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ABSTRACT 

A strip-yield model was formulated to simulate creep-fatigue crack growth and to quantify the influence of hold 

time on plasticity-induced crack closure during creep-fatigue crack growth. Creep-fatigue experiments have shown 

that longer creep hold times result in faster crack growth rates in subsequent fatigue cycles. This model advances the 

idea that a decrease of plasticity-induced crack closure is experienced by the crack during fatigue loading when a 

longer hold time is applied each creep-fatigue cycle. Consequently, the crack tip experiences an increase in the 

effective stress intensity factor range causing faster growth rate during the fatigue loading. The weight function 

method was used to compute stress intensity factors and surface displacements for cracks embedded in a material 

experiencing elastic, plastic and creep deformations at elevated temperatures. It is shown that the longer the hold 

time, the larger the creep deformation and crack opening displacements in the near crack-tip region. In turn, this 

leads to a decrease in the crack-tip opening stress/load and faster crack growth rates during the subsequent fatigue 

cycle. The model was used to perform simulations of creep-fatigue crack growth at elevated temperatures in a 

nickel-base superalloy and AISI 316 austenitic steel.  
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1. Introduction  

Failure of structural components by creep-fatigue crack growth occurs when mechanical loading and elevated 

temperature act concurrently, conditions that are common in power plants, chemical plants and the aerospace 

industry. Numerous studies have been performed on creep-fatigue crack growth at elevated temperatures. However, 

understanding the mechanics of crack growth and predicting the measured rates of crack growth during creep-
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fatigue loading is still an outstanding issue. The most common approach to compute creep-fatigue crack growth 

rates is to consider the linear summation of the crack growth rates during the fatigue and creep portions of each 

loading cycle. Oftentimes, models that use this additive rule disregard the interaction effects of the two loading 

modes. A limited number of models considered this interaction, for instance by adding an extra term to the sum, or 

by analyzing the crack-tip damage in front of the crack. The load interaction effect on creep-fatigue crack growth 

implies that the total crack growth rate is greater than the sum of the rates that a crack would experience under only 

creep or fatigue loading.   

Fatigue crack growth in metallic alloys has been comprehensively studied over many decades. For constant 

amplitude fatigue loading, the Paris-Erdogan power law [1] using the stress intensity factor range ΔK as the input 

variable is able to predict the crack growth rates for long cracks in metals. To explain the load ratio effect on fatigue 

crack growth, Elber [2] proposed the concept of effective stress intensity factor ΔKeff, which replaced ΔK in the 

Paris-Erdogan law and can explain crack acceleration and deceleration during variable amplitude loading. ΔKeff 

values were computed by quantifying the plasticity-induced crack closure through the concept of crack-tip opening 

stress (Sop).  

The influence of creep loading on Sop is a topic that has been almost entirely overlooked by the creep-fatigue 

community. The only previously published research on this topic was found to be that of Sehitoglu and Sun [3]. 

They employed two-dimensional finite element simulations to study the effect of load hold time on Sop in a cracked 

plate subjected to uniform tension loading. Sehitoglu and Sun showed that increasing hold time leads to larger COD 

and lower Sop values. Most recently, J. Ramirez et al. [4] performed a systematic study of the effect of hold time on 

Sop using two-dimensional and three-dimensional finite element simulations.   

A computational approach that has been used effectively to characterize the plasticity-induced crack closure is 

strip-yield modeling. This technique has its source in the theoretical developments of Dugdale [5] and Barenblatt 

[6], who used a superposition of two elastic solutions to solve the problem of a crack embedded in an elastic-plastic 

region. Their approach was implemented in several computational models to simulate growing fatigue cracks. These 

computational strip-yield models have been used successfully to compute crack-tip opening stresses Sop caused by 

plasticity-induced crack closure under constant or variable amplitude loading. One of the first strip-yield models was 

that of Newman [7]. A main feature of the Newman model was that in order to deal with various test specimens, he 

used an equivalent center-crack simulation specimen and the K-equivalency principle for the computation of K and 
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COD in other specimen types. Using Newman’s modeling framework, other strip-yield models have been proposed 

for fatigue crack growth. Nowadays, the standard methodology involves using integrals of weight functions instead 

of the K-equivalency principle to compute K and COD values for different specimens. Strip-yield models have been 

developed for fatigue crack growth [8-11], thermomechanical fatigue crack growth [12] and creep crack growth 

[13]. To date, there are no strip-yield models developed for creep-fatigue crack growth.  

In this paper, a Strip-Yield Model for Creep-Fatigue Crack Growth (SYM-CFCG) was developed using the 

weight function method. Creep-fatigue crack growth rates were computed by summing the growth rates during the 

creep and fatigue portions of each loading cycle. The loading interaction effects on crack growth rates were 

accounted for by modeling the decrease of Sop with longer hold times. A key feature of this model is the computation 

of Sop values for cracked specimens loaded with creep-fatigue loading. The geometries analyzed were the middle-

tension test (MT), single-edge notch test (SENT), double-edge notch tension (DENT) and compact-tension test (CT) 

specimens. SYM-CFCG was used to compute crack growth rates in a nickel-base superalloy and austenitic 316 

stainless steel.  

 

2. Mechanics of crack opening/closing during creep-fatigue loading 

A typical creep-fatigue load cycle is illustrated in Fig. 1. The loading segments A-B and C-D represent the 

fatigue or cyclic portion of the cycle, and B-C the creep or hold time. The total crack growth during A-D is the sum 

of the crack growth during A-B and B-C. The main assertion of this study is that the hold time tH during B-C affects 

the crack growth increment in the subsequent fatigue cycle, i.e., during D-E. This effect is a contributor to the 

commonly known load interaction effect on crack growth during creep-fatigue loading. For instance, this effect was 

observed and described in the case of creep-fatigue crack growth in a nickel-base superalloy by Piard et al. [14].  

 

Fig. 1. A typical creep-fatigue load cycle used in laboratory crack growth testing.   
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The explanation that is proposed herein for the influence of hold time tH on fatigue crack growth in the 

subsequent cycle relies on the concept of plasticity-induced crack closure and the mechanics of crack 

opening/closing during cyclic loading. Fig. 2 illustrates a qualitative description of the opening and closing of the 

crack surfaces at different points in the creep-fatigue cycle. At point B in the creep-fatigue cycle, the crack is loaded 

under the maximum stress. Therefore, the crack surfaces undergo a certain amount of crack opening COD. 

 

Fig. 2. Profiles of crack opening/closing displacements during a creep-fatigue cycle.  

As a result of the accumulated creep strains at the end of tH, at point C in the cycle, the COD further increases 

compared to its value at point B. The amount of this additional increase in COD is proportional to tH. Upon 

unloading, the crack surfaces may end up partially or totally closed depending on the magnitude of tH. When tH is 

zero (fatigue loading) or small, the crack surfaces will be at least partially closed at minimum applied load (point D 

in the cycle). When tH is big enough, the large COD induced during the hold time will prevent the crack from 

completely (or partially) closing at minimum load. In effect, for large enough values of tH, the crack starts the new 

fatigue cycle D-E fully open. In this case, the effect of plasticity-induced crack closure is nullified by the additional 

COD acquired by the crack during the hold time. In turn, this leads to a drop in the opening stress to Sop = Smin and 

maximizes the crack tip driving force during the fatigue cycle, i.e., ΔKeff = ΔK. This phenomenon is expressed as      

 1 ,...op

D E

da
f S

dN 

 
 

 
, and   1op HD E

S t

                                                                                   (1) 

The above considerations are supported by the previous finite element simulation results in [3-4]. Further 

experimental studies are needed to establish a quantitative relationship between Sop and tH.  

 

3. Strip-yield modeling of creep-fatigue crack growth 

3.1. Modified Dugdale-Barenblatt model for plasticity and creep at the crack tip 
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Considering a cracked specimen subjected to mechanical loads at elevated temperatures, under cyclic and 

steady loads (Fig. 1), the material around the crack tip will experience instantaneous plastic strains and creep strains 

that accumulate over hold time tH. A schematic of the plastic and creep zones at the crack tip is illustrated in the first 

picture of Fig. 3 for a cracked component subjected to a remote stress S.  

 

Fig. 3. Plastic and creep deformations at the crack tip, and the superposition principle applied to three elastic loading 

cases.  

 

The crack problem illustrated in first schematic of Fig. 3 is replaced by a superposition of three simplified 

loading cases of the cracked component undergoing elastic deformations. First, the physical crack of length a is 

replaced by a fictitious crack of length d = a + rpl, where rpl is the plastic zone size at the physical crack tip. Second, 

the combination of remotely applied load, plasticity and creep zones at the crack tip is replaced by the linear 
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superposition of three elastic cases. These cases consider the elastic specimen with fictitious crack length d loaded 

as follows: (i) the remotely applied load S, (ii) a compressive segment load acting in the plastic zone equal to the 

flow stress ασ0 = α(Sy + Sut)/2, and (iii) a tensile segment load Δσ, on the crack plane representing the stress 

relaxation due to creep strain accumulation. Here, α is the constraint factor (α =1 for plane stress, and α =3 for plane 

strain), Sy the yield strength and Sut the ultimate strength of the material. The compressive segment load is applied on 

the entire plastic zone, while the tensile segment load is applied only on the corrected creep zone size by the factor 

β. If th is long enough causing the corrected creep zone to exceed the plastic zone, the application of Δσ is then 

limited to the extent of the plastic zone, i.e., the corrected creep zone cannot exceed the plastic zone size.    

 

3.2. Crack-tip plastic zone size 

The plastic zone size rpl is computed from the condition that the stress intensity factor at the tip of the fictitious 

crack with length d = a + rpl is zero,  

0
0IS IK K   ,                                                                                                                                              (2) 

where ISK  is the stress intensity factor created by the remote loading S, and 
0IK   is the stress intensity factor due to 

the flow stress σ0 in the plastic zone. Plastic zone size rpl is computed by solving Eq. (2). The stress intensity factors 

are computed using the weight function method and the following formula 

IK f S d ,                                                                                                                                               (3) 

where f is a non-dimensional geometrical factor that depends on the specimen type and geometry. Appendix A 

presents the formulas for f, ISK and 
0IK  for two of the specimen types used in this study. Eq. (2) was solved for rpl 

using the bisection method, and the integrals in ISK and 
0IK  were computed using the 10-point Gauss quadrature.  

 

3.3. Crack-tip creep zone size and stress relaxation during creep hold time   

While the plastic zone computed in Section 3.2 develops instantaneously as the material yields under the 

applied load, the creep zone at the crack tip initiates and grows steadily during the hold time. The size of the crack-

tip creep zone was computed using the formula introduced by Riedel and Rice [15] 
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where KI is mode I stress intensity factor, n and B are the stress exponent and coefficient in Norton creep law, 

respectively, θ is angle and t is time. The parameter Fcr(θ) was considered for θ = 90°, and its values as a function of 

n for the plane stress and plane strain cases were given by Riedel and Rice, and are presented in Table 2. The 

variable αn is calculated as 
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   for plane strain.                                                                                                  (5) 

The value of In was given by Hutchinson [16], and is presented in Table 1. When n had a value other than those 

shown in Table 1, linear interpolation was performed to obtain In.  

Table 1. In factor for the computation of the creep zone size [16]. 

 

 

 

Table 2. Fcr factor for the computation of the creep zone size [15]. 

 90crF     

n 3 5 13 

Plane stress 0.25 0.32 0.38 

Plane strain 0.55 0.5 0.3 

 

Creep deformation causes stress relaxation in the near crack tip region. According to an equation introduced by 

Riedel [17], the stress components relax proportionally to  
 1 1

1
n

t


. The Riedel formula cannot be directly 

applied directly, as it refers to the stress tensor components in the multiaxial stress state at the crack tip. For the 

uniaxial stress case of the strip yield model, the variation of the segment stress in the creep zone was taken as  

nI  

n 3 5 9 13 

Plane stress 3.86 3.41 3.03 2.87 

Plane strain 5.51 5.01 4.60 4.40 



  

8 
 

1

1
0

0 1
nt

t
 


 

       
 

,                                                                                                                                  (6) 

where t is time, t0 is a time constant taken as t0 = 10-3 hours (3.6 seconds) for all simulations in this study. This 

equation preserves the Riedel format of flow stress relaxation, and no creep strains accumulate if tH ≤ 3.6s. 

The actual stress relaxation is considered to occur not only within the creep zone of size rcr, but also over an 

extended region ahead of the crack tip, i.e., the corrected creep zone size, which is computed as βrcr. For all 

simulations in this study, the correction factor β was chosen as 3.5 for the nickel-base superalloy, and 3.0 for the 316 

stainless steel.  When the corrected creep zone reached and exceeded the size of the plastic zone, it was limited to 

the size of plastic zone. Therefore, a limited impact of the correction factor is considered in this model. The 

correction factor β for the creep zone size was chosen from parametric studies that identified the value that best fits 

the resulting creep-fatigue crack growth rates for the loading waveform with the smallest considered hold time. 

Then, this value was kept constant for all other creep-fatigue simulations with different hold times.   

 

3.4. Meshing of the crack plane and crack advance 

The superposition approach illustrated in Fig. 3 is implemented using the strip-yield modeling framework 

introduced by Newman [7]. Prior to the onset of crack growth, the crack plane, including both the crack surface and 

plastic zone, is meshed using 15 one-dimensional elements, of which 10 are assigned to the plastic zone ahead of the 

physical crack tip and 5 to the cracked surface behind the crack tip. These elements exhibit an elastic-plastic-creep 

behavior, experiencing stress and elongation during each loading cycle. Fig. 4 shows the elements in the crack plane 

mesh. Each element i has a given width wi and length (Li). The initial element widths wi in the crack-tip plastic zone 

and crack surface behind the crack tip are given in Table 3.  
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Fig. 4. Crack-plane mesh. 

The crack plane mesh changes during crack advance by two processes, namely the element creation and 

element deletion by lumping. After the plastic zone size rpl is calculated at maximum load in the creep-fatigue cycle, 

the physical crack length a is increased by a fraction ρ of the plastic zone size, ρrpl. In this study, ρ = 0.05 was 

chosen for all simulations, which is the same as the value used by Newman [7]. Simulations were also performed 

with different ρ values, and they indicated that ρ = 0.05 is the optimum fraction of the plastic zone for the crack 

growth increment to produce similar results with established literature data on opening stresses for fatigue crack 

growth. After the crack length is increased by the crack growth increment, a = a + ρrpl, the plastic zone size is 

recalculated and re-meshed using the element widths presented in the Table 3. As the crack tip advances, element 

10, which used to be part of the plastic zone mesh, becomes a part of the crack surface behind the crack tip.  

Table 3. Element widths for the initial mesh of the crack plane. wi is the element width, and rpl is the plastic zone 
size.   

 

Element # 

Normalized element size 

in the plastic zone  i plw r  

Normalized element size  

in the cracked surface  i pl iw r a  

1 0.3 0.3 

2 0.2 0.2 

3 0.15 0.15 

4 0.12 0.12 

5 0.09 0.09 

6 0.06 − 

7 0.04 − 

8 0.02 − 

9 0.01 − 

10 0.01 − 
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With each loading cycle, the number of elements in the crack surface mesh increases, because new elements are 

added to it. To preserve computational efficiency, element lumping in the crack surface mesh occurs whenever the 

total number of elements in the crack plane, including the plastic zone and crack surface, exceeds a prescribed value, 

which for all studies was set at 35 elements, which is the same range as the number of elements (20-30) used by 

Newman [7]. Whenever lumping occurs, elements 11 and 12, which are located the farthest from the crack tip, are 

lumped into one element, so that the new element 11 will have the following coordinate, width, length and stress, 

respectively 

12
12

11
2

2

w
x

x


  , 11 11 12w w w  , 
11 11 12 12

11

11 12

L w L w
L

w w





, 

11 11 12 12
11

11 12

w w

w w

 






.                           (7) 

 

3.5. Crack surface displacements and element lengths at maximum load in the cycle 

Crack surface displacements are the result of two types of applied loads, i.e., the remote stresses at the 

boundaries of the specimen, and the segment loading applied in the crack plane. These applied loads are illustrated 

in Fig. 3. For the crack of length d = a + rpl, the crack surface displacement in the vertical direction y at a point x on 

the crack plane is defined as u(d,x). From Fig. 3, by superposition,  

       0, , , , , , ,u d x u d x S u d x u d x     ,                                                                                    (8) 

where, u(d,x,S) is the crack surface displacement at location x caused by a remote stress S, while u(d,x,σ0) and 

u(d,x,Δσ)  are the crack surface displacements at x caused by the local segment loading σ0 and Δσ, respectively. The 

displacements in the above equation are computed using the weight function method. According to Wu and Carlsson 

[18], the crack surface displacement in the normalized form at location x is given by  

     
0

, , ,
d

a
u d x f m x d

E


      

  
.                                                                                          (9) 

where m(d,x) is the weight function for a crack of length d subjected to a stress σ. The Wu and Carlsson weight 

functions have different forms for the center-crack versus edge-crack specimens. For a center-crack specimen, the 

above equation is 
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and for an edge crack specimen is 
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where I is an index that depends on the specimen type. The lower integration limit a0 is defined according to the 

loading mode of the crack. When the entire crack surface is loaded by a stress σ, e.g., the case of remotely applied 

loading, then a0 = x. In the case of segment load σ on the crack surface between x1 and x2, the lower integration limit 

a0 = max(x1,x). The factors βi are given in Appendix B, the crack surface displacements for remote loading in 

Appendix C, and those for segment loading in Appendices D and E.  

Once the crack surface displacements ui are computed at maximum load, the lengths for the plastic zone 

elements are set to these values, i.e., Li = ui for i = 1,2,…,10. In the first cycle of the creep-fatigue simulation, the 

lengths of the elements in the physical crack surface are all set to zero. For ulterior cycles, these lengths are the ones 

computed in the previous cycle, unless a new element 11 is created by crack extension and lumping. The length of 

the new element 11 resulting from the lumping process is given in Eq. (7). 

 

3.6. Contact stresses and new element lengths at minimum load 

 Upon unloading, stresses are computed for the elements in the plastic zone and crack surface. At minimum 

load, the stress in each element j  is computed by solving the following compatibility equation 

   min

1

, , , , ,
n

i i i i j j

j

u L u d x S u d x x 


   ,                                                                                        (12) 

where u(d,xi,Smin) is the displacement created at element i by remotely applied stress Smin and u(d,xi, xj,σj) is the 

displacement at element i created by a segment load σj applied at element j of coordinate xj. This situation is 

illustrated in Fig. 5. 
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Fig. 5. Crack surface displacement at point i created by the stress in element j. 

 From the above equation, element stresses σj are computed using a Gauss-Seidel method with constraints, as 

described in [7]. These constraints are defined for the plastic zone and crack surface elements as follows. For the 

plastic zone elements, (a) if σj ≤ −σ0, then σj = −σ0  , and (b) if  σj ≥ ασ0, then σj = ασ0. For the elements on the crack 

surface, (a) if σj ≥ 0, then σj = 0, and (b) if σj ≤ −σ0, then σj = −σ0. After element stresses are calculated at minimum 

load, element lengths are recalculated for each of the elements that are yielded (tension or compression) at this point 

in the cycle. New lengths for yielded elements are computed according to the procedure described in Section 3.5 and 

using the new stress distribution computed at minimum load. This is done according to the following equation only 

for the elements for which σi = −σ0 when S = Smin, 

      min

1

, , , , ,
n

i i i i j j

j

L u d x u d x S u d x x


   .                                                                             (13)  

3.7. Computation of crack-tip opening stresses 

Crack-tip opening stress Sop (or load Fop in the case of compact tension specimens) is the key variable in this 

model because it determines the variation of the crack growth rates under creep-fatigue loading with various hold 

times. Two methods have been used in this study to compute Sop, namely, the stress intensity and the crack surface 

displacement methods.  

The first method of computing the crack-tip opening stress requires that KI from the application of the remote 

stress increment ΔS = Sop − Smin equals KI created by the contact stresses on the crack surface at minimum load, 

 min
11

0
jop

n

II S S
j

K K 


  ,                                                                                                                             (14) 
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where 
 minopI S S

K


is the mode I stress intensity factor created on the physical crack length a by the stress increment 

Sop − Smin, and 
jIK 
is the stress intensity created by the stress σj at element j on the crack surface (not including the 

plastic zone). This equation was solved for Sop using the bisection method.    

The second method uses a condition on the crack surface displacements described by Daniewicz et al. [10]. 

Assuming the stress distribution in the crack surface elements at minimum load, the opening stress Sop is the remote 

stress that fully opens the crack at each element i on the crack surface. This condition is written as  

    min

11

, , , , 0
n

i op i j j

j

u a x S S u a x x


   .                                                                                          (15) 

Sop is computed from the above equation using the bisection method. The crack surface displacements u in the above 

equation caused by either remote loading Sop − Smin or local segment loading σj are determined according to the 

formulas described in Appendices C, D and E.   

Simulations were performed using the two methods for computing Sop, and similar results were obtained, with 

small discrepancies. The crack surface displacement method yielded the closest values to the previously published 

results on crack opening stresses for fatigue crack growth. Consequently, this method has been used throughout this 

study to produce predictions of Sop and estimate creep-fatigue crack growth rates.  

 

3.8. Computation of crack growth rates  

To compute crack growth rates, one calculates the number of cycles dN required to growth the crack by an 

increment da. The calculation of da was described in section 3.4. The crack growth rate per cycle during a creep-

fatigue cycle is computed as  

fat cr

da da da

dN dN dN

     
      

     
,                                                                                                                        (16) 

where (da/dN)fat is the fatigue crack growth rate per cycle during the increasing portion of the loading, and (da/dN)cr 

is the creep crack growth rate per cycle during the holding portion of the loading. The fatigue crack growth rate 

equation is 

m

eff

fat

da
C K

dN

 
  

 
,                                                                                                                                      (17) 
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where C and m are material constants, and ΔKeff = Kmax − Kmin is the effective stress intensity factor range. The crack 

growth rate for creep is  

max

m

H

cr

da
C K t

dN

 
   

 
,                                                                                                                                  (18) 

where C and mare material constants, and t is time. Using these equations, the number of creep-fatigue cycles 

needed to grow the crack by da is   

max

m m

eff H

da
dN

C K C K t



   

.                                                                                                                     (19)         

 

4. Model verification 

The model verification was performed by comparing predicted crack-tip opening stresses for fatigue crack 

growth with established results from other studies that used either the strip-yield or finite element modeling 

methods. The verification was performed for all specimen types, MT, SENT, DENT and CT. Plasticity-induced 

crack closure for fatigue crack growth has been thoroughly studied in the last several decades. It is well known that 

the crack-tip opening stress during fatigue crack growth increases from the minimum stress in the cycle at the onset 

of crack growth to some stabilized value during steady crack growth. The most important portion of the fatigue life 

from the standpoint of plasticity-induced crack closure is the steady crack growth when the crack-tip opening stress 

stabilizes or vary little from one cycle to another. The results included in this section include only stabilized values 

of the opening stresses, after a certain number of cycles. The results are presented for values of applied stresses to 

flow stress, thus they can be applied to any material of interest.  

Fig. 6 presents a comparison of the opening stresses for the MT, SENT and DENT specimens, at load ratios of 

R = −1 and R = 0, and ratios of Kmax/K0 between 0.1 and 0.7. All simulations were performed in plane stress 

conditions. The initial crack length to specimen width ratio in all simulations was a/W = 0.1. The results from the 

SYM-CFCG model are compared with the results from finite element modeling by McClung [19] and strip-yield 

modeling by Newman [20]. In all cases, the agreement between the three models is good, with small discrepancies 

between the strip-yield models and the finite element model in the case or R = −1 for ratios of Kmax/K0 ranging from 

0.2 to 0.45, however, the difference between these models is not significant.  
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(a)                                   (b) 

Fig. 6. Comparison between the predictions of the SYM-CFCG model, strip-yield modeling [20] and finite element 

simulations [19] of crack-tip opening stresses for fatigue crack growth in the MT, SENT and DENT specimens, 

plane stress (α = 1) for two load ratios: (a) R = −1, and (b) R = 0.  

 

The second verification was performed for the CT specimen. In this case, the SYM-CFCG model predictions 

are compared with those of the strip-yield modeling by Wang and Blom [9]. Fig. 7a shows the comparison of the 

predicted opening force normalized by the maximum applied force, Pop/Pmax, for load ratios ranging from R = −1 to 

R = 0.8, and for three constraint factors, α = 1 (plane stress), α = 2 and α = 3 (plane strain). Fig. 7b presents the 

comparison of the normalized opening force for three values of the applied maximum force in plane stress case. In 

this case, the maximum applied force in the fatigue cycle is normalized by the force that would cause the net flow 

stress σ0 in the uncracked section of the specimen. In all cases, the agreement between the SYM-CFCG and the 

Wang and Blom models is satisfactory, with only slight differences for the load ratio of R = −1. Any difference in 

predicted Sop values between the two models is likely caused by the different weight functions used in each of them.    
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(a)                                                                                 (b) 

Fig. 7. Comparison between the predictions of the SYM-CFCG and strip-yield modeling [9] of crack tip opening 

stresses in CT specimens for: (a) three constraint factors, and (b) three values of maximum applied loads in plane 

stress. σ0 is flow stress, BN thickness and W width. 

 

5. Results and discussion 

This section presents SYM-CFCG model predictions of creep-fatigue crack growth in a nickel-base superalloy 

and 316 austenitic stainless steel. The experimental data used for comparison with the model predictions was taken 

from published studies. For each case, the material constants, specimen geometry and loading were the same in 

SYM-CFCG simulations as those in the respective published studies, whenever data were available. The material 

constants used for each material are indicated in Table 4. The elastic constants, yield and ultimate strengths, and the 

Norton creep law constants were obtained as described in Sections 5.1 and 5.2 for the nickel-base superalloy and 

316 austenitic stainless steel, respectively. Coefficient C and exponent m in the fatigue crack growth law ( Eq. (17)) 

were obtained by performing a parametric study to determine the effective crack growth rate curve (i.e., da/dn vs. 

ΔKeff) that produced the best fit for the low R-ratio fatigue crack growth rate curve (i.e., da/dn vs. ΔK). The 

coefficient C’ and exponent m’ in the creep crack growth law (Eq. (17)), were obtained by a curve fit performed on 

the creep-fatigue test with the lowest hold time greater than zero. For all simulations using SYM-CFCG, the plane 

stress case (α = 1.0) was considered.       

 

5.1. Powder metal nickel-base superalloy 
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Creep-fatigue crack growth simulations were performed in a powder metal nickel-base superalloy (Astroloy) 

used for gas turbine components, and the model results were compared with the experimental data published by 

Piard et al. [14]. Piard et al. performed a study to measure crack growth rates during creep-fatigue loading with hold 

time of 0, 30s, 300s and 1000s in Astroloy SENT specimens at 750°C. The particularly relevant aspect of the Piard 

et al. study is that they measured the total crack growth rate da/dN in each cycle, as well as the crack growth rates 

during the cyclic (da/dN)fat and holding (da/dN)cr portions of each cycle. Thus, they were able to clearly identify the 

dependence of the (da/dN)fat on the duration of hold time tH. Piard et al. showed that the longer tH, the faster the 

crack growth rate in the cyclic loading (da/dN)fat, undoubtedly highlighting the load interaction effect on creep-

fatigue crack growth.  

Table 4. Material constants used in simulations.   

Property PM Astroloy 316 SS - annealed 316 SS - 20% cold worked 

T (°C) 750 593 593 

E (GPa) 160 153 153 

v 0.3 0.32 0.32 

Sy (MPa) 910 148 364 

Sut (MPa) 910 435 617 

B (h-1MPa-n) 1.01∙10-27 6.35∙10-33 2.79∙10-26 

n 8.5 11.83 8.76 

C 6.48∙10-8 1.6∙10-5 3.0∙10-5 

m 3.1 1.5 1.2 

C’ 6.5∙10-8 1.5∙10-7 6.5∙10-4 

m’ 3.8 3.7 2.1 

β 3.5 3.0 3.0 

α 1.0 1.0 1.0 

 

 

(a)                                                                  (b) 
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Fig. 8. (a) Evolution of crack-tip opening stress with crack growth for fatigue and creep-fatigue loading with 

different hold times in a PM Astroloy material; (b) Variation of peak opening stress as a function of hold time at 

various stress intensity factor ranges ΔK during the crack growth history in a PM Astroloy material. 

 

SYM-CFCG simulations of crack growth under creep-fatigue loading were performed for the specimen and 

loading conditions studied by Piard et al. Fig. 8a shows the evolution of the crack-tip opening stress for fatigue (tH = 

0s) and creep-fatigue with tH = 30s, 300s and 1000s. In the case of fatigue crack growth, the expected evolution of 

the opening stress is obtained from the SYM-CFCG simulations, with the rapid initial increase of Sop due to plastic 

wake build-up behind the crack tip as the crack starts growing. Then, a relatively stabilized portion of the Sop is 

observed, followed by a rapid decrease in Sop as the crack approached the final failure region. The decreasing portion 

of the curve is due to the crack opening displacements increasing greatly with longer crack length and ΔK 

approaching the fracture toughness of the material. For most of the fatigue crack growth history, the opening stresses 

ranged between 0.58-0.5Smax. For creep-fatigue crack growth with the three different hold times, the opening stress 

Sop decreased throughout the entire history of crack growth. Fig. 8a shows that the longer the hold time, the lower 

the Sop. In the case of the largest simulated hold time of tH = 1000s, the opening stress drops to the minimum stress, 

Sop = Smin = 0.05Smax, which means that the crack is always open during the creep-fatigue cycle, and the plasticity-

induced crack closure is effectively canceled by the additional crack opening incurred during creep holding. In turn, 

decreasing Sop values with longer hold times leads to faster crack growth rates during the cyclic loading, (da/dN)fat. 

The variation of the stabilized (maximum) opening stresses during crack growth with hold time is illustrated in Fig. 

8b. These Sop values are reported for three ΔK levels corresponding to the initial phase of crack growth (ΔK = 29 

MPa√m), the middle portion of the crack growth life (ΔK = 47 MPa√m), and the final stage of crack growth 

immediately before the final fracture (ΔK = 72 MPa√m). In all three ΔK cases, the opening stress decreases with 

hold time, eventually reaching minimum applied load in the cycle at the end of crack growth. 

The effect of hold time on opening stresses illustrated in Fig. 8 can be understood if one analyzes the 

distribution of COD at maximum load and contact stress on the crack surfaces at minimum load. Fig. 9a shows the 

COD at maximum load in the cycle (point C in Fig. 1), after the application of the hold time and for the crack length 

that gives ΔK = 47 MPa√m. The fictitious crack tip of coordinate d = a + rpl is at a normalized position of x/d = 1, 

and the physical crack tip of coordinate a is at x/d = 0.96. For fatigue loading (tH = 0s), the resulting COD is lower 

than that when the loading includes an additional hold time. The added COD is the result of flow stress relaxation 

and accumulation of creep deformation in the crack plane in front of the crack tip. It can also be observed that the 
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COD in the case of creep-fatigue loading with tH = 1000s is almost twice as large as the one when only fatigue 

loading is applied.  

An analysis of the results shown in Fig. 9b also enhances the understanding of the creep loading effect on crack-

tip opening stresses. This figure shows the variation of the contact stresses between the crack surfaces at minimum 

load (point D in Fig. 1). It can be observed that the contact compressive stresses are most significant in the case of 

fatigue loading, and they diminish with the application of a longer hold time. When tH = 1000s, the contact stresses 

behind the physical crack tip become zero, thus the plastic wake behind the crack tip loses completely its 

effectiveness in closing the crack at minimum load. 

  

(a)                                                                                 (b) 

Fig. 9. Variation in the near crack-tip region of: (a) crack opening displacements at maximum load, and (b) contact 

stresses between crack surfaces at minimum load. The physical crack length is at a = 26.93 mm (normalized position 

x/d = 0.96), and the fictitious crack tip is at d = a + rpl = 28.05 mm (normalized position x/d = 1.0). 

 

Using the obtained opening stresses for creep-fatigue loading with different hold times, crack growth rates were 

computed for the fatigue portion of the cycle and for the total creep-fatigue cycle. Fig. 10a shows the predictions of 

(da/dN)fat from the SYM-CFCG model and the comparison with the experimental values of Piard et al. The SYM-

CFCG model predicts well most of the data for the four considered hold times. There is some discrepancy between 

the experimental data and the SYM-CFCG values for the hold time of tH = 1000s. This could be attributed to some 

additional damage mechanism at the crack tip that occurs during creep loading, which is not accounted for in this 

model. An interesting features is the initial drop in the (da/dN)fat curve, which is observed only for fatigue loading. 

The tendency of opening stresses to decrease in the initial phase of crack growth decreases with increasing hold 
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times. This phenomenon is observed in Fig. 10a in both the experimental data and SYM-CFCG model predictions, 

and it can be explained by the fact that initially the crack does not have a plastic wake, so the initial crack growth 

rate is high. As the crack tip advances through the initial crack-tip plastic zone, the crack surfaces develop a plastic 

wake, which slows down the crack growth rate by some amount. Once the plastic wake reaches a stable thickness, 

the crack growth rate accelerates again due to the increase in the stress intensity factor range because of crack length 

increase. While this behavior is particular for fatigue crack growth, in the case of creep-fatigue loading the influence 

of the plastic wake is diminished, or even eliminated at longer hold times, as a result of the accumulated creep 

strains and added COD during the hold time. Fig. 10b illustrates the total crack growth rate da/dN, which includes 

both the fatigue and creep growth rates as a function of ΔK. The plot presents a comparison between the 

experimental values and the SYM-CFCG predictions, and good agreement is observed for the four tests performed.  

  

(a)                                                                                             (b) 

Fig. 10. Comparison between SYM-CFCG model predictions and experimental measurements of Piard et al. [14] 

during creep-fatigue loading for: (a) fatigue crack growth rates (da/dN)fat, and (b) total crack growth rates da/dN. 

 

The influence of creep hold time on crack-tip opening stresses produces a load frequency effect for a certain 

range of frequency values. The load frequency effect for the experiments of Piard et al. and the SYM-CFCG 

simulations is illustrated in Fig. 11. In this plot the crack growth rates for the creep (da/dN)cr and fatigue (da/dN)fat 

are plotted, along with their linear superposition by simply adding the two together. The (da/dN)fat line is computed 

by the SYM-CFCG model from the fatigue crack growth simulation, when tH = 0s, thus, it does not depend on 

frequency. The (da/dN)cr line is the creep crack growth law given in Eq. (18). The dotted line in Fig. 11 is the linear 

superposition of the two crack growth equations, i.e. for (da/dN)fat and (da/dN)cr. The SYM-CFCG predictions are 
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also shown in this figure, and one can observe that these predictions are situated consistently higher that the linear 

summation (dotted) line, which clearly indicates a load frequency effect on the total crack growth rate da/dN that is 

captured by the SYM-CFCG model. The most relevant difference is observed for the frequency of f = 0.033 Hz (tH = 

30s). The load frequency effect is less relevant when f = 0.0033 Hz (tH = 300s) or f = 0.001 Hz (tH = 1000s), and 

totally inexistent when f = 10 Hz (tH = 0s). This can be explained considering that for f = 0.0033 Hz and f = 0.001 Hz 

creep crack growth is dominant, while for f = 10 Hz fatigue crack growth is the only loading mode. On the same 

plot, the Piard et al. data are also plotted, and while their data show a strong frequency effect at f = 0.033 Hz, the 

effect is not visible for other frequencies. This is due mainly to the variability in the experimental data of da/dN 

versus ΔK at the considered value of ΔK = 47 MPa√m, but the frequency effect is relevant from their experiments as 

well, if one considers the data in Fig. 10a.  

 

Fig. 11. Load interaction effect on creep-fatigue crack growth rates for a PM Astroloy material. 

 

5.2 AISI 316 austenitic stainless steel     

Creep-fatigue crack growth in AISI 316 stainless steel was performed by Michel and Smith [21] in SENT 

specimens and Sadananda and Shahinian [22] in CT specimens at a temperature of T = 593°C, with the material in 

the annealed and 20% cold worked conditions. The material constants for the 316 stainless steel in the two 

conditions are presented in Table 4. The Young’s modulus E values were taken from the British Stainless Steel 

Association website [23], the yield and ultimate strengths from the American Iron and Steel Institute website [24] 

and the AKSteel data product bulletin [25], while the Norton creep constants from Monterio et al. [26] study.     
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Figs. 12a and 12b show the evolution of the normalized opening stress/force during creep-fatigue crack growth 

in the annealed SENT specimens and the 20% cold worked SENT and CT specimens, respectively. At both 

temperatures, the applied load ratio was R = 0 and the hold times were th = 0s, 6s and 60s. It can be observed that the 

opening stress decreases with increasing hold time. The difference in the opening stress curves for th = 0s and th = 6s 

is small, however, a significant decrease in the opening stress is recorded when the hold time is increased to th = 60s. 

 

(a)                                       (b) 

Fig. 12. Evolution of crack-tip opening stress (SENT)/force (CT) with crack growth for fatigue and creep-fatigue 

loading with different hold times in AISI 316 stainless steel at 593ºC in: (a) annealed and (b) 20% cold worked 

conditions.  

 

 

(a)                                           (b) 

Fig. 13. Comparison between the SYM-CFCG model predictions and experimental measurements [21-22] of creep-

fatigue crack growth rates in AISI 316 stainless steel at 593ºC in: (a) annealed and (b) 20% cold worked conditions.   
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The SYM-CFCG model predictions of crack growth rates da/dN versus ΔK for both temperatures are shown in 

Fig. 13. In Fig. 13a, it can be observed that because of the small decrease in the opening stress between th = 0s and th 

= 6s, the difference in the crack growth rates in these two conditions is very small. However, the predicted crack 

growth rates for th = 60s increases significantly compared with the rates for the other two hold times. Fig. 13b shows 

the crack growth rates in the 20% cold worked SENT specimen at a load ratio of R = 0, and in the CT specimens at 

R = 0.05. The predictions of crack growth in SENT specimens are compared with the experimental data by Michel 

and Smith [21], while for the those in CT specimens the predictions are compared with the experimental data by 

Sadananda and Shahinian[22]. In the case of fatigue crack growth, the match between experimental and simulation 

data is satisfactory. In the case of creep-fatigue crack growth with th = 60s, the predicted values match well the 

Michel’s experimental results, while some discrepancy is recorded with respect to Sadananda’s data. 

 

6. Conclusions 

A model was proposed to study the influence of creep hold times on fatigue crack growth during creep-fatigue 

loading. The model was used to perform predictions of creep-fatigue crack growth in two alloys used at elevated 

temperatures, a nickel-based superalloy and 316 stainless steel. Several cracked geometries commonly used in 

fatigue and creep-fatigue crack growth testing were used for simulations. The model was numerically implemented 

using a strip-yield methodology, which included the effect of both plastic and creep deformations at the crack tip. In 

this methodology, the stress intensity factors and crack opening displacements were computed using the weight 

function method. It was demonstrated that enhanced creep at the crack tip and the related stress relaxation in the 

crack-tip plastic zone lead to increased crack opening displacements and diminished compressive stresses for the 

entire crack surface at minimum load in the cycle. The model results also indicate that increased creep deformation 

at the crack tip caused by longer hold time leads to a diminishing influence of the plasticity-induced crack closure on 

the crack growth, thus an acceleration of the crack growth rate during the cyclic portion of a creep-fatigue cycle. For 

long enough hold times, i.e., up to 3000 seconds for the studied materials, the plasticity-induced crack closure is 

completely overcome by the creep deformation and the added crack opening displacement induced by creep. In 

effect, the opening stress drops to the minimum stress in the cycle for longer hold times, which implies that the 

crack is fully open at minimum load. The comparison between the model predictions and experimental data is 

satisfactory for most of the testing conditions and materials. The model is also able to predict the loading frequency 
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effect and the synergistic action of creep and fatigue loading on crack growth rates. This approach provides a 

template for how crack growth predictions can be performed under variable creep-fatigue loading with short to 

moderate hold times.   
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Appendix A. Stress intensity factors and the computation of crack-tip plastic zone.  

The stress intensity factor K for a cracked specimen is computed using a geometrical factor f, which is specimen 

dependent. Moreover, the nominal stress distribution on the crack plane is also a factor in computing K. This 

appendix presents formulas for K and f for several common fracture specimens. These formulas have been adapted 

from Wu and Carlsson [18]. They presented their equations by normalizing crack length and specimen width. In this 

paper, the Wu and Carlsson formulas have been modified to be used with the actual crack length and specimen 

width dimensions. 

For a cracked specimen with a crack length a and width W subjected to a remote uniform stress S, f is calculated 

using the weight function method by 

   
0

,a W xW m a W x W
f dx

S a W




  ,                                                                                                             (A1)  

where m(a/W,x/W) is a weight function, and σ(xW) is the nominal stress that would be induced at location x in the 

crack plane by remotely applied stress S in the un-cracked specimen. For all specimens except the CT (i.e., the MT, 

SENT and DENT), the remote stress produces the following nominal stress σ(xW) = S, while for the CT specimen, 

the nominal stress is explained below. Substituting specific formulas for m(a/W,x/W)  in Eq. (A1) for each specimen, 

one obtains the results presented below.  

Formulas for K are presented for the case of a remotely applied stress S and for the case of a segment load in the 

crack plane σ(xW) = −σ0 applied between xW = a0 and xW = a. In order to apply these formulas to compute the size 
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of the crack-tip plastic zone using the Dugdale-Barenblatt model, one must replace in the K-formulas a0 with a, and 

a with d = a + rpl.       

(a) Single-edge notched tension (SENT)  
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(b) Compact-tension (CT) specimen.  
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In the case of a CT specimen, the loading is applied as a concentrated force P at the pinhole, which gives a 

distributed stress in the crack plane as 

 xW
b k xW

S


  ,                                                                                                                                         (A6) 

where b = 4 and k = −6/W. Then, 
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Appendix B. β-coefficients for the Wu-Carlson weight functions.   

In this appendix, for the SENT and CT specimens, a is the crack length and W is the specimen width. For the MT 

and DENT specimens, a is the crack half-length, and W is the specimen half-width. The coefficients βi used in the 

Appendices A, C, D and E are adapted from Wu and Carlsson [18] and are as follows.   

(a) SENT specimen 
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with α0 = 1.1214, α1 = −1.6349, α2 = 7.3168, α3 = −18.7746, α4 = 31.8028, α5 = −33.2295, α6 = 19.1286, and α7 = 

−4.6091. The functions Fi are defined as  
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with γ0 = 2.9086, γ1 = −5.5749, γ 2 = 19.572, γ 3 = −39.0199, γ 4 = 58.2697, γ 5 = −54.7124, γ 6 = 29.4039, and γ 7 = 

−6.8949. 

(b) CT specimen.  
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The coefficients in the above equation are α0 = 1.1214, α1 = 0.0294, α2 = −2.1907, α3 = 3.5511, α4 = 6.2459, α5 = 

−21.1853, α6 = 20.0463, and α7 = −6.4967.  

 

Appendix C. Crack surface displacements for specimens loaded under remotely applied loading S (see Fig. 

3b).  
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The factors βi are given in Appendix B(b). 

 (b) CT specimen 

For a CT specimen of width W and thickness BN, loaded remotely at the pinhole by a concentrated force P, the crack 

surface displacements are  
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The factors βi are given in Appendix B(c).  

Appendix D. Crack surface displacements for specimens loaded in the crack plane with a segment load not 

reaching the crack tip (see Fig. 3d).  

The specimen width (or half-width) is W, crack length (or half-length) is a, and the crack surface is loaded by a 

segment load σ(x) = σ between x1 and x2, where x1 < x2 < a. Then, with the notation a0 = max(x1, x), the crack surface 

displacements are as follows (adapted from Wu and Carlsson [18]). 
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(b) CT specimen 
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Appendix E. Crack surface displacements for specimens loaded in the crack plane with a segment load 

reaching the crack tip (see Fig. 3c). 

In this appendix, the specimen width (or half-width) is W, crack length (or half-length) is a, and the crack surface is 

loaded by a segment load σ(x) = σ between x1 and x2, where x1 < x2 = a. Then, with the notation a0 = max(x1, x), the 

crack surface displacements are the following (adapted from Wu and Carlsson [18]). 

 (a) SENT specimen 
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(b) CT specimen 
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Highlights 

 Hold time during creep-fatigue loading decreases plasticity-induced crack closure 

 Hold time increases crack surface displacements and reduces crack opening stresses 

 Longer creep hold times lead to faster crack growth rates during cyclic loading 

 Hold time effect on crack closure highlights the interaction of creep and fatigue   

 


