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| N\ Conventional Transportation Fuels Contain Different
@ Distributions of Hydrocarbon Classes and Species

Cycloalkanes Alkenes
16% 5%

Gasoline

= High octane number

= Short-chain alkanes

= Highly branched species
=  Aromatics

Aromatics
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10%

Diesel Fuel

= High cetane number

= Long-chain alkanes

= Limited branched species
=  Aromatics

Jet Fuel

= Long-chain alkanes

= Limited branched species
=  Aromatics
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Gasoline

= High octane number

= Short-chain alkanes

= Highly branched species
=  Aromatics

Diesel Fuel

High cetane number
Long-chain alkanes
Limited branched species
Aromatics

| EtOH, Methyl Esters Impose Blending Limits for
“  Practical Engines, Fuel-Transport Infrastructure

Comparison of Alcohol Properties to Gasoline

Energy Content | Octane Number | Viscosity (15 °C)

AL (MJ - L) (MON) (mPa - s)

Gasoline 32.0 84 -93 0.700

o N

Comparison of Biodiesel Properties to Diesel

Density Viscosity
Fuel (g - mL-") Cetane Number (mPa - s)
Diesel 0.85 40 - 55 1.3-41

Peralta-Yahya et al.
Nature, 2012
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Gasoline

= High octane number

= Short-chain alkanes

= Highly branched species
=  Aromatics

Diesel Fuel

= High cetane number

= Long-chain alkanes

= Limited branched species
= Aromatics

Jet Fuel

= Long-chain alkanes

= Limited branched species
=  Aromatics

S

//\\ “Ideal” Biofuels Share Similar Fuel Properties with
~  Conventional Hydrocarbons

Ideal Biofuel Target:

Biofuels with properties similar to petroleum-
based fuels for all engines types
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S Joint Effort Towards Synthesis and Combustion

Hemicellulose

Cellulose ——> Glucose /\

l Xylose Arabinose

Glucose —» Ggp —»6PG —»-

Biofuel

pBbASC HMGS S.c. PMD P,
HMGR S.c.
HMGS .. term
HMGR S.a.

(Bisabolene Synthase)

Microorganism

~7  Characterization of “Ideal” Biofuels

1.4um (HO) DiudeyLaser
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Molecular Beam
Mass Spectrometry (MBMS) Nd: YAG Laser (266/355nm)

//

| Sandia National Laboratories UNIVERSITY OF MICHIGAN

Joint BioEnergy Institute (JBEI):
Synthesis of Advanced Biofuels

> Sandia National Laboratories,

ibei |

Joint BioEnergy Institute

Direct Feedback of Experimental Results
Supports Further Development of Advanced Biofuels

University of Michigan:
Fundamental Oxidation Measurements,
ab initio Calculations

COMBUSTION RESEARCH FACILITY

@ Sandia National Laboratories


http://www.jbei.org/index.shtml
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Microbially-Derived Sesquiterpenoid Biofuel Produced

7 with Structural Characteristics of Diesel
Micro-organism
Bisabolene (C,5H,,)
™ G <
E =
Hydrogenation Oxgxgmmx P—
pBbTASC ;I:c— PI\ID PT,‘ ML P[r atIB o

HMGR S.c. + PMK
HMGS Sa term
HMGR S.a.

AgBIS
(Bisabolene Synthase)

A

. Biosynthetic Alternative

to D2 Diesel Fuel
Bisabolane (C,5H;,)

® I [ ]
],]ninl BioEnergy Institute

Peralta-Yahya, Zhang, del Cardayre, and Keasling, (2012).
Microbial engineering for the production of advanced biofuels. Nature, 488, 320.
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A\ Physical Properties of Bisabolane

~*  Compatible with Conventional Diesel Fuel

Properties D2 Diesel Biodiesel H’g‘;’;’gsﬁ; t:d
Density (g/ml) 0.85 0.88 0.82

API Gravity 35.0 29.3 41.1
Flash point (°C) 60-80 100-170 111
Viscosity (mm?/s) 1.3-4.1 4.0-6.0 29
Boiling point (°C) 180-340 315-350 267
Cloud point (°C) -35t0 5 -3to 15 <-78
Cetane number 40-55 48-65 42

Bisabolane (C,5H;,)

Peralta-Yahya et al.
Nature Communications, 2011
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N Component-Centered Approach Towards Oxidation

~  Studies on Microbially-Derived Bisabolane

Target Molecule

Bisabolane (C,5H;,)

Component System 1 Component System 2
2,5-dimethylhexane MCH Limonane
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Component-Centered Approach Towards Oxidation
Studies on Microbially-Derived Bisabolane

>

Target Molecule

Bisabolane (C,5H;,)

Component System 1

2,5-dimethylhexane

Objectives

1. Experimental: characterization of low-temperature RO,-related oxidation mechanisms of
component analogs (cyclic ether formation, alkene formation, OH, HO,, ...)

2. Computational: Quantum chemical, ab initio calculations (PES, rate coefficients, ...)
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Experimental and Computational Methods
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N\ Characterization of Initial Low-Temperature Oxidation
— " Steps from R + 0, in Hydrocarbons

RH
+OH l -H0 Gasoline Engine Diesel Engine HCCl Engine
(Spark Ignition) (Compression Ignition) (Homogeneous Charge
R —» alkene + R’ spark plug fuel injector Compression Ignition)

o

ROO —» conjugate alkene + HO,

[

W -

»
/4

(]
’5 QOOH cyclic ether + OH
= |
o +0, L
v
= 0O0QOOH carbonyl + alkene + OH
g Hot-Flame Region: Hot-Flame Region: Low—Tempefafur.e Combustion:
|— l NOx NOx & Soot Ultra-Low Emissions (< 1900K)
HOOQOOH Two Experimental Approaches:
l 1. Photoionization Mass Spectrometry (PIMS)
HOOQ'=0 + OH
0Q'=0 + 20H (chain-branching)
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| N\ Initial Alkyl Radicals Generated using Photolyzed Cl,

+ ClI + CJ
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| %F Pseudo-First-Order Conditions for Reaction of R with O,

Products Products Products
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Number Densities (molecules/cm3):

RH=1.3 10 0,=2.8 1016 Reactants

Cl,=1.4 10" He = 1.0 10V

Initial Conditions:
O,/RH ~ 220
0,/Cl, ~ 200 550 K, 650 K
RH/CI ~ 30 8 Torr

Excimer
Laser

Time-Sensitive
! MCP Detector
Tunable '
Photon '
o

Experimental Approach — Studying R + O, Chemistry using
Multiplexed Photoionization Mass Spectrometry (MPIMS)

Orthogonal
Time-of-Flight
2 Mass
l | I I I Spectrometer

J

\— Exit Orifice (600 pm)

Multiplexed Photoionization Mass Spectrometer

Osborn et al., Rev. Sci. Inst. (2008)
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A Experimental Approach — Studying R + O, Chemistry using
ali Multiplexed Photoionization Mass Spectrometry (MPIMS)

High-Resolution Isomer-Resolved Time-Dependent
Mass Spectra Species Identification Chemical Kinetics
40 1.0 1.0
0.8 - 0.8 -
30
E E 0.6 E 0.6
et 114 = =
20 - g &
2 | > B 0.4- A 044
g 128 g g
10- 112 n
0.2+ 0.2+
0 T T T T - T T T T T | A A 0.0 v T T T T T T 0.0 v T — T T T T T T T
100 105 110 115 120 125 130 8.5 9.0 9.5 10.0 10.5 0 10 20 30 40 50
m/z Photon Energy (eV) Time (ms)
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% Experimental Approach — Multi-Pass Laser-Absorption
ali Measurements of OH and HO, Time Histories

1.4 um (HO,) Diode Laser

Phase Modulator

cw-0PO Laser

NIR ECDL

InGaAs Det. 2

NIR Etalon

Wavemeter

InSb Det. 2

Wavemeter Nd: YAG Laser (266/355nm)
Alignment HeNe 3
A : # ——1 |
BC BC
Mode |Matching Lenses 355nm/266nm

Photolysis Beam

—— ><
«—>

Herriott Multipass Cell

Flip Mirror

InGaAs Det. 1
BS: Beam Splitter

BC: Beam Coupler InSh Det. 1 .
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//\\ Experimental Approach — Multi-Pass Laser-Absorption
CKRE. Measurements of OH and HO, Time Histories

1.4 um (HO,) Diode Laser
4 D
Phase Modulator ang Am Moy

OH Time History
(600 K, 20 Torr)

0.2
E Nd: YAG Laser (266/355nm)
Q
= 0.1¢ /
= /
)

0.0 - . - : : !

0 500 1000 1500

Time (us)
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Computational Approach

A

Energy

QOOH
ROO Products

Objectives —
1. Stationary point energies calculated at CBS-QB3 level of theory
= 2,5-dimethyl-1-hexyl + O,
= 2,5-dimethyl-2-hexyl + O,
= 2,5-dimethyl-3-hexyl + O,
2. Master Equation calculations (low-temperature reactions)
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. 2\ Organization of Results
CRE

MPIMS Results (550 K, 650 K)

(1) Mass spectra

(2) HO, + conjugate alkene from R + O,
(3) Cyclic ether fromR + O,

(4) Role of primary alkyl isomerization

(5) QOOH decomposition via 3-scission

(Rotavera et al., J. Phys. Chem. A, in-press)

OH- and HOO-Absorption Results

(1) OH time histories (500 — 750 K)
(2) HO, time histories (600 — 750 K)

Nd: YAG Laser (266/355nm)

(Chong et al., in preparation) //
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PIMS Results: Mass Spectra
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Mass Spectra: 2,5-dimethylhexane Oxidation

>
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Mass Spectra: 2,5-dimethylhexane Oxidation
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MPIMS Results: HO, + Conjugate Alkene
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| A\ Direct Measurement of HO,-Elimination Channel

g L

RH

’

R —» alkene + R’

"0 17

ROO —» conjugate alkene + HO,

Temperature

COMBUSTION RESEARCH FACILITY @ Sandia National Laboratories



v .. IB

. 2\ Conjugate Alkene Species from R + O,

74

+ 02 £ 0 + 02
\ 4 2 7
+ HO, + HO, + HO, + HO, + HO,
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-~ 2\ Integrated lon Signal of m/z 112 Contains

~  Contributions from All Conjugate Alkenes

60

550 K

50

S 407 Integrated Ion Signal (m/z 112)

< i

T 30- ‘

an

& __ Unknown, temperature-dependent
g 20-

contributions to integrated ion signal

10+

0 — 1 + T ' T T T T T T T T T 7 - /
8.2 8.4 8.6 88 9.0 92 94 96 98 = ™
Photon Energy (eV)

Isomers of m/z 112
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Isomeric Composition Quantified using

. CRF,
[ ] [ ] [ [ ]
“  Absolute Photoionization Cross-Sections
15 15
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, N\ Temperature-Dependent Branching Ratios of

~* Conjugate Alkenes fromR + O,

| m m/z112 )\/\(
=z
50

Ion Signal (a.u.)
(O8]
T

— .
8.2 8.4 8.6 8.8 9.0 9.2 9.4 9.6
Photon Energy (eV)
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, N\ Temperature-Dependent Branching Ratios of

~* Conjugate Alkenes fromR + O,

I = m/iz112
zZ X
50+

Ion Signal (a.u.)
(O8]
[e)
|

—
8.8 9.0
Photon Energy (eV)

8.45 eV
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, N\ Temperature-Dependent Branching Ratios of

~* Conjugate Alkenes fromR + O,

Ion Signal (a.u.)

8.2 . 8.6 8.8 9.0 9.2 9.4 9.6
Photon Ene¢rgy (eV)

8.45 eV
8.87 eV
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| A\ Temperature-Dependent Branching Ratios of

~* Conjugate Alkenes fromR + O,

I m/iz112 — 3-parameter fit
50- = X z
| M 550 K

Isomers of m/z 112

Ion Signal (a.u.)

Isomer-specific contributions quantified using
results from separate measurements of absolute

photoionization cross-sections 0; (E) for each

: : ERN— : :
2 4 . . . 2 4 . . o e .
i 8 86 88 90 9 ? 06 species and application of fitting routine:

Photon Energy (eV)

lon Signal Definition:

N
' Smy2(E) = ) 4i1(E)

Si(E) = Ag;(E)c;q;
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60

" m/z112 — 3-parameter fit

5"': M 550 K

Ion Signal (a.u.)

Photon Energy (eV)

Conjugate Alkene

2,5-dimethyl-1-hexene
2,5-dimethyl-2-hexene
2,5-dimethyl-3-hexene

Ion Signal (a.u.)

‘ Temperature-Dependent Branching Ratios of
“  Conjugate Alkenes fromR + O,

= m/z112 — 3-parameter fit
] M 650 K
T =
4_
3 .
2_
1
0
8.2
Photon Energy (eV)
550 K 650 K
0.50+0.25 0.62+0.31
0.33+0.16 0.34+0.17 | Branching
Ratios
0.17+0.08 0.04 +0.02

—
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MPIMS Results: Cyclic Ether Formation
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| A\ OH-Loss Co-Products from QOOH Species

g L

RH

:

R —» alkene + R’

‘0, 1
/
ROO

!

QOOH ——» cyclic ether + OH

Temperature
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| %F 10 Cyclic Ether Species Coincident with OH

i? . l +Cl )\/\( +Cl l
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, 2\ Integrated lon Signal of m/z 128 (Cyclic Ether) Contains
7 Contributions Potentially from All 10 Species

1.2 1.2
1 Cyclic Ether Ion Signal 1 Cyclic Ether Ion Signal
1.0+ 1.0 1
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CBS-QB3 Stationary Points: 2,5-dimethyl-2-hexyl + O,

B

TS5  TSI0 ; 5
TS8  TS6 207 104 2
TSI 92 46 1 4
0 74 1g9 | TS7 TS2 R+0, TS15 1.6 on
= sq | 95 L TS3 32 o5 -4.0 R QOOH
+HO, |- -7.4 8.7 v \
= - 13.6 e A S TS4 1514 A \
o e=T o L‘ N -16.0 -15.2 / \\
g HO, + -14.2 “ ¥ \
— 20~ RN , QOOH-1 I\ |
o . QOOH-2  -18.1 / ) .
= 227 QOOH-4 \ -
g\D +OH -25.2 \\ +OH
> -38.0 OOH-3 TS12 \
2 -404 ROO:  ROOr 34. 4 _158 o 24
&3 o 404 379 379 '
+OH | 47.0
7] o)
P SO oo
-60 - . : -61.5
-66.3

+OH -
2,5-dimethyl-2-hexyl A@% OH

Lowest-energy pathway leads to 2,2,5,5-tetramethyltetrahydrofuran
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N Cyclic Ether Formation from O,-Addition to Tertiary R

0
0
x A
+ OH + OH
+ OH
Channel 1
Channelz\ /Channel 3
[ ] + 02
ChanneIS/ anel 4
Tertiary R

o (2,5-dimethylhex-2-yl) 0

\/

+ OH
+ OH
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A Cyclic Ether Formation: 2,2,5,5-tetramethyl-THF

*_)/@

+0,

anel 4
Tertiary R

(2,5-dimethylhex-2-yl) 0

+ OH

COMBUSTION RESEARCH FACILITY @ Sandia National Laboratories



, 2\ Integrated lon Signal of m/z 128 (Cyclic Ether) Contains
7 Contributions Potentially from All 10 Species

1.2 1.2
1 Cyclic Ether Ion Signal 1 Cyclic Ether Ion Signal
1.0+ 1.0 1
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N Relative Importance of 2,2,5,5-tetramethyl-THF to

~  Cyclic Ether Channel Increases with Temperature
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1 Cyclic Ether Ion Signal 1 Cyclic Ether Ion Signal
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MPIMS Results: Role of Primary Radicals
in 2,2,5,5-tetramethyl-tetrahydrofuran Formation

COMBUSTION RESEARCH FACILITY @ Sandia National Laboratories



%‘T-
2N\ CBS-QB3 ZPE-Corrected Barrier Heights:

1,5-H-Shifting Dominates Primary Alkyl Decomposition

40 o
---- [ -scission M/
1 — H-shift
30 +H
alkene + R’ g
/k/\]/ alkene + H = 20
<
Q
é
25 10
5 .
= ]
a8 )\/Y
0_
-10 -

COMBUSTION RESEARCH FACILITY @ Sandia National Laboratories



Vo<l

S CCSD(T)-F12a/cc-pVDZ Unimolecular Decomposition

Ay

~7  Rates: 1,5-H-atom Shifting Dominates Primary Alkyl

I T T Y

CH; H
ZPE-corrected  CBS-QB3 | 36.1/16.2 37.0/20.8 27.1 28.9 33.4
barrier height
-1 -

(kcal mol™) chngT) 36.3/172 | 37.121.4 28.4 30.1 34.5
CBS-QB3 2.8-10* 2.7-10° 1.1-10° 41.0 0.07

kss0 (S_l) CCSD(T
(T)- 7.9-10° 1.3-10° 4.4-10? 17.0 0.05

F12a
CBS-QB3 1.3-10° 2.2:10° 2.3-10° 1.0-10° 3.0

kes0 K (S_l) CCSD(T
(T)- 4.9-10* 1.3-10* 1.2-10* 5.8:107 3.0

Fl12a

COMBUSTION RESEARCH FACILITY

@ Sandia National Laboratories



| A\ Relative Importance of 2,2,5,5-tetramethyl-THF to
CRE, Cyclic Ether Channel Increases with Temperature
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Laser-Absorption Results: OH, HO, Time Histories
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A Direct Measurement of OH and HO, Time Histories

~*  from R + O, Initiated Reactions

cw-0PO Laser

NIR ECDL

NIR Etalon

InSb Det. 2

Alignment HeNe

A /7 —

355nm/266nm
Photolysis Beam

Herriott Multipass Cell
Flip Mirror

InGaAs Det. 1
BS: Beam Splitter

BC: Beam Coupler InSh Det. 1 .

e
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Comprehensive Model for 2,5-dimethylhexane: Sarathy et al., Comb. Flame, 161 (2014)

C}\/}\?F Direct Measurement of OH and HO, Time Histories
7/ from R + O, Initiated Reactions
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OH Time History Measurements
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N OH Time History Measurements and Comparison with

Detailed Chemical Kinetics Modeling
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0.04 L
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=\ HO, Time History Measurements

7
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HO, Time History Measurements and Comparison with
Detailed Chemical Kinetics Modeling
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A\ Changes Implemented into Sarathy et al. Model:

. CIREE gb intio Calculations of Rate Coefficients

{/ Class 1: R+ O, =ROO

Class 5: ROO Isomerization to QOOH
Class 6: ROO = HO, + Alkene

Class 13: QOOH = Cyclic Ether + OH

Class 14: QOOH = Alkene + HO,

Class 15: QOOH = Alkene + Carbonyl + OH

MultiWell (Time-Dependent Master Equation Solver)

UNIVERSITY OF MICHIGAN

COMBUSTION RESEARCH FACILITY @ Sandia National Laboratories



Concluding Remarks
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2\ Concluding Remarks
CRE.

Bisabolane (C,sH,,) 2,5-dimethylhexane
Target Fuel Component Analogs

e RO,-related oxidation of 2,5-dimethylhexane studied at 550 K, 650 K using PIMS
— Branching ratios of HO,-elimination pathways quantified
— 2,2,5,5-tetramethyl-THF vital to characterizing low-temperature chain-propagation
— primary R — tertiary R favored over unimolecular decomposition and O,-addition

— Relevance of concerted QOOH decomposition (methylpropanal — significant)

)
&Y»)\/ﬁ/—» %/ J\ + OH
0 0
HO” HO”
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Vol
2\ Concluding Remarks

Bisabolane (C,;H,;,) 2,5-dimethylhexane MCH
Target Fuel Component Analogs

e OH, HO, time histories, ab initio rate coefficient calculations
— Improved predictions of OH vyield
— Improved predictions of HOO yield
— Improved ¢ = 1.0, 2.0 ignition delay time predictions in NTC region

e Remaining issues
— RH + OH rate coefficients

— Fuel-lean (¢ = 0.5) ignition delay time predictions from high- to low-temperature
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ENERGY RESEARCH CENTER

b 3 v i BRI
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Joint BioEnergy Institute

Sandia National Laboratories is a multiprogram laboratory operated by Sandia Corporation, a
Lockheed Martin Company, for the NNSA under contract DE-AC04-94AL85000

Funded by U.S.-China Clean Energy Research Center for Clean Vehicles
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Vol
2\ Targeted Biofuel Production using Microbial Synthesis

Pathway and host Simple Sugars
optimization

!

Acetyl CoA (Enzyme)

Bacterium

Feedstock q Feedstock
: Y
Conversion Mevalonate Pathway
of feedstock
to fuel 7
\4
I
Advanced | I
Blofiel X X ™ o/l\o/l\ ;
o (o)

[ ] I [ ]
J_Inim “iu[fnm‘g} Institute

Farnesyl Pyrophosphate

(Precursor for Biofuel Production)

Peralta-Yahya, Zhang, del Cardayre, and Keasling, (2012).
Microbial engineering for the production of advanced biofuels. Nature, 488, 320.
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Microbial Production of Biofuel Provides Some
Control Over Fuel Structure

Sesquiterpenes Production using S. cerevisiae Production using E. coli

Farnesene 2 ug/L 240 mg/L

Curcumene Not detected 130 pg/L

Cadinene 3.6 mg/L 10.3 ug/L

Amorphadiene 120mg/L 20 g/L

Peralta-Yahya et al.
Nature Communications, 2011
o b ° QGE*
] Joint BioEnergy Institute : ’ : 4
S
\r}ase
s vetispiradiene synthase J\/\J\/\J‘\A@p aristolochene syrnthjse
i B Farnesyl pyrophosphate - H
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Selected Biosynthetic Pathway Leads to
CRI Diesel-like Fuel Molecule

Sesquiterpenes Production using S. cerevisiae Production using E. coli

by
3.6 mg/L 10.3 pglL

120mg/L

Amorphadiene

Peralta-Yahya et al.
Nature Communications, 2011

jbei

Joint BioEnergy Institute

4

Bisabolene (C,5H,,)

bisabolene syntha

A A~

Farnesyl pyrophosphate
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q—

¢ Overview of Species Detected in Mass Spectra

2

m/z  Linear Formula 550 K 650 K

126 CgH,,O (unidentified) (unidentified)

112 CgHyg 2,5-dimethyl-1-hexene 2,5-dimethyl-1-hexene Alkene
2,5-dimethyl-2-hexene 2,5-dimethyl-2-hexene (HO,-
2 5-dimethyl-3-hexene 2 5-dimethyl-3-hexene Elimination)

104 C,HgO5 (minor) (unidentified) (unidentified)

98 C,Hy, — 5-methyl-2-hexene Alkene

90 C5HgO5 (minor) (unidentified) (unidentified)

86 CsH,,0 (unidentified) (unidentified)

84 CsHgO (unidentified) (unidentified)

72 C,HgO methyl-propanal methyl-propanal Aldehyde

70 CsHy, (unidentified) (unidentified)

68 CsHg isoprene isoprene Diene

58 C;HsO acetone acetone Ketone
methyloxirane -

56 C,Hg iso-butene iso-butene Alkene

44 C,H,0O acetaldehyde acetaldehyde Aldehyde
vinyl alcohol vinyl alcohol Alcohol

42 CsHg propene propene Alkene

COMBUSTION RESEARCH FACILITY

@ Sandia National Laboratories



550K | 650 K
42  propene 0.10 0.38
44  acetaldehyde 0.04 0.02
vinyl alcohol 0.02 0.01
56  iso-butene 1.05 0.88
58 acetone 0.49 0.21
methyloxirane 0.21 0.00
68 isoprene 0.01 0.01
72  methyl-propanal 1.46 0.58
98 5-methyl-2-hexene 0.00 0.07
112 2,5-dimethyl-1-hexene 1.00 1.00
2,5-dimethyl-2-hexene 1.13 0.71
2,5-dimethyl-3-hexene 1.16 0.41
128 2,2,5,5-tetramethyl-THF  73.69 12.91

A\
CRE

Quantification of Fractional Yields of Products

lon Signal:
Si(E) = Aoy(E)c;a;

Absolute Photoionization Cross-Section:

FORVEAYED Gk
0;(E) = 0y¢5.(E) (Sref.(E)> (Cref.> (mref_>

y(P,T) )

cimf (P.T)

o;(E) = Si(E)<
Fitting Coefficients:
N
S(E) = ) Ai0i(E)

Fractional Yield:

p =
AZ,S—dimethyl—l—hexene 112.125
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42

44

56

58

68

72

98

112

128

2\

propene

acetaldehyde
vinyl alcohol

iso-butene

acetone
methyloxirane

isoprene
methyl-propanal
5-methyl-2-hexene
2,5-dimethyl-1-hexene
2,5-dimethyl-2-hexene

2,5-dimethyl-3-hexene

2,2,5,5-tetramethyl-THF

550 K
0.10

0.04
0.02

1.05

0.49
0.21

0.01

1.46

0.00

1.00

1.13

1.16

73.69

650 K
0.38

0.02
0.01

0.88

0.21
0.00

0.01

0.58

0.07

Quantification of Fractional Yields of Products

Fractional yields defined relative to
— formation of HO,-elimination co-product
2,5-dimethyl-1-hexene:

[Species i]
[2,5—dimethyl—1—hexene]

FractionalYield =

1.00 <€
0.71

0.41

12.91
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10 - . - . - . - 10

] trans-2,5-dimethyl-3-hexene (Experiment) ]
- - - - Simulated Spectra

8 - 18
6- 16 §
= g
ifa ] 1 2
=S g
) 4 4 44 /g-;\
=

2 - 42

O ! | ! | ! | ! O

8.5 9.0 9.5 10.0 10.5

Photon Energy (eV)
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o (Mb)

16 T T T T T T I
] trans-2-butene
141 cis-2-butene .
1 - - - trans-2-butene (Scaled)
124 - - - cis-2-butene (Scaled) —
101 1
8 - N A R _
6- 1 ’ 2.0 T a
1 N 15 bt
41 1.0 / ]
i I
2 ] /] 0.5 /’ ]
j - 0.0
9.0 92
0 T T T T T
9.0 9.5 10.0 10.5 11.0
Photon Energy (eV)

o (Mb)

6 T T T T T T
trans-2-butene )/ ’
cis-2-butene ]

- - - - trans-2-butene (Scaled) > ’ 7

- - - - cis-2-butene (Scaled) Lo S
4 — , 4 7 - -

//
7 //
[
2 . i /, 4 -
//
7
0 T T T T T T T
9.0 9.1 9.2 93 94 9.5
Photon Energy (eV)
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%‘T'
?\/\ HO,-Elimination Co-Products of R + O,

8.91 eV 8.56 eV 8.88 eV

CBS-QB3-Calculated Adiabatic lonization Energies
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OH-Loss Co-Products from QOOH Species

)

+ Cl + Cl
l + ClI
+ HCI ] ) + HCI
+ HCI
2 + 0,
\ l +0;
9 r9ev 9 18 eV M 9.56 eV
9.11eV /° 2

893eV
895eV
8.95 eV 9.18 eV
915eV
909eV
958eV
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%:‘

N\ Daughter lon Measurements Support Quantification

CRE

1.2
m/z 113
| Daughter Ion (2,2,5,5-tetramethyl-tetrahydrofuran)

1.0 1
—_
o) _
S
‘Té; 0.8
o
& 067 550K
Té ] 0.10
20 0.4 '
9]
_S 0.05

0.2 1

0.00
8.8
0.0 —

Photon Energy (eV)

Normalized m/z 113 daughter ion signals

T T T T T T T T T
8.6 8.8 9.0 92 94 9.6

Ion Signal (a.u.)

1.2

“~ of Upper Limit to 2,2,5,5-tetramethyl-THF

1.0+

0.8

0.6

0.4+

0.2 1

| m/z 113 Daughter Ion Signal —>

0.0

8.6

T T T T T T T T T T T
8.8 9.0 9.2 9.4 9.6 9.8 10.0
Photon Energy (eV)

Scaled m/z 113 daughter ion signals

+ CH,
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Vol
| %F Stationary Points: 2,5-dimethyl-1-hexyl + O,

TS17 TS6
-4.3 TS16 49
0 R+0,
=
g ~
~ ,' )
§ 207 ) ) .
—\M_/ o ; QOOH-2 QOOH-6
> ] + OH ',' 24.9 -16.3 \ . 2 o
) ; QOOH-4 . e
o -404 / -20.7 ROO  ROO -35.4 .~ . ‘on
< — 348 348 | o L e
88 N 5
+CH,0 + OH
+ OH
QOOH-3
-60 4 227
QOOH-5 .
223.0 65%/[;:#/
+ OH

2,5-dimethyl-1-hexyl

Energy barriers to m/z 98 alkene formation from QOOH
lie above entrance channel for R + O,
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Vo<l
2

f

0_
=)
g
—=  20-
Q
=
%
S -40
83
-60

Stationary Points: 2,5-dimethyl-2-hexyl + O,

TS8  TS6
TS1 - ]
e 9.2 15740 T2 R+O,
- -15.7l ‘9-5l TS3 =32 1413
+HO, _F-T 74 8.7
-13.6
HO, +
X
: QOOH-2  -18.1
22.7
+ OH

ROO-
-37.9

2,5-dimethyl-2-hexyl

CRE Calculated at CBS-QB3 Level

ROO-
-37.9

TS5
-20.7

TS15

TS10 3 s

- 2
104 o 1 .

QOOH-3

-24.4 -18.0

QOOH-5 o
-18.3 -61.5
+ OH
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£
—=  -20-
Q
2
%
S -40 -
53

-60

TS15 TS9 TS7 TS3
g0 -7.9 -100 -88 TSI4

TS16| TS2

QOOH-1

Stationary Points: 2,5-dimethyl-3-hexyl + O,

-12.7

TS10
R+0
132 | Ts4 TS13

-5.3

; -18.3 ‘ \
366 ' ® QOOH-3 ROO  ROO
247 QOOH2 355, 352 s\ .
Y -41.9 21.8 o
W " 27 s >—<><
>A\/ ' ron
tOH | | 576
+ + OH

2,5-dimethyl-3-hexyl
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R —» alkene + R’

Ny

ROO

I

QOOH

carbonyl + alkene + OH

Qo
—
=)
r—
©
S
Q
Q
5
[t
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=S s

A\ Daughter lon Signals Indicate Potential for Other
7 Cyclic Ethers Formed by QOOH Decomposition

’
{
k//

m/z 85 m/z 113

Daughter lon Daughter Ion/(o%

NN
Photon Energy (ev)
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s —— m/z 56 (650 K)
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Time Histories

0.8
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Ion Signal (Normalized)

550 K, 8 Torr

0.4 -
—0O0— m/z 56
—8— m/z 58

0.2 (a) —m—miz72
—m—m/z 112

g m/z 128
0.0 | ' | ' | | |
0 5 10 15 20 25
Time (ms)

30

Ion Signal (Normalized)

650 K, 8 Torr
—O0— m/z 56
—m— m/z 58
(b) -—mmizT72
—m—m/z 112
m/z 128
T ' T '
10 15 20

Time (ms)

COMBUSTION RESEARCH FACILITY

@ Sandia National Laboratories



v ..
A\

!

Energy (kcal /mol)

30+

20

10+

=

Role of Primary Alkyl Radicals in Forming
CKRE 2,2,5,5-tetramethyl-THF

Primary Alkyl
| Tertiary Alkyl

Ay

1,5-Hydrogen Shift
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30+
% 20 -
&
Ei
- Reaction 1A
5,3 104 React%on 1B
3 ---- Reaction 2
= Reaction 3A
——=- Reaction 3B
O .

+ CH;

COMBUSTION RESEARCH FACILITY @ Sandia National Laboratories



2
CRE
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Results (3): Other Channels
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B-Scission Products of QOOH Species

B-Scission Products + OH
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, é\/\iR%F

Integrated lon Signal (m/z 58): Acetone

Acetone FractionalYield (550 K) = 0.49
Acetone Fractional Yield (650 K) = 0.21
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Ion Signal (Normalized)
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#
N HO, Time History Measurements and Comparison with

7 Detailed Chemical Kinetics Modeling
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