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=  Motivation

= Historically, reactors have been used to test the transient response of electronic
systems to displacement damage and ionization

= Reactor availability is decreasing
= (Canion facilities be used to replace neutrons for research activities?

= Can we demonstrate ion and neutron equivalent displacement damage in
electronics?

= Electronics of interest for this presentation
= Silicon bipolar junction transistors (BJTs)
= [II-V material heterojunction bipolar transistors (HBTs) and diodes

= Metrics to demonstrate equivalent displacement damage
= Late time gain, early time gain
= Deep Level Transient Spectroscopy (DLTS)
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Facilities used in this study ) i,

WSMR Fast Burst Reactor
* Pulse width — 50 us FWHM
 Neutron fluence: 5E13 n/cm? 1 MeV Si Eqv
* Dose: 10 krad(Si)
SNL ACRR
* Pulse width: 7 — 30 ms
 Neutron Fluence: 5E13 — 1E15 n/cm? 1 MeV Si Eqv
* Dose: 10 — 100 krad(Si)

lon Beam Laboratory
* lons: H, C, Si (3, 4.5, 10, 36 MeV), O, Au, Ge IBL
* Focused beam (um — mm)
* Currents: fA (submicron beam) - 100s nA (large beam)
* Pulse length: 200 ns (90 ns rise and fall time) - ms

Little Mountain LINAC operated in electron beam mode

«  Electron energy tuned from 2 to 30 MeV
*  Pulse widths: 50 nsec to 50 psec

« Beam currents: 0.1 to 2 Amps

* 1 Hz repetition rate

SPHINX

« 2.5MeV electrons

* Pulse width - 3.5t0 10 ns
* 1 Hz repetition rate




Neutrons create displacement damage in bipolar junction ) e

transistors (BJTs)
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DLTS is used to identify defects by probing at the atomic level ) e
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Particle fluence can be related across ion and neutron facilities
using the late time gain metric and Si BJTs
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For 36 MeV Si 5E13 n/cm2 ~ 6.85E9 ions/cm?

Sandia
National _
Laboratories

For 4.5 MeV Si 5E13 n/cm?2 ~ 3.73E8 Si ions/cm?
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DLTS is used directly in the Si BJT to identify the defect spectra m {“;gi?,g;';ﬂes
responsible for late time gain degradation

DLTS defect identification based on decades of research reported in literature
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D eutron = k “=Q, A given number of defects produces the same late-time gain

neutron reduction for neutron and ion irradiations.




DLTS - Basic science technique to explore fundamental defect properties
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* Developed by a QASPR team

member - D. V. Lang, JAP, 45,
3023 (1974)

» Extended from diodes to actual
devices (BJT’s) by QASPR

» Enabled study of clustered defects
(neutrons and ions) - R. M.

Fleming, et al, JAP, 102, 043711
(2007)

* This has led to discoveries of new
Si defects - Strained and bistable
V, defects in damage clusters

* Bistable V,-like defect can be used
as a tool to de-convolve VP and V,
in the BJT base - R. M. Fleming,

et al, JAP, 108, 063716 (2010)




Matching late time gain and defect spectra at FBR and IBL h F}E;?E?;ﬂes
results in agreement of AFs at all test times for Si npn BJTs

FBR le = 0.22 mA, 2N2222
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reactor gamma environment delays gain measurement compared to IBL

Agreement between the annealing factors indicates that the annealing kinetics are similar for ion
and neutron irradiations — critical for early-time predictive capabilities
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Late-time equivalent damage is demonstrated between IBL () fo
and FBR for Npn HBTSs using late-and early-time gain metrics

Npn HBT, IE = 0.22 mA (ALJZL_L:

G) G, G,
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Equivalent damage is demonstrated between IBL and FBR A oo,
for Npn HBTs using late-and early-time gain metrics and delayed turnon — "
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« HBTs do not anneal at room temperature for over 1000 s

* We can delay turn on of HBT until all FBR neutrons are delivered

« Matching of annealing factors after 0.1 s indicates that defect annealing kinetics are
similar
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DLTS in GaAs : Analysis is more complex
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i U-band neutron spectra is radically
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T (K) MRS Do ses BLTE

Defect library from prior work Extensive (from EPR/DLTS) Minimal (EPR not effective)

Additional defect species in A few, e.g. bistable V,, strained V, Unknown at present, work in

clusters

Electric-field enhanced
emission from defects (phonon
assisted tunneling)

Minimal

progress

Extensive — Contributes to broad
DLTS features after clustered
damage (U-band, L-band)

Lack of an experimental structural tool in GaAs (minimal information with EPR) requires
QASPR to develop theoretical tools (e.g. DFT) to calculate defect structures.
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lons and electrons can produce spectra characteristics
between point and Uband
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Experimental and modeling teams work closely together to identify
simple intrinsic defects in GaAs

P.A. Schultz and O.A. von Lilienfeld, MSMSE 17, 084007 (2009), 35pp.
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‘ Pure prediction: a GaAs radiation defects Rosetta Stone ‘
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= Engineering test metrics (gain) and basic research (DLTS) have led
to improved understanding of defects and device performance in
neutron/ion environments for Si BJTs

= |on to neutron damage equivalence has been demonstrated for
BITs

= Engineering test metric (gain) has led to improved understanding of
device performance in neutron/ion environments for HBTs

= Reactor gamma and late-time neutron environment prevented
early-time gain comparisons but delayed turn on allows early-time
comparisons

= DLTS has not conclusively identified defects responsible for gain
degradation in HBTs — work continues to understand defect
characteristics



