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EtOH, Methyl Esters Impose Blending Limits for 
Practical Engines, Fuel-Transport Infrastructure

Comparison of Alcohol Properties to Gasoline

Comparison of Biodiesel Properties to Diesel

Peralta-Yahya et al.          
Nature, 2012

Fuel
Energy Content 

(MJ  L–1)
Octane Number 

(MON)
Viscosity (15 °C)      

(mPa  s)

Gasoline 32.0 84 – 93 0.700

Ethanol 19.6 102 1.337

1–Butanol 29.2 78 3.515

Fuel
Density             

(g  mL–1)
Cetane Number

Viscosity      
(mPa  s)

Diesel 0.85 40 – 55 1.3 – 4.1 

Biodiesel 0.88 48 – 65 4.0 – 6.0 

Gasoline
 High octane number
 Short-chain alkanes
 Highly branched species
 Aromatics

Jet Fuel
 Long-chain alkanes
 Limited branched species
 Aromatics

Diesel Fuel
 High cetane number
 Long-chain alkanes
 Limited branched species
 Aromatics



“Ideal” Biofuels Share Similar Fuel Properties with 
Conventional Hydrocarbons

Ideal Biofuel Target: 

Biofuels with properties similar to petroleum-
based fuels for all engines types

Gasoline
 High octane number
 Short-chain alkanes
 Highly branched species
 Aromatics

Jet Fuel
 Long-chain alkanes
 Limited branched species
 Aromatics

Diesel Fuel
 High cetane number
 Long-chain alkanes
 Limited branched species
 Aromatics



Joint BioEnergy Institute (JBEI):         
Synthesis of Advanced Biofuels

Sandia National Laboratories, 
University of Michigan:

Fundamental Oxidation Measurements,
ab initio Calculations

Direct Feedback of Experimental Results 
Supports Further Development of Advanced Biofuels 

Biofuel

Arabinose

Hemicellulose

Xylose
GlucoseCellulose

Molecular Beam 
Mass Spectrometry (MBMS)

OH, HO2 Measurements

Microorganism

AgBIS
(Bisabolene Synthase)

Joint Effort Towards Synthesis and Combustion 
Characterization of “Ideal” Biofuels 

http://www.jbei.org/index.shtml


Microbially-Derived Sesquiterpenoid Biofuel Produced 
with Structural Characteristics of Diesel

Micro-organism

AgBIS
(Bisabolene Synthase)

Peralta-Yahya, Zhang, del Cardayre, and Keasling, (2012). 
Microbial engineering for the production of advanced biofuels. Nature, 488, 320. 

Bisabolene (C15H24)

Bisabolane (C15H30)

Hydrogenation

Biosynthetic Alternative
to D2 Diesel Fuel

http://www.jbei.org/index.shtml


Physical Properties of Bisabolane 
Compatible with Conventional Diesel Fuel

Properties D2 Diesel Biodiesel
Hydrogenated 

bisabolene

Density (g/ml) 0.85 0.88 0.82

API Gravity 35.0 29.3 41.1

Flash point (C) 60–80 100–170 111

Viscosity (mm
2
/s) 1.3–4.1 4.0–6.0 2.9

Boiling point (C) 180–340 315–350 267

Cloud point (C) −35 to 5 −3 to 15 <−78

Cetane number 40–55 48–65 42

Peralta-Yahya et al.          
Nature Communications, 2011

Bisabolane (C15H30)



Bisabolane (C15H30)

Component-Centered Approach Towards Oxidation 
Studies on Microbially-Derived Bisabolane

MCH2,5-dimethylhexane Limonane

Target Molecule

Component System 1 Component System 2



Bisabolane (C15H30)

MCH2,5-dimethylhexane Limonane

Target Molecule

Component System 1 Component System 2

Component-Centered Approach Towards Oxidation 
Studies on Microbially-Derived Bisabolane

Objectives

1. Experimental: characterization of low-temperature RO2-related oxidation mechanisms of 
component analogs (cyclic ether formation, alkene formation, OH, HO2, …) 

2. Computational: Quantum chemical, ab initio calculations (PES, rate coefficients, …)



Experimental and Computational Methods



Characterization of Initial Low-Temperature Oxidation 
Steps from R + O2 in Hydrocarbons 
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Two Experimental Approaches:

1. Photoionization Mass Spectrometry (PIMS)
2. Direct-Absorption (MIR) of OH, HO2



Initial Alkyl Radicals Generated using Photolyzed Cl2
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Pseudo-First-Order Conditions for Reaction of R with O2

+ O2
+ O2

+ O2

+ Cl

+ HCl

+ HCl

+ HCl

+ Cl

+ Cl

Products Products Products



Time-Sensitive 
MCP Detector

Excimer
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200 cm/s

Exit Orifice (600 m)

Multiplexed Photoionization Mass Spectrometer

Osborn et al., Rev. Sci. Inst. (2008)

Experimental Approach – Studying R + O2 Chemistry using 
Multiplexed Photoionization Mass Spectrometry (MPIMS)

Number Densities (molecules/cm3):
RH = 1.3 1014 O2 = 2.8 1016

Cl2 = 1.4 1014 He = 1.0 1017

Initial Conditions: 
O2/RH ~ 220
O2/Cl2 ~ 200
RH/Cl ~ 30

550 K, 650 K
8 Torr



Probing of Molecular Beams
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Experimental Approach – Studying R + O2 Chemistry using 
Multiplexed Photoionization Mass Spectrometry (MPIMS)



Experimental Approach – Multi-Pass Laser-Absorption 
Measurements of OH and HO2 Time Histories
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Experimental Approach – Multi-Pass Laser-Absorption 
Measurements of OH and HO2 Time Histories

OH Time History 
(600 K, 20 Torr)



Computational Approach 

Objectives –

1. Stationary point energies calculated at CBS-QB3 level of theory

 2,5-dimethyl-1-hexyl + O2

 2,5-dimethyl-2-hexyl + O2

 2,5-dimethyl-3-hexyl + O2

2. Master Equation calculations (low-temperature reactions)

En
er

gy

ROO
QOOH

Products



Organization of Results

MPIMS Results (550 K, 650 K)

(1) Mass spectra
(2) HO2 + conjugate alkene from R + O2

(3) Cyclic ether from R + O2

(4) Role of primary alkyl isomerization
(5) QOOH decomposition via -scission 

(Rotavera et al., J. Phys. Chem. A, in-press)

OH- and HOO-Absorption Results

(1) OH time histories (500 – 750 K) 
(2) HO2 time histories (600 – 750 K)

(Chong et al., in preparation) 



PIMS Results: Mass Spectra
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Mass Spectra: 2,5-dimethylhexane Oxidation

650 K
8 Torr
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MPIMS Results: HO2 + Conjugate Alkene



Direct Measurement of HO2-Elimination Channel
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R

- H2O
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ROO conjugate alkene + HO2

QOOH cyclic ether + OH

carbonyl + alkene + OHOOQOOH

OQ =O + 2OH (chain-branching)

+ OH

alkene + R

+ O2

HOOQ OOH

HOOQ =O + OH



Conjugate Alkene Species from R + O2

+ O2
+ O2

+ O2

+ Cl

+ HCl

+ HCl
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+ Cl

+ HO2 + HO2 + HO2 + HO2 + HO2



Integrated Ion Signal of m/z 112 Contains 
Contributions from All Conjugate Alkenes

8.2 8.4 8.6 8.8 9.0 9.2 9.4 9.6 9.8
0

10

20

30

40

50

60

550 K

Io
n 

S
ig

na
l 

(a
.u

.)

Photon Energy (eV)

Integrated Ion Signal (m/z 112)

Unknown, temperature-dependent 
contributions to integrated ion signal

Isomers of m/z 112



Isomeric Composition Quantified using 
Absolute Photoionization Cross-Sections
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��/� � = ����� �

�

�

Isomer-specific contributions quantified using

results from separate measurements of absolute

photoionization cross-sections �� � for each

species and application of fitting routine:

��(�) = �� � ����

Ion Signal Definition:

Isomers of m/z 112
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Conjugate Alkene 550 K 650 K

2,5-dimethyl-1-hexene 0.50  0.25 0.62  0.31

2,5-dimethyl-2-hexene 0.33  0.16 0.34  0.17

2,5-dimethyl-3-hexene 0.17  0.08 0.04  0.02

Branching 
Ratios

Temperature-Dependent Branching Ratios of 
Conjugate Alkenes from R + O2



MPIMS Results: Cyclic Ether Formation



OH-Loss Co-Products from QOOH Species
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10 Cyclic Ether Species Coincident with OH

+ O2
+ O2

+ O2

+ Cl

+ HCl

+ HCl

+ HCl

+ Cl

+ Cl
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CBS-QB3 Stationary Points: 2,5-dimethyl-2-hexyl + O2
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Cyclic Ether Formation from O2-Addition to Tertiary R

+ OH+ OH

+ OH

+ OH

+ OH

+ O2

Channel 1

Channel 3Channel 2

Channel 4Channel 5

Tertiary R
(2,5-dimethylhex-2-yl)



Cyclic Ether Formation: 2,2,5,5-tetramethyl-THF

+ OH+ OH
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Channel 1

Channel 3Channel 2

Tertiary R
(2,5-dimethylhex-2-yl)

Channel 4Channel 5
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Cyclic Ether Channel Increases with Temperature



MPIMS Results: Role of Primary Radicals 
in 2,2,5,5-tetramethyl-tetrahydrofuran Formation



CBS-QB3 ZPE-Corrected Barrier Heights: 
1,5-H-Shifting Dominates Primary Alkyl Decomposition
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CCSD(T)-F12a/cc-pVDZ Unimolecular Decomposition 
Rates: 1,5-H-atom Shifting Dominates Primary Alkyl

+ +

CH3

+

H

ZPE-corrected 
barrier height 
(kcal mol-1)

CBS-QB3 36.1/16.2 37.0/20.8 27.1 28.9 33.4

CCSD(T)-
F12a

36.3/17.2 37.1/21.4 28.4 30.1 34.5

k550 K (s-1)

CBS-QB3 2.8·104 2.7·103 1.1·103 41.0 0.07

CCSD(T)-
F12a

7.9·103 1.3·103 4.4·102 17.0 0.05

k650 K (s-1)

CBS-QB3 1.3·105 2.2·104 2.3·104 1.0·103 3.0

CCSD(T)-
F12a

4.9·104 1.3·104 1.2·104 5.8·102 3.0
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Laser-Absorption Results: OH, HO2 Time Histories 



Direct Measurement of OH and HO2 Time Histories 
from R + O2 Initiated Reactions

+ Cl + O2

– HCl
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OH Time History Measurements
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HO2 Time History Measurements
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Changes Implemented into Sarathy et al. Model: 
ab intio Calculations of Rate Coefficients 

Class 1: R + O2 = ROO 
Class 5: ROO Isomerization to QOOH 
Class 6: ROO = HO2 + Alkene 
Class 13: QOOH = Cyclic Ether + OH 
Class 14: QOOH = Alkene + HO2

Class 15: QOOH = Alkene + Carbonyl + OH 

MultiWell (Time-Dependent Master Equation Solver)



Concluding Remarks



• RO2-related oxidation of 2,5-dimethylhexane studied at 550 K, 650 K using PIMS

– Branching ratios of HO2-elimination pathways quantified

– 2,2,5,5-tetramethyl-THF vital to characterizing low-temperature chain-propagation

– primary R ⟶ tertiary R favored over unimolecular decomposition and O2-addition

– Relevance of concerted QOOH decomposition (methylpropanal → significant)

Concluding Remarks

Bisabolane (C15H30) MCH2,5-dimethylhexane

Target Fuel Component Analogs

+ OH



• OH, HO2 time histories, ab initio rate coefficient calculations 

– Improved predictions of OH yield

– Improved predictions of HOO yield

– Improved  = 1.0, 2.0 ignition delay time predictions in NTC region

• Remaining issues 

– RH + OH rate coefficients

– Fuel-lean ( = 0.5) ignition delay time predictions from high- to low-temperature 

Concluding Remarks

Bisabolane (C15H30) MCH2,5-dimethylhexane

Target Fuel Component Analogs



Sandia National Laboratories is a multiprogram laboratory operated by Sandia Corporation, a
Lockheed Martin Company, for the NNSA under contract DE-AC04-94AL85000

Funded by U.S.-China Clean Energy Research Center for Clean Vehicles

http://www.jbei.org/index.shtml


Acetyl CoA (Enzyme)

Simple Sugars

Mevalonate Pathway

Farnesyl Pyrophosphate

(Precursor for Biofuel Production)

Peralta-Yahya, Zhang, del Cardayre, and Keasling, (2012). 
Microbial engineering for the production of advanced biofuels. Nature, 488, 320. 

Targeted Biofuel Production using Microbial Synthesis

http://www.jbei.org/index.shtml


Microbial Production of Biofuel Provides Some 
Control Over Fuel Structure 

Sesquiterpenes Production using S. cerevisiae Production using E. coli

Farnesene 2 µg/L 240 mg/L

Bisabolene 150 µg/L 517 mg/L

Curcumene Not detected 130 µg/L

Vetispiradiene 300 µg/L 73 mg/L

Cadinene 3.6 mg/L 10.3 µg/L

Aristolochene 190 µg/L 33 mg/L

Amorphadiene 120mg/L 20 g/L

Peralta-Yahya et al.          
Nature Communications, 2011
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Overview of Species Detected in Mass Spectra

m/z Linear Formula 550 K 650 K

128 C8H16O
2,2,5,5-tetramethyl-

tetrahydrofuran

2,2,5,5-tetramethyl-

tetrahydrofuran

126 C8H14O (unidentified) (unidentified)

112 C8H16 2,5-dimethyl-1-hexene 2,5-dimethyl-1-hexene

2,5-dimethyl-2-hexene 2,5-dimethyl-2-hexene

2,5-dimethyl-3-hexene 2,5-dimethyl-3-hexene

104 C4H8O3 (minor) (unidentified) (unidentified)

98 C7H14 – 5-methyl-2-hexene

90 C3H6O3 (minor) (unidentified) (unidentified)

86 C5H10O (unidentified) (unidentified)

84 C5H8O (unidentified) (unidentified)

72 C4H8O methyl-propanal methyl-propanal

70 C5H10 (unidentified) (unidentified)

68 C5H8 isoprene isoprene

58 C3H6O acetone acetone

methyloxirane –

56 C4H8 iso-butene iso-butene

44 C2H4O acetaldehyde acetaldehyde

vinyl alcohol vinyl alcohol

42 C3H6 propene propene

Cyclic Ether

Alkene 
(HO2-
Elimination)

Alkene

Aldehyde

Diene

Ketone

Alkene

Alkene

Aldehyde

Alcohol



Quantification of Fractional Yields of Products
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Ion Signal:

Absolute Photoionization Cross-Section:

Fitting Coefficients:

Fractional Yield:

m/z Species Fractional Yield

550 K 650 K

42 propene 0.10 0.38

44 acetaldehyde 0.04 0.02

vinyl alcohol 0.02 0.01

56 iso-butene 1.05 0.88

58 acetone 0.49 0.21

methyloxirane 0.21 0.00

68 isoprene 0.01 0.01

72 methyl-propanal 1.46 0.58

98 5-methyl-2-hexene 0.00 0.07

112 2,5-dimethyl-1-hexene 1.00 1.00

2,5-dimethyl-2-hexene 1.13 0.71

2,5-dimethyl-3-hexene 1.16 0.41

128 2,2,5,5-tetramethyl-THF 73.69 12.91
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42 propene 0.10 0.38

44 acetaldehyde 0.04 0.02

vinyl alcohol 0.02 0.01

56 iso-butene 1.05 0.88
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methyloxirane 0.21 0.00

68 isoprene 0.01 0.01
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2,5-dimethyl-2-hexene 1.13 0.71
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CBS-QB3-Calculated Adiabatic Ionization Energies

HO2-Elimination Co-Products of R + O2



OH-Loss Co-Products from QOOH Species
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Daughter Ion Measurements Support Quantification 
of Upper Limit to 2,2,5,5-tetramethyl-THF
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Stationary Points: 2,5-dimethyl-2-hexyl + O2

Calculated at CBS-QB3 Level
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Daughter Ion Signals Indicate Potential for Other 
Cyclic Ethers Formed by QOOH Decomposition 

m/z 85
Daughter Ion

m/z 113 
Daughter Ion

Raw Ion Signals



9.0 9.2 9.4 9.6
0

2

4

6

8

 m/z 56 (650 K)
iso-butene

Io
n 

S
ig

n
al

 (
a.

u.
)

Photon Energy (eV)



Time Histories

0 5 10 15 20 25 30
0.0

0.2

0.4

0.6

0.8

1.0

550 K, 8 Torr

m/z 56
m/z 58
m/z 72
m/z 112
m/z 128

(a)Io
n

 S
ig

n
al

 (
N

o
rm

al
iz

ed
)

Time (ms)

0 5 10 15 20
0.0

0.2

0.4

0.6

0.8

1.0

650 K, 8 Torr

m/z 56
m/z 58
m/z 72
m/z 112
m/z 128

(b)Io
n

 S
ig

n
al

 (
N

o
rm

al
iz

ed
)

Time (ms)



Role of Primary Alkyl Radicals in Forming 
2,2,5,5-tetramethyl-THF
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-Scission Pathways in 2,5-dimethylhexane
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Evidence of -Scission: m/z 98 (5-methyl-2-Hexene)
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Results (3): Other Channels
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R Olefin + R

O2

ROO·

·QOOH

O2

·OOQOOH

Ketohydroperoxide + OH

Low-Temperature Branching

Olefin + HO2

Cyclic Ether + OH

-Scission Products + OH

-Scission Products of QOOH Species



Integrated Ion Signal (m/z 58): Acetone

9.0 9.5 10.0 10.5
0

5

10

15

20

650 K

 m/z 58 
 Acetone

Io
n 

S
ig

na
l 

(a
.u

.)

Photon Energy (eV)

O

9.0 9.5 10.0 10.5
0

10

20

30

40

50

60

 m/z 58 
 Acetone
 Methyloxirane
 Correlation Function

O

OIo
n 

S
ig

na
l 

(a
.u

.)

Photon Energy (eV)

550 K

57.95 58.00 58.05 58.10 58.15
0.00

0.01

0.02

0.03

0.04

0.05

Io
n 

S
ig

na
l 

(a
.u

.)

m/z

C
3
H

6
O

m/z 58.0419

550 K

650 K

+ OH

�������	����������	�����	(���	�) = �. ��

�������	����������	�����	 ���	� = �. ��



9.0 9.5 10.0 10.5
0

20

40

60

80

100

120

140

550 K

 m/z 72 
 methylpropanal

Io
n

 S
ig

na
l 

(a
.u

.)

Photon Energy (eV)

9.00 9.25 9.50 9.75
0

5

10

9.0 9.5 10.0 10.5
0

10

20

30

40

50

650 K

 m/z 72 
 methylpropanal

Io
n

 S
ig

na
l 

(a
.u

.)

Photon Energy (eV)

����������	�����	(���	�) = �. �� ����������	�����	 ���	� = �. ��

Integrated Ion Signal (m/z 72): Methylpropanal

+ OH



Comparison of m/z 58, 72 Time Histories to 
Cyclic Ether and HO2-Elimination
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HO2 Time History Measurements and Comparison with 
Detailed Chemical Kinetics Modeling
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