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Combining x-ray diffraction with Z’s unique high energy 
density samples will provide benchmark quality data 

 Z’s high energy density matter samples are large, uniform, long-lived 
and precisely characterized

 X-ray diffraction will expand diagnostic capabilities on Z beyond 
pressure and density measurements
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Z is a unique platform for equation-of-state studies

 Magnetically launched flyer plates

 ~ 40 km/s, 10 Mbar, several eV

 Shock-compressed state experimentally 
determined from flyer’s impact velocity

 Pressure and density characterized ~ 1-2 %
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 Shockless (ramp) compression

 Continuous compression to ~ 5 Mbar

 Strain rates ~ 106-107 /s

cathode anode/sample

undisturbed material

 Dynamic material properties (DMP) experiments
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Z-DMP planar experiments

 Coaxial load1

 Cathode stalk surrounded 
by anode panels

 Dual pressures possible on 
north and south panels

 Enclosed magnetic fields

 More sample locations

 Optimal for (flyer plate) 
shock compression
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 Stripline load2

 Identical pressure on both 
cathode and anode panels

 Higher current density and 
pressure

 Open magnetic fields

 Optimal for high-pressure 
ramp compression
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1M. D. Knudson et al., J. Appl. Phys. 94, 4420 (2003) 2R. W. Lemke et al., Int. J. Impact Eng. 38, 480 (2011)
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Z-DMP cylindrical experiments

 Cylindrical implosion reaches extreme pressure states1

 Current pulse shaping creates ramp-wave compression

 Quasi-isentropic compression to 20 Mbar
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 Diagnostics are challenging

 Limited space

 Miniature probes

 Velocities well beyond 10 km/s

1R. W. Lemke et al., AIP Conf. Proc. 1426, 47 (2012)
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3 key components to x-ray diffraction on 
Z-DMP experiments

 Produce source x-rays

 Z-Beamlet laser irradiate metal foil

 X-pinch 

 Generate high-pressure state

 Z-DMP load 

 Debris mitigation

 Detect diffracted x-rays 

 Film

 Image plate

 Streak camera

 CCD
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Challenges of x-ray diffraction on Z

 Destructive environment of Z-DMP load

 Prevent catastrophic vacuum breach

 Protect ZBL 

 Retrieve data

 X-ray background

 High energy photons (up to 10 MeV) produced in both 
power feed section and load region 

 Sufficient signal-to-noise

 Electromagnetic pulse (EMP)

 Fry electronics
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Addressing challenges of Z-XRD 

 Placing image plate, film, x-ray CCD, and x-ray streak camera 
near load 

 Robust x-ray and EMP shielding

 Advanced debris mitigation

 Convert diffracted x-rays into visible photons

 X-ray phosphor near load

 Transport light out of load region (fiber or open optics relay)

 Leverage previous work done to implement x-ray Thomson 
scattering (XRTS) on Z
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X-ray Thomson scattering on Z

 3 key components to XRTS on Z-DMP experiments1

 ZBL produce quasi-monochromatic x-rays (6.181 keV)

 Z-DMP load generate warm dense matter state

 Detect x-rays with spectrometer (XRS3) 

Z-DMP
load

ZBL
Beamlet

scattered
x-rays

XRS3

incident
x-rays

debris
mitigation

1T. Ao et al., J. Phys. Conf. Ser. 500, 082001 (2014)
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Low x-ray background of Z-DMP experiments make 
XRTS viable

 Ride-along tests on Z-DMP experiments

 Lower x-ray background (~ 1 PSL)

 External and internal tungsten shielding reduced x-ray background 
~ 0.03 PSL

 Z-pinch radiation producing experiments

 Strong x-ray background (> 25 PSL)
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Debris mitigation strategy has been successful  

 Hypervelocity penetration depth,1

 Increase FOA glass shield thickness

 Decrease projectile density, size, and velocity 

1R. R. Burt and E. L. Christiansen, Int. J. Impact Engineering 29, 153 (2003).

ydepth  0.266proj
0.595dproj

1.05vproj
0.995(cos )0.496

 Aperture block and baffle plates limited axial debris

 Mostly liquid, some small solid fragments

 ZBL FOA protected

 XRTS data retrieved from XRS3

 Crystal still damaged
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XRTS capability successfully implemented on Z
 First time x-ray source and scattering simultaneously measured

 Scattering volume is huge compared to laser experiments (~ 1000×)

 Shock state is uniform (~ 1-2 %); long steady-state duration (~ 100 ns)

 Spatially-resolved x-ray scattering measurement enables novel and 

decisive extraction of data

 In-situ comparison of shock state with ambient material

 Direct measurement of x-ray probe source spectrum

 High-spectral resolution reveals subtle spectral features

Mn x-ray
source

ambient

shocked

TPX foam
scattering

source
x-rays

Al
flyer
(25 km/s)

TPX
(CH2)
foam

ZBL

ambient

shocked

Mn foil

shock
front

scattered
x-rays

XRS3
spectrometer shocked

TPX

ambient
TPX

Mn x-ray
source



13

Activities to develop Z-XRD

 ZBL target chamber

 X-ray source development

 Ambient material x-ray diffraction

 Z-DMP experimental ridealongs

 X-ray background

 Characterization of debris field

 DICE facility

 X-ray diffraction of compressed samples using 
DXD Supersaver x-ray source 

 Gas gun: shock loading

 Veloce small pulser: ramp loading

 X-ray phosphor and fiber relay testing
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ZBL target chamber initial x-ray diffraction test

FOA glass shield 

 Preliminary x-ray diffraction 

results with ZBL
 Mn-He- (6.181 keV)

 Ambient Fe sample
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XRD patterns from fcc aluminum using 
DXD Supersaver x-ray source and ZBL XRD instrument
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Aluminum XRD Debye ring integration at 6.4 keV
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Aluminum XRD Debye ring integration at 8.0 keV
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Aluminum XRD Debye ring integration at 17.4 keV
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Future concepts for Z-XRD

 Time-resolved x-ray diffraction

 Multi-frame ZBL x-ray sources

 X-pinch x-ray source

 Separate small pulser to drive x-pinch

 X-pinch load in parallel with Z-DMP load

 Multiple x-pinches

 Containment targets

 Inserting incident x-rays

 Extracting diffracted x-rays


