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Overview

• The Z machine and pulsed power ICF neutron sources

• Summary of the Z neutron diagnostic suite

• Sandia IBL neutron calibration source

• Interesting physical effects in nTOF data on Z

• Challenges in fielding nTOF and other neutron diagnostics at Z
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Pulsed power on Z provides extremely efficient coupling of 
energy to targets to generate high energy densities

• 15% conversion of wall-plug electrical energy to radiated x-ray 
energy is demonstrated in wire array implosions

• Total energy of several MJ is coupled to the load region

20 MJ 
stored 
electrical 
energy

1-2 MJ total 
radiated x-rays

10s-100s kJ
K-shell x-rays

Z-Pinch 
Radiation 
Source

Up to 4 x 1013

DD neutrons

M. C. Jones et al., RSI  85, 083501 (2014).
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ICF neutron sources at Z can have very different implosion 
dynamics and plasma conditions

Yn(DD) Yn(DT) Te (keV) Ti (keV) ni (cm-3) t (ns) Diameter
MagLIF 2x1012 5x1010 ~3 2.5 ~ 1023 < 2 ~50 m
D2 gas puff 4x1013 <4x109 2.2 ~10 2x1020 ~30 6 mm

Axial magnetic field

Cold D2 gas (fuel)

Azimuthal drive field

Liner (Al or Be)

Laser entrance hole with CH foil

~1
 c

m

Laser beam

Compressed axial field

MagLIF: M. R. Gomez et al., accepted to PRL (2014).
D2 gas puff: C. A. Coverdale et al., PoP 14, 022706 (2007).
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Radial 25-m nTOF
@ LOS 50 (presently no  

collimation)

Radial nTOF’s
@ LOS 270

Beryllium activation 
detector (DD)

Indium activation 
detectors (DD)

Copper activation 
detector  (DT)

Lead shielding

Close-in 
collimator

Close-in axial 
collimator 
(tungsten + 
plastic)

7 m

8 m

Bottom axial 
nTOF’s

The Z neutron diagnostic suite characterizes yield (activation) 
and spectrum (nTOF)

 Neutron imager not shown
 No bang time diagnostics
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 Primary DD yield
 Indium*

 Beryllium detector*

 Secondary DT yield
 Copper *

Neutron scattering from extensive hardware near target contributes
> 30% to induced activity for most activation diagnostics on Z.

Copper and indium 
fielded inside 

re-entrant tube

Target

115In(n,n’)115mIn
336-keV threshold
4.5-hr half-life

63Cu(n,2n)62Cu(β+)
11-MeV threshold
9.7-min half-life

9Be(n,α)6He(β-)
670-keV threshold
0.8-sec half-life

Extensive hardware 
surrounds target.

*Absolutely calibrated at Sandia’s Ion Beam Laboratory.

Indium
fielded on top, side, 

& bottom (not shown)

For  deuterium fuel experiments on Z, neutron yields are 
measured based on neutron activation of select materials

Brems can produce ~1010-
range equivalent yield; 

must corroborate activation 
yields with nTOF data



9/10/2014 7

Necessity of pulsed power transmission lines and blast 
shields leads to >30% scattering corrections

• a
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Z produces significant debris, which makes fielding 
diagnostics at less than ~25 cm a challenge

• Debris from MagLIF experiments must be carefully managed 
(several MJ energy release equivalent to few sticks of dynamite)

Pre-shot photo of coils & target hardware Post-shot photo
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Associated‐particle technique employs the measurement of the 4He (or p+) 
particle emission from the  dT (or dD) reaction 
d + T → n (14.1 MeV) + 4He(3.23 ‐ 2.77 MeV) Q=17.6 MeV
d + D → T (1.01 MeV)  + p (3.02 MeV)   Q=4.04 MeV

→ 3He (0.8 MeV)  + n (2.45 MeV) Q=3.27 MeV

-90°

+110°+165°

5 or 2.5mm  Dia.
Collimator

5 or 2.5 mm Dia. 
Collimator

2 SBD Detectors , 200 microns 
Thick,  50 mm2, 14 keV res.

SBD Detector

Copper samples 
located from 7.5 to 30 
cm distance to target 
center at -90 deg. 

0.6 μA, 175 keV
magnetically 

analyzed
d+ beam

Water cooled 2 - 3μm
thick ErT2 or ErD2 target
on a 50 mil Cu substrate

2.5 μm Al filters prevent 
Rutherford scattered 
deuterons on the SBD’s 

Sandia’s Ion Beam Laboratory provides a valuable DD and 
DT calibration source for Z neutron diagnostics
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Copper sample  on
linear positioning  
and  rotatable stage

deuterium 
beam

Surface barrier detectors (SBD)
in collimator  housings

Electron suppressor
at -60 volts

SBD’s at 110 
and 165 degrees

Target vertical
adjustment stage

Target rotational
adjustment stage

Target cold-finger
biased at +300 volts

View 
port

View port

Sandia’s Ion Beam Laboratory provides a valuable DD and 
DT calibration source for Z neutron diagnostics

Future work:
 CR‐39 calibrations
 nTOF detector sensitivity
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Initial MagLIF experiments show that neutron production appears 
to be dominated by a thermonuclear process.

Axial detector
Axial detector

Radial detector
Radial detector

DD Neutron Spectra Inferred from nTOF

Gaussian fit
Tion = 2.5 keV

scatter

The first set of integrated MagLIF experiments on Z have 
produced 2 x 1012 primary DD neutrons
2 kJ laser preheat
10 T applied axial B field
19 MA drive current
5x1011-2x1012 primary DD yields
1-5x1010 secondary DT yields
Peak neutron energy ~2.45 MeV
2-3 keV ion temperatures
X-ray signal FWHM ~ 2 ns 
(implies burn time < 2 ns)
Near term improvements 
(increased laser coupling) may
increase DD neutron yield M. R. Gomez et al., accepted to PRL (2014).

K. D. Hahn et al., HTPD 2014.
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Neutron scattering from Be liner provides 
a measurement of MagLIF liner R

• Downscattered signal cannot be explained as nD
scattering—requires too much fuel to reproduce 
the observed signal

• Peak near 1.5 MeV as expected from nBe
scattering kinematics

• Inferred 3000 mg/cm2 Be areal density can help to 
validate MagLIF implosion models

10-7
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600 and 3000mg/cm2 from 
MCNP including second scatter 
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dnde-3000mg-MCNP-plus max
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3000mg/cm2 compared to Z2591

dn/dt norm=1  600mgx5
Z2491 data

nTOF(ns)
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A comparison of side-on versus axial DT spectrum from 
MagLIF nTOF data is consistent with high magnetization 

• Cylindrical geometry leads to split 
nTOF peak from axial view, sensitive 
to BR

• Z replaces R as the effective areal 
density for secondary particle 
confinement

Unmagnetized Magnetized

BR=
2.5e5 G-cm
4.2e5 G-cm
7.0e5 G-cm

P. F. Schmit, P. F. Knapp et al., accepted to PRL (2014).
A. B. Sefkow et al., PoP 21, 072711 (2014).
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Large hard x-ray/brems signals on Z are a challenge for 
capturing smaller DD and very small DT signals on nTOF

• Brems overdrives PMTs and scopes, which may not recover
• ~100 ns brems makes it difficult to field close-in detectors
• DT signal overlaps with scintillator recovery decay
• Dynamic range needed to record both DT and DD peaks

Brems

DT

DDBang 
time
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• Present detectors use BC‐
422Q scintillators coupled to 
Hamamatsu R5946 (mod4) 
photomultiplier tubes (PMTs)
• High linear current
• Recover quickly
• Prior experience

• We are interested in 
advancing Z nTOF technology
• Low‐afterglow scintillators
• Gated PMTs
• Photek and other vendors

Output Pulse

Scintillator

Avg. Total Transit Time
~ 10 ns

PMT

Lightguide

nToF Detector System

FWHM ~ 4 ns

PMT Instrument Response (IR)
R5946 (mod 4)

Neutron time-of-flight instruments on Z are developed in 
collaboration with NSTec



9/10/2014 16

Until Z is capable of fielding tritium, we need to improve 
diagnosis of DD output with small DT component

New Capability Roadmap, Z Neutron Diagnostics

Capability need Notional starting requirement for impact
Spectroscopy Mitigation of brems on nTOF detectors for DD/DT

CR-39 capability for DD spectroscopy
Bang time/burn width < 1 ns resolution of bang time, 1 ns res. burn history
Imaging 1D, < 250 m resolution, 2 cm field of view, sensitive 

to < 1x1012 DD yield, time-integrated (CR-39?)

CR-39 capability
nTOF technology

Bang time concepts
Ti, yield scaling, 
dopant physics

1014-1015 DT yield
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Summary
• Pulsed power ICF experiments produce interesting plasma conditions 

and unique physical phenomena
• Neutron signatures of liner R and axial B field in MagLIF nTOF data
• High-velocity, high-Ti plasmas in shock-heated gas puffs

• Neutron diagnostics on Z encounter challenging environments
• Present emphasis on DD spectrum, sensitivity challenges
• Intense brems/hard x-ray pulses accompany neutrons
• Significant debris requires mitigation

• Advancing neutron diagnostic capability will help us to understand and 
optimize these ICF targets
• Gated MCP-PMTs and dual PMTs for improved dynamic range
• Top axial nTOF to study beams and axial B field sensitivity
• Closer (further) nTOFs for improved temporal (spectral) information
• Burn history: CVD diamonds, Thomson parabola, gas Cherenkov
• CR-39 processing capability, enabling future CRS/MRS diagnostics
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Broad nTOF pulses from gas puffs could indicate high Ti or 
time-dependent neutron emission

• Basis set reconstruction can match 
nTOF data with time dependence or 
with complex spectral shape

• Both show downscattering, likely 
from surrounding hardware

• More nTOF locations and advanced 
analysis are required

Reconstruction

Uncertainties

B. Jones and C. L. Ruiz, RSI 84, 073510 (2013).

2.44±0.01 MeV peak
174±5 keV split
195±5 keV sigma


