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Problem Statement

Unit Commitment (UC): schedule thermal generating units with
the objective is to minimize overall production costs

satisfy forecasted demand for electricity; reserve margins are
universally imposed in UC to ensure that sufficient capacity is
available in case demand is higher
respect constraints on both transmission (e.g., thermal limits) and
generator infrastructure

Stochastic UC model (SUC): typically minimize the expected
cost across load scenarios, thus ensuring sufficient flexibility to
meet a range of potential load realizations during operations.

reliance on reserve margins is reduced, yielding less costly
solutions than deterministic UC
computationally difficult due to the large number of samples needed
to achieve “converged” solutions
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Stochastic Unit Commitment

min
x

cu(x) + cd(x) + Q(x)

s.t. x ∈ X ,
x ∈ {0, 1}|G|×|T|

G and T: index sets of generating
units and time periods

X and x: set of unit commitment
constraints and vector of unit
commitment decisions

cu(x) and cd(x): generating unit
start-up and shut-down costs

Q(x): the expected generation cost

Classical approach, compute

Q(x) =
1
|S|

|S|∑
s=1

Qs(x)

using a finite number of load realizations (i.e., scenarios) s ∈ S
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Economic Dispatch Problem

Qs(x) =

min
p,q

∑
t∈T

∑
g∈G

cP
g (pt

g) +
∑
t∈T

Mqt

s.t.
∑
g∈G

pt
g − qt = Dt

s, ∀t ∈ T

Pgxt
g ≤ pt

g ≤ Pgxt
g, ∀g ∈ G, t ∈ T

pt
g − pt−1

g ≤ RU(xt−1
g , xt

g), ∀g ∈ G, t ∈ T

pt−1
g − pt

g ≤ RD(xt−1
g , xt

g), ∀g ∈ G, t ∈ T.

Ds =
{

D1
s ,D

2
s , · · · ,D

|T|
s

}
is a realization (scenario) sampled from p(D).
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Polynomial Chaos Representation of Random
Variables

In general Q = Q(x,D). Consider the demand D a random variable,
then estimate the RV Q

Can describe a RV as a function on a probability space

Constraining the analysis to RVs with finite variance
⇒ Represent RV as a spectral expansion in terms of orthogonal

functions of standard RVs
– Polynomial Chaos Expansion (PCE)

Multiple uses for the PCE, including cheap evaluations of RV
moments.
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Polynomial Chaos Expansion (PCE)

Model uncertain quantities as random variables (RVs)
Given a germ ξ(ω) = {ξ1, · · · , ξn} – a set of i.i.d. RVs

– where p(ξ) is uniquely determined by its moments

Any RV in L2(Ω,S(ξ),P) can be written as a PCE:

f (x, ω) '
P∑

k=0

fk(x)Ψk(ξ(ω))

– fk(x) are mode strengths
– Ψk() are multivariate functions orthogonal w.r.t. p(ξ)

With dimension n and order p: P + 1 =
(n + p)!

n!p!
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Employ Orthogonality to Compute PCE Coefficients

By construction, the functions Ψk() are orthogonal with respect
to the density of ξ

fk(x) =
〈f Ψk〉
〈Ψ2

k〉
=

1
〈Ψ2

k〉

∫
f (x; D(ξ))Ψk(ξ) pξ(ξ) dξ

Examples:
Hermite polynomials with Gaussian basis
Legendre polynomials with Uniform basis, ...
Global versus Local PC methods

Adaptive domain decomposition of the support of ξ
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Represent Optimal Cost via PCE

Defining Dt iid∼ U(Dt
min,Dt

max), then by construction

Dt = ξt
Dt

max − Dt
min

2
+

Dt
max + Dt

min
2

, ∀t ∈ T

In this context, we represent Q(x,D(ξ)) with a truncated LU PCE

QPC(x,D(ξ)) =

P∑
k=0

ck(x)Ψk(ξ),

The PCE coefficient are evaluated by quadrature,

ck(x) =
〈QΨk〉
〈Ψ2

k〉
=

1
〈Ψ2

k〉

∫
[−1,1]n

Q(x, ξ)Ψk(ξ)dξ.

and the expectation of the cost, Q(x)

Q(x) = Eξ[Q(x, ξ)] = 〈Q(x, ξ)〉 = c0,
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Economic Dispatch - Test Cases

9-bus system [J. H.
Chow, Ed., 1982]

IEEE 118-bus system
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Order Sparse Quadrature
L2, 85p L3, 389p L4, 1457p L5, 4865p

1 1.62e-05 2.90e-05 2.15e-05 2.18e-05
2 - 7.48e-07 2.17e-07 7.83e-08
3 - - 1.92e-07 5.36e-08
4 - - - 2.10e-08

Relative L2 error at training points for several PCE surrogates and
sparse quadrature levels. Power generation cost discretized

using 10 segments.
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PCE Representations for Q(x,D(ξ))
9-bus system

6-dimensional PCE
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24-dimensional PCE
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Slice through multi-dimensional PCE models for Q(x,D(ξ))

The transparent surfaces shows the dependence of Q on the
corresponding loads. Filled contours provide a qualitative view of
the dependence on each load.
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Convergence of Q(x) = EξQ(x, ξ(D))

Monte Carlo (MC) results
(solid green line) vs vs PCE.

9-bus, 6-dimensional PCE
(solid blue line)
118-bus, 24-dimensional
PCE (solid red line).
Theoretical convergence
rates of 1/2 (dashed green)
and 2 (dashed blue).
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The PCE results are typically one-two orders of magnitude cheaper
compared to MC results.
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Summary

We present an approach to reduce the computational cost associated
with stochastic unit commitment and economic dispatch, by reducing
the number of required forecast samples.

The approach is based on treating uncertain demands as random
variables and representing them via Polynomial Chaos
Expansions.
We present for 9-bus and 118-bus test cases. For both of these
cases, quadratic PCE models for the generation cost showed
global L2 errors less than 1% throughout the uncertain demand
space compared to the full model
For the examples considered in this paper, the Polynomial Chaos
approach is typically one to two orders of magnitude cheaper
compared to Monte Carlo evaluation of the expected generation
cost.
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