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Combining x-ray diffraction with Z's unique high energy
density samples will provide benchmark quality data

= Z’'s high energy density matter samples are large, uniform, long-lived
and precisely characterized

= X-ray diffraction will expand diagnostic capabilities on Z beyond
pressure and density measurements
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Z is a unique platform for equation-of-state studies

= Dynamic material properties (DMP) experiments

An(‘)?Flyer Plate

= Magnetically launched flyer plates
= ~40 km/s, 10 Mbar, several eV

= Shock-compressed state experimentally
determined from flyer's impact velocity

Pressure and density characterized ~ 1-2 %
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Shockless (ramp) compression
= Continuous compression to ~ 5 Mbar
= Strain rates ~ 10%-107 /s

undisturbed material




Z-DMP planar experiments

= Coaxial load’

= Cathode stalk surrounded
by anode panels

= Dual pressures possible on
north and south panels JxB

= Enclosed magnetic fields
= More sample locations

= Optimal for (flyer plate) north  cathode  SOUth
shock compression ‘ anod

short circuit

= Stripline load?
= |dentical pressure on both
cathode and anode panels

= Higher current density and
pressure

= Open magnetic fields

= Optimal for high-pressure
ramp compression

anode cathode

M. D. Knudson et al., J. Appl. Phys. 94, 4420 (2003) ’R. W. Lemke et al., Int. J. Impact Eng. 38, 480 (2011)



Z-DMP cylindrical experiments

= Cylindrical implosion reaches extreme pressure states’

= Current pulse shaping creates ramp-wave compression
= Quasi-isentropic compression to 20 Mbar

=20 MA
R=1mm
Py~ 64 Mbar

probe
motion motion

= Diagnostics are challenging
= Limited space
= Miniature probes
= Velocities well beyond 10 km/s
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3 key components to x-ray diffraction on
Z-DMP experiments

X-ray
source

= Produce source x-rays
= Z-Beamlet laser irradiate metal foil

= X-pinch incident
X-rays
= (Generate high-pressure state e ~N
= Z-DMP load .
= Debris mitigation mﬂ%t;rtl:)n
= Detect diffracted x-rays ~ giff /t q
. iTffracte
= Film x-rays
= Image plate
= Streak camera ‘ Detector ‘

= CCD




Challenges of x-ray diffraction on Z

= Destructive environment of Z-DMP load
= Prevent catastrophic vacuum breach
= Protect ZBL
* Retrieve data

= X-ray background

= High energy photons (up to 10 MeV) produced in both
power feed section and load region

= Sufficient signal-to-noise

= Electromagnetic pulse (EMP)
= Fry electronics




Addressing challenges of Z-XRD

Placing image plate, film, x-ray CCD, and x-ray streak camera
near load

= Robust x-ray and EMP shielding
= Advanced debris mitigation

Convert diffracted x-rays into visible photons
= X-ray phosphor near load
= Transport light out of load region (fiber or open optics relay)

Leverage previous work done to implement x-ray Thomson
scattering (XRTS) on Z




X-ray Thomson scattering on Z

= 3 key components to XRTS on Z-DMP experiments’
= ZBL produce quasi-monochromatic x-rays (6.181 keV)
= Z-DMP load generate warm dense matter state
= Detect x-rays with spectrometer (XRS3)
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Low x-ray background of Z-DMP experiments make
XRTS viable

= /Z-pinch radiation producing experiments
= Strong x-ray background (> 25 PSL)

= Ride-along tests on Z-DMP experiments
= Lower x-ray background (~ 1 PSL)

= External and internal tungsten shielding reduced x-ray background
~ 0.03 PSL
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Debris mitigation strategy has been successful

= Hypervelocity penetration depth,’ Vg, =0.266p," °d v’ (cos6 )"
= Increase FOA glass shield thickness ] -
= Decrease projectile density, size, and velocity - FOAglass shield %

I

= Aperture block and baffle plates limited axial debris

= Mostly liquid, some small solid fragments
= ZBL FOA protected

= XRTS data retrieved from XRS3
= Crystal still damaged
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XRTS capability successfully implemented on Z

= First time x-ray source and scattering simultaneously measured
Scattering volume is huge compared to laser experiments (~ 1000 X))
Shock state is uniform (~ 1-2 %); long steady-state duration (~ 100 ns)
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=  Spatially-resolved x-ray scattering measurement enables novel and
decisive extraction of data

In-situ comparison of shock state with ambient material
Direct measurement of x-ray probe source spectrum

= High-spectral resolution reveals subtle spectral features




Activities to develop Z-XRD

= /BL target chamber
= X-ray source development
= Ambient material x-ray diffraction

= Z-DMP experimental ridealongs
= X-ray background
= Characterization of debris field

= DICE facility
= X-ray diffraction of compressed samples using
DXD Supersaver x-ray source
= Gas gun: shock loading
= Veloce small pulser: ramp loading

= X-ray phosphor and fiber relay testing




ZBL target chamber initial x-ray diffraction test
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= Preliminary x-ray diffraction
results with ZBL

= Mn-He-a (6.181 keV)
= Ambient Fe sample

ZBL XRD

instrumen\
ZBL

—HE—'H

—

Side view

Fe 110 Fe 200




XRD patterns from fcc aluminum using
DXD Supersaver x-ray source and ZBL XRD instrument
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Aluminum XRD Debye ring integration at 6.4 keV
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Aluminum XRD Debye ring integration at 8.0 keV
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Aluminum XRD Debye ring integration at 17.4 keV
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Future concepts for Z-XRD

= Time-resolved x-ray diffraction
= Multi-frame ZBL x-ray sources

= X-pinch x-ray source
= Separate small pulser to drive x-pinch
= X-pinch load in parallel with Z-DMP load
= Multiple x-pinches

= Containment targets
= Inserting incident x-rays
= Extracting diffracted x-rays




