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Overview

The Z machine and pulsed power ICF neutron sources

« Summary of the Z neutron diagnostic suite

e Sandia IBL neutron calibration source

* Interesting physical effects in nTOF data on Z

» Challenges in fielding nTOF and other neutron diagnostics at Z




Pulsed power on Z provides extremely efficient coupling of
energy to targets to generate high energy densities
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* 15% conversion of wall-plug electrical energy to radiated x-ray
energy is demonstrated in wire array implosions

» Total energy of several MJ is coupled to the load region

M. C. Jones et al., RSI 85, 083501 (2014).




ICF neutron sources at Z can have very different implosion

dynamics and plasma conditions :
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The Z neutron diagnostic suite characterizes yield (activation)
and spectrum (nTOF)

Radial 25-m nTOF
@ LOS 50 (presently no

- I collimation)

Indium activation
detectors (DD)

Close-in axial
collimator
(tungsten +

)

= Neutron imager not shown
= No bang time diagnostics

=

e

Copper activation
detector (DT)

Close-in
collimator

Radial nTOF’s
@ LOS 270

Beryllium activation
detector (DD)

7m

Bottom axial
nTOF’s

8 m




For deuterium fuel experiments on Z, neutron yields are
measured based on neutron activation of select materials
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re-entrant tube
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= Secondary DT yield
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11-MeV threshold
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Brems can produce ~10%°- Indium
range equivalent yield; fielded on top, side, :
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Neutron scattering from extensive hardware near target contributes
> 30% to induced activity for most activation diagnostics on Z.

"Absolutely calibrated at Sandia’s lon Beam Laboratory.
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Necessity of pulsed power transmission lines and blast
shields leads to >30% scattering corrections
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Z produces significant debris, which makes fielding
diagnostics at less than ~25 cm a challenge
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* Debris from MagLIF experiments must be carefully managed
(several MJ energy release equivalent to few sticks of dynamite)
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Sandia’s lon Beam Laboratory provides a valuable DD and
DT calibration source for Z neutron diagnostics

Associated-particle techniqgue employs the measurement of the “He (or p*)
particle emission from the dT (or dD) reaction

d+T - n(14.1 MeV) +“He(3.23-2.77 MeV) Q=17.6 MeV
d+D - T(1.01 MeV) +p (3.02 MeV) Q=4.04 MeV
— 3He (0.8 MeV) + n (2.45 MeV) Q=3.27 MeV
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S~__ located from 7.5 to 30

cm distance to target

center at -90 deg.

Water cooled 2 - 3um
thick ErT, or ErD, target
on a 50 mil Cu substrate

-90°

-

0.6 A, 175 keV
magnetically > P > —————3 . ———— - ————-
analyzed 5 or 2.5 mm Dia.
4* beamn CoIIimator}\ 05 .
'-,“,’\ +1650 +110°
kY |
I
2 SBD Detectors , 200 microns ,' 5 or 2.5mm Dia.
: 2 ] Collimat
Thick, 50 mm?, 14 keV res A\ :' —~——— ollimator
2.5 um Al filters prevent 8 <— SBD Detector
Rutherford scattered

deuterons on the SBD’s
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Sandia’s lon Beam Laboratory provides a valuable DD and
DT calibration source for Z neutron diagnostics
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Future work:
= CR-39 calibrations
= nTOF detector sensitivity




The first set of integrated MagLIF experiments on Z have
produced 2 x 10'2 primary DD neutrons

2 kJ laser preheat DD Neutron Spectra Inferred from nTOF
10 T applied axial B field
19 MA drive current
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(increased laser coupling) may
increase DD neutron yield

M. R. Gomez et al., accepted to PRL (2014).
K. D. Hahn et al., HTPD 2014.

Initial MagLIF experiments show that neutron production appears
to be dominated by a thermonuclear process.
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Neutron scattering from Be liner provides

a measurement of MagLlIF liner pR
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A comparison of side-on versus axial DT spectrum from
MagLIF nTOF data is consistent with high magnetization
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» Cylindrical geometry leads to split
nTOF peak from axial view, sensitive

to BR =
« pZreplaces pR as the effective areal 7= °°[
density for secondary particle
confinement 0 - :
_ 10 12 14 16 18
P. F. Schmit, P. F. Knapp et al., accepted to PRL (2014). Neutron Energy [MeV]

A. B. Sefkow et al., PoP 21, 072711 (2014).




Large hard x-ray/brems signals on Z are a challenge for
capturing smaller DD and very small DT signals on nTOF
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* Brems overdrives PMTs and scopes, which may not recover
« ~100 ns brems makes it difficult to field close-in detectors
« DT signal overlaps with scintillator recovery decay
« Dynamic range needed to record both DT and DD peaks




Neutron time-of-flight instruments on Z are developed in
collaboration with NSTec

 Present detectors use BC-
422Q scintillators coupled to
Hamamatsu R5946 (mod4)
photomultiplier tubes (PMTs)

e High linear current o /
Scintillator _-

nToF Detector System

Avg. Total Transit Time

e Recover quickly )
e Prior experience Lightguide © "
PMT — ‘gﬂput Pulse
e We are interested in PMT Instrument Response (IR)

R5946 (mod 4)

advancing Z nTOF technology JCEE
e Low-afterglow scintillators goolz FWHM ~ 4 ns
e Gated PMTs Z o1 —> \
e Photek and other vendors < O'OZ
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Time (ns)
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Until Z is capable of fielding tritium, we need to improve
diagnosis of DD output with small DT component

New Capability Roadmap, Z Neutron Diagnostics

FY14 FY15 FYle FY17 FY18
nfy L L L A Al A
CRS MRS GRH MRS-TR
CR-39 capability A A
nTOF technology Trace Tntium
Bang time concepts Tritium 10%4-1015 DT yield 11 >
_ | o T., yield scaling,
DD sources with DT secondary emission dopant physics

Capability need Notional starting requirement for impact

Spectroscopy Mitigation of brems on nTOF detectors for DD/DT
CR-39 capability for DD spectroscopy

Bang time/burn width < 1 ns resolution of bang time, 1 ns res. burn history

Imaging 1D, < 250 um resolution, 2 cm field of view, sensitive
to < 1x10%2 DD vyield, time-integrated (CR-397?)
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Summary

 Pulsed power ICF experiments produce interesting plasma conditions
and unique physical phenomena

* Neutron signatures of liner pR and axial B field in MagLIF nTOF data
« High-velocity, high-T, plasmas in shock-heated gas puffs

 Neutron diagnostics on Z encounter challenging environments
* Present emphasis on DD spectrum, sensitivity challenges
* Intense brems/hard x-ray pulses accompany neutrons
« Significant debris requires mitigation

 Advancing neutron diagnostic capability will help us to understand and
optimize these ICF targets
o Gated MCP-PMTs and dual PMTs for improved dynamic range
 Top axial nTOF to study beams and axial B field sensitivity
o Closer (further) nTOFs for improved temporal (spectral) information
e Burn history: CVD diamonds, Thomson parabola, gas Cherenkov
 CR-39 processing capability, enabling future CRS/MRS diagnostics
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Broad nTOF pulses from gas puffs could indicate high T, or

time- dependent neutron emission
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» Basis set reconstruction can match
nTOF data with time dependence or
with complex spectral shape

 Both show downscattering, likely
from surrounding hardware

 More nTOF locations and advanced
analysis are required

BASEX inverted
spectrum (arb.)
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