_
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* The number of Monte Carlo samples is finite, we cannot run an
infinite number of realizations to achieve exact answer

— Therefore, quantities of interest (Qols)(i.e., mean probability of rupture) have
sampling uncertainty

— Example: a Qol estimate will be more accurate using 1,000,000 samples than

Epistemic/Aleatory Sample Size and Sampling Strategy
100/50 SRS = = 500/50 LHS IS (0.95) 1000/50 LHS 15 (0.95)
= 500/50 SRS 1000/50 SRS 1000/50 LHS 18 (0.995)
— 500/50 LHS 1000/50 LHS — 10,000/100 LH3
= = 500/50 SRS 15 (0.95) 1000/50 SRS 15 (0.95)

Oceurrence of rupture, circumferential

0000 0005 0010 0.015 0.020 0025

0 10 20 30 40 50 60

Time (years)

Example: Mean probability of occurrence of circumferential rupture for Scenario 3, Runs 1 through 10.

_
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 Sampling schemes should be selected such that sampling uncertainty
in the Qol is sufficiently small

— Increases in sample size or in the sampling algorithm can be used to accomplish this

—— Replicate 1
-| = Replicate 2
— Replicate 3
— Replicate 4
—— Replicate 5

0.020

Running a model 5 different
times results in 5 different Qol
estimates

0.014
1

Differences in the estimates are
due to sampling uncertainty

Probability of rupture
0010
|

0.005
1

0.000
1

Time (years)

_
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 There are many ways to sample inputs for

uncertainty propagation:
— Simple Random Sampling (SRS)

— Latin Hypercube Sampling (LHS)
— Importance Sampling (IS) [Can be used with LHS or SRS]
— Discrete Probability Distribution (DPD)

— Adaptive Sampling [Can be used with LHS or SRS]

— Other methods (quasi-MC, etc.)

— Alternative to sampling-based methods (FORM, SORM...)

_
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 There are many ways to sample inputs for

uncertainty propagation:
— Simple Random Sampling (SRS)

— Latin Hypercube Sampling (LHS)

— Importance Sampling (IS) [Can be used with LHS or SRS]
— Discrete Probability Distribution (DPD)

Available in
XLPR

_

— |
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* The simplest Monte Carlo sampling scheme is simple random
sampling (SRS)

— All inputs are randomly sampled from their input distributions

— Pros: easy to implement, easy to explain, easy to analyze data

— Cons: sufficiently large samples may not be possible to achieve
reasonably low sampling uncertainty

Parts of the
input space
might be
missed
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e LHS “forces” samples to be spread out across domain of the
input distributions using dense stratification across the range
of each variable

— Pros: lower sampling uncertainty than SRS, easy to analyze
— Cons: more difficult to estimate sampling uncertainty

Lagin Hypseci b Bampling ; Fiml Parisg LW
=TT T =TT

x1.53|-n:|r1:q

V: Trawnguler
. a MM

13& Ut 07

08 - ,E.[JJB:I.U:U-I
L e
=

fa ] i o 8 4 i1, | 1 i i
10 =08 -0 =04 -0 DO 02 04 OF OF 10D
LE: W

LHS
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* LHS covers the range of all inputs while this

coverage is less consistent under SRS
LHS (green) vs. SRS (red), N=50

0.2

e
- h
o

_2,0.15 >
% ol
T 0.1 T 0.1
o o
Q 005 Q.

o
o
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—

Probability
Probability

o
o
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—

Sample
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Approximate CDF Approximate CDF
Using SRS Using LHS

2 o 1

5 S ..

3 B

a a

S £

© ©

n @2 0

Variable Variable
= =
= 1 = 1
3 o B
Q
3 8 g8
Eaq Eaq
S 005 X 0 05f
£ 2 52
O @© o @
< E < E
8 0 S 0 i ; ;
4 2 0 2 4 © 4 2 o 2 4
Variable Variable
(x1,..., x5) are the result of drawing a random For n samples, we use the partition [0,1/n,2/
sequence. Note the clustering and gaps that result n,..,(n—1)/n,1] on the cumulative probability
from the sample. axis with one sample in each partition. Note the even
coverage of the CDF.
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* Over-sample ‘important’ parts of the input space
— Pros: better estimation of rare event probabilities

— Cons: harder to implement, more difficult to analyze data, bad implementation
can increase sampling uncertainty

* Results are calculated using importance sampling weights so that

. : ,
this sampling scheme doesn’t skew the output Importance
Area of 1 | ' . . . 1 sampling

interest not éo'g e ] éo.g ° gﬁ:ﬁ:ﬂ'ﬁm;ﬁgm Sampling (N=300)‘ L ... allows

covered by &2 @ ¢ . , e | estimation
initial £ R s,gl of area of
. qu 06 1 @ 06 e g "I .
sampling |E . * E.. T XA interest
g 3 Y 5k
O 04 ¢e °* O 04 .:.‘m.t: ;
“503 *23 “503 o -4 a{:.‘.\
g | * ..o..o:..' '?. * g .,.’.!:o ¢
8% o AV g0 S ey
&0 i"fi.ﬁ!" s & O gyt VR .
0 (T . AR .,
0 0.5 1 1.5 2 25 3 35 0 0.5 1 1.5 2 25 3 3.5

Uncertain Property Uncertain Property

_
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* Simple random sampling is simplest — easy to analyze,
combine results across runs, calculate sampling uncertainty

* Latin hypercube sampling is an improvement on simple
random sampling without increasing the computation time
or complexity of post-processing

* Importance sampling helps estimate very small
probabilities in reasonable computing time

— This type of sampling scheme is chosen after preliminary
sensitivity studies have been conducted

_
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e Steps for PFM in xLPR v2.0:

output

SAMPLING UNCERTAIN INPUTS @ o

Input Distributions

N samples of X

—

Accomplished

Input 1

using the
Input 2
XLPR
Framework Q}\.\

Input 3

\

J

N realizations of §

Laboratories

Characterization of distributions on the uncertain input values
Generation of samples from those distributions

Propagation of samples through repeated fracture model execution
Generate output distributions by repeating steps 2 and 3 N times
Presentation of uncertainty analysis results in the form of functions of the

Output Distributions
N outputs of Y

oo

Output 1

k Output 2

_
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e Steps for PFM in xLPR v2.0:
Characterization of distributions on the uncertain input values

Generation of samples from those distributions
Propagation of samples through repeated fracture model execution
Generate output distributions by repeating steps 2 and 3 N times

e

Presentation of uncertainty analysis results in the form of functions of the
output A

Probabilistic structure Deterministic Fracture Model { Probabilistic Risk Assessment\ P o St
\ -

\
Material properties Inspection/leak rate Les0
A Onky ~ansizering sircurferertal cacis

processing

Other inputs
Baseline

A %@
ﬁ.ﬁ“m

5 S { E &

Crack behavior —— E
11

cop 2 B

3
2

gL
Y

| Failure Frequency (Year *) or CDF

Change n sk
acceptadle?

sity (%)
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* Sensitivity analysis: Estimate the relationship of the uncertainty in
the inputs to the uncertainty in the outputs of interest

— ldentify the inputs that contribute to the majority of the uncertainty in the

Probability of Occurrence of Axial Cracks — R* = 0.892
P2543 Multiplier proport. Const. A (DM1) 0.902
p4350 Hoop WRS Pre-mitigation -0.228
p5103 Log reg. intercept param., beta 0 (axial) | 0.064
p5104 Log reg. slope param., beta_1 (axial) 0.050
p1102 Pipe wall thickness -0.039
Example: Five most important variables identified using linear rank regression.
DM1 Proportionality Constant Multiplier A ID Hoop WRS Pre-Mitigation Weld Material Ultimate Strength
8 FE. 8 i 8
o g g L 2
B F, ‘.
e e Tt st ’
ER R O O 03 k- A 5 e
T T T T T T T T T
1e-04 1e-02 1e+00 1e+02 1e+04 19103 19102 15,‘01 15100 1p+01 5420 542.2 5424 5425
p2543 p4350 p2502

Example: Scatter plots showing relationship between sampled variables and output of interest.
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* Uncertainty analysis: Analysis of the output
uncertainty

— Understand how the uncertainty in the inputs and in the model affects
uncertainty in the outputs

—— Epistemic Sample
® w | = Mean
E ° | = q=005
5 |98
E < — q=005
=
=
= .,
g 24 . : _[J' / i / / i
= Y?L) £ lf/ f/// I T
= i 7 T TR
5 5 # f/;///m% i
. £ 7 // // A T TR Vir, /M’!f
% . B i o i m‘ 7
8 5+ F = rf/f/;}// //§ %%’%//W/Wx‘/ﬁﬁﬁz% 7 %7
nE_ £ J;‘ ﬁ/ 7 / /f // //ﬂ/ / ( / // :”§ / ;ﬁ’f mw fo‘x‘x‘a‘ f§ m‘f MHH)’ / /:V/W// / F/
= z x‘x‘ffx‘x‘r‘fﬂ’h‘ffﬁfﬂﬁfHHMHH% —
T T T T T T T
0 10 20 20 40 50 60
Time (years)

Example: CDFs for occurrence of circ. rupture for each epistemic realization (grey), the mean (red), and

ﬂ the 0.05 (blue), 0.5 (green), and 0.95 (purple) quantiles.
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 Stability/convergence analysis: Increase confidence in the
results and assess their stability
— Show that changes to the characterization of input uncertainty,

selection of sampling options, and numerical accuracy is sufficient
to achieve converged results

100/50 SRS (Mean) 500/50 SRS (Mean)
100/50 SRS (Cls) 500/50 SRS (CIs)

0.02 0.03 0.04

0.01

0.00

0 10 20 30 40 50 60

Time (years)

Example: Mean probability of occurrence of circ. rupture (solid line) and 95% confidence bounds

ﬂ (dashed lines) under two different sampling options
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e Sensitivity studies: “What if?” analyses performed for
individual sub- or full models
— Study the effect of analysis assumptions including separation of

uncertainty, distribution specification, and identification of
problem drivers

— Determine impact of different models on the response

* Examples include constant vs. uncertain weld wall thickness, degree of
uncertainty in PWSCC-initiated flaw size, maximum constant vs. uncertain
operating stresses, etc.

— Study alternate scenarios including worst-case scenarios,
intervention scenarios, etc.

_
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WORKFLOW

1. Define a Quantity of Interest (Qol) or a set of QOls
2. Determine sensitivity of the outputs to the inputs

3. Characterize sampling uncertainty of the Qol

= _]
( ) S (Mean)
(cls) S (Cls)
g —
g =
g “ ® .
§ 3 o | “ "
E 2 .
g g *
i 2 I 5 2+ T
S o Lt
5 = O . .
5 ° o o wese
8 [=] - - .
el A -
8 DY
T T T T T T T “:..:.,.?.'.‘-.“:'.:".'
g _ . - ‘-.M.ﬂamoo
Time (years) T T T
1e-03 1e-02 1e-01 1e+00 1e+01
Occurrence of circ. rupture ID Hoop WRS pre-mitigation
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* Multiple outputs are available in xLPR v2.0 as Qol:
— Occurrence of rupture, occurrence of leak, crack length, etc...
* Qols are defined relative to looping:
— For the binary output ‘occurrence of rupture, a natural Qol is the probability of rupture

— Aleatory only (risk): probability of rupture over n, aleatory samples for each epistemic sample
— Aleatory and epistemic uncertainty: average probability of rupture over all n_*n, samples

50

For the model output crack depth, the
Qols ‘mean crack depth’ and ‘95t
percentile of crack depth’ can be
calculated from the output distribution,
represented here using a frequency
histogram

40

30

Frequency

20
I

10

B Mean 95th percentile

I T T T T T 1
0.000 0.001 0.002 0.003 0.004 0.005 0.008
Maximum crack depth length after 60 years
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DATA CONSIDERED

* Best estimate:
Mean probability over all samples (aleatory AND epistemic)

* Knowledge of uncertainty bound:
99t percentile of epistemic samples

* Knowledge of variability:
Probability for each epistemic sample

&
pi; Qol
o | — Mean probability
g - —— 99th percentile of epistemic samples
e Probability for single epistemic sample s
Mean probability of rupture stays » 8 L
below 5% at 60 years but there is a 2° g
. = -1
substantial amount of knowledge 5 S _u
2 _
uncertainty in the probability of i .
I
rupture as illustrated by the 99t g o e
5 . 5 y imor
percentile shown in the figure z -
= S
g i
O‘ T T T T T T T
0 10 20 30 40 50 60
Time (years)
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1. Define a Quantity of Interest (Qol) or a set of QOls

2. Determine sensitivity of the outputs to the inputs

3. Characterize sampling uncertainty of the Qol This input

appears to
2 . have a slight
i relationship
5 . . with the
output

/

1.0

0.8
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1

\

Occurrence of crack, axial
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0.0
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k .
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T1e-03 1e-02 1e-01 1e+00 1e+01

Occurrence of circ. rupture ID Hoop WRS pre-mitigation
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» Sensitivity analysis (SA) is used to:
— Understand the relationship between the model inputs and outputs

— ldentify the inputs that have the most significant impact on the results of the
model

 Knowledge of the most important inputs can be used to:

— Target inputs where more information could be collected to decrease
uncertainty

— ldentify inputs for importance sampling to increase precision in estimating rare
probabilities

1.0
1.0

08
|
08
|

In XLPR, the DM1 multiplier is highly
correlated with the probability of
crack (left), while the hoop WRS pre-
mitigation is not as highly correlated
with the probability of crack (right)

06
|
06
|

04

Occurrence of crack, axial
04

Occurrence of crack, axial

02
02
|

0o
]
0o
+*
*

T T T T T 1 T 1
1e-04 1e-02 1e+00 1e+02 Se-04 5e03 5e02 5S5e01 5e+00

p2543 Multiplier proport. Const. A (DM1) p4350 Hoop WRS Pre-mitigation
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1. Define a Quantity of Interest (Qol) or a set of QOls
2. Determine sensitivity of the outputs to the inputs

3. Characterize sampling uncertainty of the Qol
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* Reminder: The number of Monte Carlo samples is finite

e Statistical analysis methods can be used to quantify sampling
uncertainty

* Running the model with different random sequences can help us
understand and quantify this uncertainty
— Accomplished by changing the random seeds in xLPR

— Replicate
-| = Replicate
— Replicate
— Replicate
— Replicate

0.020

=
[N =N R LR

Running a model 5 different
times results in 5 different Qol
estimates

0.015

Differences in the estimates are
due to sampling uncertainty

0.005

Probability of rupture
0.010

0.000

Time (years)
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* Confidence intervals (Cls) are a common measure of
sampling uncertainty

— Bootstrap method is one of many ways to calculate confidence
intervals

0.020

| — Estimate

Sampling uncertainty in a rupture ~ - 95% confidencs Interval
probability can be characterized
using confidence intervals as an
alternative to examining
variability across multiple runs

0.015

Interpretation: There is 95%
confidence that the true
probability lies within the interval

Probability of rupture
0.010

0.005

0.000

T T T T T T T
0 10 20 30 40 50 60
Time (years)
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* The statistical bootstrap method is one of many ways to construct Cls
— Simple to implement, flexible, and generic statistical method
— Observed sample (of size n) is an estimate of the population

* RE-assemble the data (with replacement) repeatedly — each time computing the Qol
* Collection of bootstrapped Qols estimates sampling variability in the Qol

(total 1000)

Count

28 29 3 31 32 33 34 35 386 37 38
Mean (of 500 samples)

Bootstrap distribution of means (histogram) and ClI

E (vertical lines)
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* Looping over aleatory and epistemic uncertainty should be

considered in the post-processing analysis

* Looping allows for uncertainty separation but can increase sampling
uncertainty of ‘best-estimate’ Qols

— Larger sample size may be needed to estimate small probability under looping

Example
Epistemic Uncertainty - 1000 aleatory samples Epistemic Uncertainty - 1000 aleatory samples
o : 2 Samplin
~ . Dists. ; e e Cond. Dists.
. (;:.r:)dSDsts f '/ T|= q:r(])s sts. p : g
D e uncertainty
o — g=95 il | o q=.95
o 2o
E-d | EO-
S ! =< is much wider
o | Ro .
FSE IR 10 11000 2o than without
o ’ (=]
o = — o
o : - T o T T
0 200 460 600 800 0 200 400 600 800 __— Tt
Time Time pn i o
Epistemic uncertainty dominates Aleatory uncertainty dominates S EEHUEM O IO I
. : larger sampling variability when
¥ looping. Figure shows true sampling
] - ] . uncertainty of a best-estimate under
Separation of aleatory and epistemic uncertainties looping (red) and no looping (blue)

ﬁ
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" confounded by finite sample size uncertainty

Sandia
”“Illl

Larger aleatory sample size results in
better estimation of each epistemic
distribution

Small aleatory sample size results in large
sampling uncertainty when estimating a
single epistemic distribution

100 estimates using 1000 aleatory samples
100 estimates using 100 aleatory samples

1.0

Q | | — Truth
= | = Tnth : : : ] ] Estimates | /
© Estimates | | E Same scenario with larger 231 :
L@ _ . _
5° : / ; aleatory sample size deo| /
zo 6o
>° / Z /
5w 83 '
83 . 3 Y 4
8 3 Qo /
o N o
o
/ o -
o - =}
= 0 200 400 600 800
0 200 400 600 800 Time
Time
This sampling uncertainty propagates into Les§ sarpplmg uncer'falnty.propagatc'ed into
estimation of the epistemic uncertainty estimation of the epistemic uncertainty
Epistemic Uncertainty - 100 aleatory samples Epistemic Uncertainty - 1000 aleatory samples
R Bond Bl Actual epistemic uncertainty =z Cond. Dists.
o e is much smaller — most of N
o] . . o]~ %
@ | — &5 the uncertainty was sampling o =95
Y O g . - (D <
o uncertainty 5o
By B
8° ge
oo & o
o o
o °
o - . 1 o T T T
0 200 400 600 800 0 200 400 600 800

Lesson: Sample sizes must be chosen with care and are problem dependent
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* Uncertainty quantification used for probabilistic fracture
mechanics can be a powerful tool when applied to problems of

interest

— Can be used to determine likelihood of certain outcomes for LBB
problems

 Statistical analysis of model results helps to refine simulations and
provide the best possible picture of risk

— Uncertainty analysis tells us how uncertainty in inputs impacts
uncertainty in outputs and helps us quantify this uncertainty

— Convergence analysis tells us whether or not our simulations are giving
us a stable result

— Sensitivity analysis can help pinpoint inputs for which additional study
or data may be most important

_
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 Students should now be able to:

— Understand and compare deterministic and probabilistic
fracture mechanics approaches

— Understand the fundamental building blocks of a
probabilistic fracture mechanics (PFM) analysis
including:

* Characterization of uncertainty

e Separation of uncertainty

* Methods for sampling inputs for Monte Carlo analysis
* Interpretation of PFM results

_
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What is ahead for us for the
remainder of this training?
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Day 1: Tuesday March 27, 2018

09:45AM - 10:00AM BREAK

Module 2: : :
10:00AM - 11:30AM Introduction to R Nevin Martin (SNL)
11:30AM - 12:30PM LUNCH BREAK

12:30PM - 01:15PM Module 2: Continued Nevin Martin (SNL)
Introduction to R

01:15PM - 01:30PM BREAK

Module 3:
01:30PM - 04:00PM Sensitivity Analysis Dusty Brooks (SNL)
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